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Abstract We model propagation of a coronal shock wave by using nonlinear
geometrical acoustics. The method is based on the WKB approach and takes
into account main properties of nonlinear waves: i) dependence of the wave front
velocity on the wave amplitude, ii) nonlinear dissipation of the wave energy, and
iii) progressive increase in the duration of solitary shock waves. We address the
method in detail and present results of modeling propagation of shock-associated
EUV waves as well as Moreton waves along the solar surface in the simplest solar
corona model. The calculations reveal deceleration and lengthening of the waves.
In contrast, waves considered in the linear approximation keep their length
unchanged and slightly accelerate.
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1. Introduction

Many solar eruptive events appear to initiate MHD waves in the corona. This
conjecture is supported by observations of a few kinds of their manifestations.
First, these are waves visible in chromospheric spectral lines. For several decades,
there have been known Moreton waves (Moreton and Ramsey, 1960) observed
in the Hα line. Uchida (1968) proposed that a Moreton wave represented a
chromospheric trail of a coronal fast-mode wave. More recent studies show a
probable coronal nature of Moreton waves (e.g., Balasubramaniam, Pevtsov,
and Neidig, 2007). Similar phenomena are propagating waves observed in the
He I 10830 Å line (e.g., Vršnak et al., 2002b; Gilbert et al., 2004). Second,
type II radio bursts are considered to be signatures of coronal shock waves
propagating upwards in the corona (Uchida, 1960). Furthermore, presumable
signatures of coronal waves can be observed in soft X-rays (Narukage et al.,
2002; Khan and Aurass, 2002; Hudson et al., 2003; Warmuth, Mann, and Aurass,
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2005), microwaves (Warmuth et al., 2004a; White and Thompson, 2005), and
metric radio-wavelengths (Vršnak et al., 2005).

Other candidates to be visualizations of coronal MHD waves are large-scale
wave-like disturbances discovered in 1998 with the Extreme-ultraviolet Imaging
Telescope (EIT) and referred to as “EIT waves” or “EUV waves”. This term
appears to include phenomena having the different physical nature and therefore
various morphological and dynamical properties. For more details, we refer the
reader to Introduction in companion Paper I (Grechnev et al., 2010b). Note here
only that describing EUV waves in terms of fast-mode MHD waves seems to be
possible and correct for those cases when we really deal with “wave” phenomena.
Just this class of EUV transients is a subject of our consideration.

Thus, fast-mode MHD waves are responsible for a number of solar transients
and it is important to describe their propagation through the corona. But there
remain some questions about modeling the waves.

In his original approach, Uchida (1968) modeled a coronal disturbance as
a linear and short fast-mode MHD wave propagating from a point source. To
calculate a dome-like surface of the wave front and find the position of a Moreton
wave (as an intersection line of the dome and the solar surface), he used the linear
geometric acoustics [the WKB (Wentzel–Kramers–Brillouin) approach]. Some
recent studies (e.g., Wang, 2000; Patsourakos et al., 2009) also used the same
approach under the assumption of a linear disturbance. In this consideration,
a disturbance moves along rays, which curve into regions of a reduced Alfvén
speed. This results in the appearance of wave “imprints” (e.g., Moreton waves)
running along the spherical solar surface. Note that in the linear approximation
an amplitude and duration of the wave do not affect the shape of the wave front
and the speed of its motion along the rays. Neither amplitude nor duration of
the wave were calculated in the mentioned papers; the geometry of propagation
only was of interest.

The Uchida’s model of a linear MHD wave has demonstrated a possibility
to describe Moreton waves in these terms. Later papers of Uchida with col-
laborators (Uchida, Altschuler, and Newkirk, 1973; Uchida, 1974) and recent
papers (Wang, 2000; Patsourakos et al., 2009), in which the coronal magnetic
field was calculated from photospheric magnetograms, provided more accurate
quantitative description of Moreton and EUV waves in terms of the linear model.

However, the linear model predicts acceleration of Moreton and EUV waves,
whereas observations show their systematic deceleration (Warmuth et al. 2001;
2004a). Also, it is often pointed out by many authors that the speeds of Moreton
waves sometimes well exceed the fast-mode ones (Narukage et al., 2002; Narukage
et al., 2004; Warmuth et al., 2004b; Muhr et al., 2010). Furthermore, velocities
of coronal waves, which are estimated from observed drifts of type II radio
bursts, indicate an obvious excess above the expected fast-mode speed in the
corona (e.g., Warmuth et al., 2004b; Vršnak et al., 2002a and references therein).
These facts suggest that the linear approximation does not always correctly
describe propagation of those waves. Probably, a disturbance responsible for the
transients listed above is nonlinear and most likely is a shock wave.

Studies of propagation of shock waves meets difficulties due to their nonlinear-
ity. Analytic methods to describe propagation of shock waves are approximate
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and often describe the behavior of some extreme classes of nonlinear waves (e.g.,
very strong self-similar waves, or weak waves, etc.).

Grechnev et al. (2008; 2010b) discuss a possibility to formally describe decel-
erating EUV waves as strong self-similar waves in a medium with a power-law
density falloff from a wave source. This assumption seems to be exotic because
the velocity of such a wave should significantly exceed the fast-mode speed.
However, unlike the case of a solitary weak shock, permanent mass increase of gas
involved in a motion away from the source is inherent for a self-similar wave. In
impulsive events, such a motion of gas precedes the stage of a weak solitary blast
wave. For example, in the point-like explosion theory, this motion corresponds
to the stage of a strong self-similar shock wave, with the mass of involved gas
being equal to that of gas inside the sphere bounded by the expanding shock
front. In solving the initial-value problem of excitation of a linear wave by a
sphere of increased pressure, such a gas motion corresponds to the formation
stage of the gas compression phase. This compression phase is a leading part of
a spherical solitary N-shaped blast wave. In the case of an impulsively expanding
spherical piston, formation of a blast wave can occur in a similar manner. This
consideration shows possible increase in the plasma mass trailing a shock front at
the initial propagation stage of a coronal wave. Probably for this reason, the self-
similar approximation provides satisfactory results when used to fit deceleration
of Moreton and EUV waves as well as drift rates of metric type II bursts.

At large distances from its source, the disturbance inevitably decays and its
speed becomes close to the fast-mode one. This asymptotics is typical for non-
self-similar shock waves having a moderate or weak intensity as well as waves,
in which a discontinuity has not yet been formed.

The present Paper is devoted to the case of a weak shock wave that appears
to be the most acceptable (e.g., Warmuth et al., 2004b; Vršnak et al., 2002a).
We do not discuss the appearance of a shock wave. Vršnak and Lulić (2000)
approximately described this process, based on an analogy with an accelerating
flat piston. The cases of cylindrical and spherical pistons were analyzed by Žic
et al. (2008). Temmer et al. (2009) demonstrated how one could describe the
kinematics of a Moreton wave by using the solution of a simple wave without a
discontinuity. In our study, we assume that a fast-mode shock wave of a moderate
intensity appears during a solar eruption on the periphery of an active region
and decays to a weak shock when traveling in the corona. The wave manifests as
a Moreton wave and an EUV wave on the solar disk. We calculate propagation
of the shock wave in terms of the WKB approach taking account of nonlinear
effects.

Such a method in its generally accepted variant involves two independent
procedures. In the first one, ray trajectories corresponding to the linear approx-
imation as well as cross-sections of ray tubes are calculated. So, the influence of
the finite wave amplitude on the wave front shape and ray trajectories is ignored
because in the linear acoustics the propagation velocities of disturbances are
equal to the undisturbed sound speed regardless of their amplitude. In the second
procedure, a nonlinear variation of the wave amplitude and duration are com-
puted along the linear rays obtained. Such a non-self-consistent approach is fairly
useful in some cases, however, nonlinearity effects altering the ray pattern and
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the wave velocity disappear completely. Therefore, we develop another method
that allows us to consider self-consistently wave propagation and a nonlinear
variation of wave characteristics.

The method is considered in Section 2. In Section 3 we formulate the task
and present results of analytic modeling propagation of Moreton and EUV waves
along the solar surface. Section 4 contains concluding remarks about the method
and the results. Note that those who are not interested in mathematical details
of the method can read Section 3 without going in details presented in Section 2.

2. Method

The method of nonlinear geometrical acoustics is based on the method of linear
geometrical acoustics and allows one to calculate propagation of disturbances
with small (but finite) amplitudes through an inhomogeneous medium. The
linear geometrical acoustics is known to be a method to calculate linear dis-
turbances in the ray approximation (e.g., Landau and Lifshitz, 1987). In this
approximation, a solution is found in a form of A (r, t) eiΨ(r,t) where A (r, t) is
the wave amplitude, and Ψ (r, t) is the eikonal, both depending on coordinates
and time. By substituting this representation for wave perturbations into the
system of linearized equations of ideal magnetohydrodynamics, one can obtain
a Hamilton-Jacobi partial differential equation for the eikonal of fast and slow
magnetosonic waves:

∂Ψ

∂t
+ (VgradΨ) + a |gradΨ| = 0,

where V is the undisturbed plasma flow velocity (e.g., the solar wind velocity),
and a is the magnetosonic speed in plasma. Solving the equation with the method
of characteristics gives a system of ray equations, which in spherical coordinates
(r, θ, ϕ) takes the form (Uralova and Uralov, 1994):

dr

dt
= Vr + a

kr

k
+ k

∂a

∂kr
,

r
dθ

dt
= a

kθ

k
+ k

∂a

∂kθ
,

r sin θ
dϕ

dt
= a

kϕ

k
+ k

∂a

∂kϕ
, (1)

dkr

dt
= −

∂Vr

∂r
kr −

∂a

∂r
k +

a

kr

(
k2

θ + k2
ϕ

)
,

r
dkθ

dt
= −

∂Vr

∂θ
kr −

∂a

∂θ
k +

a

k
k2

ϕ cot θ − kθ
dr

dt
,

r sin θ
dkϕ

dt
= −

∂Vr

∂ϕ
kr −

∂a

∂ϕ
k − sin θkϕ

dr

dt
− kϕr cos θ

dθ

dt
,

where kr,θ,ϕ are the components of the wave vector k = gradΨ, and k is its
magnitude. The equation system (1) corresponds to the case of a medium in
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steady-state, where only the radial component Vr of the undisturbed plasma
flow exists. By integrating the system (1), one can determine the wave front
shape.

This approach has been used for modeling coronal fast-mode MHD waves
(Uchida, 1968; Wang, 2000), with only a ray pattern being calculated. However,
it is essential not only to find the wave geometry, but also to calculate the wave
intensity. The geometrical acoustics allows the wave amplitude variation to be
calculated.

In the linear geometrical acoustics, the energy flux of a disturbance traveling
in an immovable medium with a group velocity of q0 is directed along the
rays, and its magnitude is conserved within a ray tube (Blokhintsev, 1981),
div(∆εq0) = 0, where ∆ε is the average density of the disturbance energy. In
a medium moving at a velocity of V, we have to take into account the fact
that the wave front phase velocity varies as qn = Vn + a, with the n index
denoting the projection normal to the front. The conservation law in this case is
div(∆εq qn/a) = 0 (Uralov, 1982; Barnes, 1992) where q = V + q0 is the group
velocity in a moving medium. The average density of the disturbance energy is
∆ε = ρ(u2 + v2) where ρ is the undisturbed plasma density, and u, v are the
plasma velocity components along the normal to the wave front and across it,
respectively. Taking account of the relation between plasma velocity components
µ = v/u (Kulikovsky and Lyubimov, 2005), it is possible to relate a variation of
the wave amplitude to the normal cross-section dS of the ray tube formed by a
bundle of close rays:

dSqρu2
(
1 + µ2

) qn

a
= const. (2)

Thus, the general approach to determine the wave amplitude in the ray method
relies on calculating the ray tube cross-section.

There are various techniques for calculating cross-sections. They are discussed
in Kravtsov and Orlov (1990). We calculate cross-sections by using the Jacobian
of the transformation to ray coordinates. The volume element dW of a ray tube
is expressed in terms of ray coordinates (η1, η2, t) as:

dW = dxdydz = r2 sin θdrdθdϕ = r2 sin θD (t) dη1dη2dt,

where D(t) is the Jacobian of the transformation from spherical coordinates to
ray ones. Then for the ray tube cross-section dS we have:

dS =
dW

dσ
= r2 sin θ

D (t)

q
dη1dη2,

where σ is the ray tube length. Substituting it into (2) yields:

D (t) r2 sin θρu2
(
1 + µ2

) qn

a
= const. (3)

To calculate the Jacobian, we use a method based on numerical integrating
the so-called adjoint to (1) equation system. This system consists of differential
equations for the derivatives ∂r/∂η1,2, ∂θ/∂η1,2, ∂ϕ/∂η1,2, ∂kr/∂η1,2, ∂kθ/∂η1,2,
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∂kϕ/∂η1,2 and is derived from (1) by differentiating the equations with respect

to ray coordinates η1 and η2. For the case considered, the adjoint system has

the following form (in view of the symmetry about η1 and η2, instead of twelve

equations we give only six for one variable η):
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∂

∂η
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)
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)
, rα,β = {r, θ, ϕ}, kα,β = {kr, kθ, kϕ}.

As the ray coordinates η1 and η2, we can choose, for instance, angles of the ray
escape from a point source at the initial moment. Note that the ray coordinates
need not be explicitly determined when the adjoint system is being derived. This
becomes essential to specify initial values for desired functions.

Thus, to calculate propagation of a linear wave and its intensity, at first we
have to integrate numerically ray equations system (1) and adjoint system (4)
and then determine the amplitude variations by means of (3).

A nonlinear flat disturbance in an ideal homogeneous medium is described by
a simple wave solution and propagates at the supersonic speed determined by its
amplitude (Kulikovsky and Lyubimov, 2005). A fast-mode simple-wave element
with a plasma velocity component u normal to the front moves at a+κu, where
κ = (1/a) (d (ρa) /dρ) is the numerical coefficient depending both on the plasma
beta and the angle between the wave vector and the magnetic field. We do
not give here the bulky explicit expression for κ. Note only that values of κ
are restricted by the limits: (γ + 1) /2 ≤ κ ≤ 3/2, with γ being the adiabatic
index. The fact that each simple-wave element travels at its own speed causes
the wave profile deformation and an appearance of a discontinuity. If a moderate
amplitude simple wave has a triangular profile before the discontinuity appears,
it will take a shape of the right-angled triangle after the discontinuity forms, with
the discontinuity being a leading edge of the disturbance. Note that any nonlinear
disturbance profile of a finite duration tends asymptotically to this shape. Let
Ush be a jump of the plasma velocity component u in the discontinuity. Then, in
the nonlinear geometrical acoustics approximation, the discontinuity moves at a
speed of a + κUsh/2. Taking into account this increase in a wave front speed in
the ray equations, we are able to correctly describe propagation of weak shock
waves. Then ray equation system (1) becomes (Uralova and Uralov, 1994):
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.

The generally accepted method of nonlinear geometrical acoustics ignores
additional term κUsh/2 as small. However, it is the term that is responsible for
wave deceleration due to the amplitude damping. Besides, estimations within the
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framework of the perturbation theory suggest that the ray pattern variation due
to nonlinearity is a correction of the same order of magnitude that the nonlinear
variation of the wave amplitude is. It is therefore important to take this into
account in the nonlinear geometrical acoustics approximation.

Ray equation system (5) is not closed now because it includes the wave am-
plitude. In the linear approximation, an amplitude variation can be determined
from (3). The nonlinear wave amplitude undergoes the additional damping as-
sociated with energy dissipation in a discontinuity. As the amplitude, we take
a value of jump Ush. Variations of amplitude Ush and duration Tsh of a weak
shock wave having a triangular compression phase may be calculated as (Uralov,
1982):

Ush = u1

(
1 +

τ1

T∗

)−1/2

, Tsh = T∗

(
1 +

τ1

T∗

)1/2

,
dτ1

dt
=

κu1

qn
(6)

where τ1 is the duration increment of the simple wave with an amplitude of
u1; T∗ is the initial duration of the disturbance. Note that laws (6) of a weak
shock wave damping are derived by using values of the amplitude and duration
of a simple wave, from which the discontinuity forms. A value of u1 can be
determined from the expression similar to (3).

Thus, solving numerically of 19 ordinary differential equations (5), (4), and (6)
enables us to compute propagation of a weak shock wave in an inhomogeneous
medium, its amplitude and duration.

3. Analytical Modeling of Wave Propagation

In this section, we employ the nonlinear geometrical acoustics method to describe
propagation of large-scale wave-like transients, namely EUV and Moreton waves.
With respect to “EUV wave” phenomena, we address only those disturbances,
which associated with a fast-mode MHD shock wave.

To calculate propagation of a shock wave, we have to specify the solar corona
model as well as a position and parameters of the shock wave at the initial
moment. We use a simple hydrostatic corona model to demonstrate main par-
ticularities of the method and compare results with those obtained in the linear
approximation. The corona is considered to be isothermal with temperature
T = 1.5 × 106 K and sound speed c = 181 km s−1. The number density of
plasma is distributed in accordance with the barometric law (for details see,
e.g., Mann et al., 1999):

n(r) = n0 exp

(
R�

H

(
R�

r
− 1

))
, (7)

where n0 = n(R�) = 3 × 108 cm−3 is the number density at the base of the
corona, R� the solar radius, H = 2RgasT/m̃MHg� ≈ 70 Mm the density scale
height, g� the acceleration of gravity on the solar surface, MH the molar mass
of hydrogen, m̃ = 1.27 the average atomic weight of an ion, and Rgas the gas
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Figure 1. The Alfvén speed distribution in solar corona model (7), (8).

constant. Let us assume a magnetic field having only a radial component (for
details see, e.g., Mann et al., 2003):

Br = ±B0

(
R�

r

)2

, (8)

where B0 = 2.3 G is its value at the base of the corona. The sign in (8) depends
on the solar hemisphere, but it is no object in the case considered. The same
model was applied by Uchida (1968).

In the corona model (7) and (8), the Alfvén speed increases with height,
peaking at R2

�/4H = 2.43 R� (Figure 1). Refraction makes ray trajectories
curved to regions of the lower Alfvén speed. The solar corona has therefore
waveguide properties. A portion of the wave energy flux is captured by the
coronal waveguide and propagates along the solar surface, giving rise to an EUV
and Moreton wave. In the treatment used, the EUV front is observable due to
the plasma compression produced by the coronal shock wave. Since the plasma
density decreases rapidly with a height, a plasma layer near the solar surface
contributes substantially to the EUV front emission. The layer thickness is about
density scale height H. So, to estimate the EUV front position, we have to find
the intersection line of the calculated shock front and a spherical surface of radius
. (R� + H). The Moreton wave corresponds to the chromospheric trail of the
coronal shock wave, i.e. it can be found as the intersection line of the shock front
and the upper chromosphere.

For modeling, it is important to assign the initial characteristics of a shock
wave and its start position. We have to specify the initial duration (or length)
of the wave and its initial amplitude on some surface. In this study, these values
are given according to the strong point-like explosion theory. The wave source
located at a height of 80 Mm is characterized by the energy ε̃ whose release
produces a shock wave. When the wave covers a distance of Λ = (ε̃/ρ∗a

2
∗)

1/3,
with ρ∗ and a∗ being respectively the plasma density and the fast-mode speed
at the explosion point, the compression phase profile of the wave is assumed to
be triangular. The compression phase length is equal to Λ and the amplitude
is χa∗, with χ being the coefficient of the order of unity. In this paper, we
employ a value χ = 1 except for the calculations given in Figure 7. The initial
duration of the compression phase is supposed to equal to T∗ = Λ(k)/a∗(k). We
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Figure 2. Propagation of a coronal shock wave as seen in a 3D image (left) and a 2D section
with ray trajectories (right). The solid arcs drawn across the rays represent shock wave fronts.
The dashed line marks a height of 60 Mm above the solar surface. The wave front velocity
along this line corresponds to the velocity of an EUV wave. The wave source height is 80 Mm.

believe that a shock wave arises on the periphery of an active region located
within the explosion cavity Λ. This manner to assign initial values does not
rely on a specific mechanism of the wave initiation. It is essential only that the
energy release producing a shock wave is impulsive. For instance, a wave can be
produced by a compact piston acting for a short term (an abruptly accelerating
filament and its magnetic envelope).

Figures 2–7 present the results of our modeling. Figure 2 illustrates a 3D image
of the shock wave front and the respective 2D section including ray trajectories.
The rays go out from the initial surface of size Λ. The wave front inclines over
the solar surface, with its inclination increasing in time.

Figure 3 shows the distance-time plots of EUV waves (a) as well as the time
plots of their velocities (b) along the surface 60 Mm (relative to the solar surface).
The curves are given for different values of the wave source energy ε̃ or different
values of the initial shock wave length, as it follows from Λ = (ε̃/ρ∗a

2
∗)

1/3. The
EUV wave velocity decreases appreciably due to the nonlinear damping of the
coronal wave amplitude. After the amplitude has substantially decreased, the
shock wave propagates as linear one. In Figure 3b, one can see this fact as
approaching asymptotically the upper curves to the dotted one corresponding
to a linear EUV wave and as aligning the curves in Figure 3a. Having reached
its minimum, the wave velocity slightly increases. This is due to the shock front
inclination over the solar surface that becomes more and more significant with
time and associated with the waveguide properties of the lower quiet Sun’s
corona. The larger the wave front inclination, the higher the Moreton and EUV
wave velocity. Note that calculated Moreton and EUV wave acceleration must
be difficult to observe since it occurs when the wave amplitude becomes low (see
Figure 5).

Figure 4 shows positions (a) counted along the surface and velocities (b) of a
Moreton wave (thick lines) and an EUV wave (thin lines), which are produced
by a single coronal wave. The dotted lines correspond to a linear coronal wave
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Figure 3. The distance-time plot of EUV waves (a) and the time plot of their velocities (b)
along the surface 60 Mm for different energies ε̃ specified in panel b. The lowest (dotted) line
represents a linear EUV wave.
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Figure 4. The kinematic plots of a Moreton wave (thick) and an EUV wave (thin), which are
produced by a single coronal wave in the linear (dotted) and nonlinear (solid) consideration.

and the solid lines are for a shock one. The linear Moreton wave velocity is lower
because the Alfvén speed at the corona base is smaller than that at a height of
60 Mm. Note that a Moreton wave decelerates even in the linear case. This fact
is associated with the initial wave source position at a height of 80 Mm above
the photosphere. The EUV wave in the linear case does not decelerate since the
wave source is located roughly at the same height that the EUV wave is (a little
bit higher the dashed line in Figure 2).

Increase in a propagation velocity of the shock wave front at a larger height
results in a front inclination. So, one can observe the offset between shock wave
signatures at different heights. Inclination increase with time determines evolu-
tion of the offset. Besides, its time evolution is also determined by the observer
position and the sight angle. Such a consideration demonstrates a possibility to
explain the offset between Moreton and EUV waves as well as the HeI-Hα offset
observed by Vršnak et al. (2002b) since waves in the He I 10830 Å line are similar
morphologically to EUV ones.

Figure 5 presents time dependence of the EUV wave amplitude for different
values of the wave source energy ε̃. A disturbance having higher ε̃ and the greater
length decays more slowly as it follows from (6) and seen in Figure 5. The
Moreton wave amplitude varies in a similar manner, but it has smaller values.

Another effect associated with nonlinearity of an EUV wave is increase in its
duration Tsh and, respectively, length L = aTsh (also referred to as the wave
profile broadening). In the linear case, the wave duration is constant (under the
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Figure 5. The time variation of the EUV wave amplitude for different energies ε̃ of the wave
source.

0 500 1000 1500 2000
t, s

1.00

1.25

1.50

1.75

L E
U

V
�
L

1´1029 erg

4´1029 erg

10´1029 erg

Figure 6. The time dependence of the EUV wave length relative to its initial size for different
energies ε̃.

assumption of a steady-state medium). Figure 6 gives the time plot of the ratio
of the EUV wave length to its initial size Λ. If initial amplitudes of disturbances
are equal, a relative extension will be faster for disturbances having the lower
initial energy (and the shorter initial length).

With respect to the damping of shock waves having the same initial lengths,
amplitude decrease is faster for a wave with a higher amplitude. Therefore,
shock waves with different initial amplitudes decay to the same level after ap-
proximately equal intervals (Figure 7, solid curves). For comparison, we also plot
the amplitude curves of linear disturbances, which hold an initial ratio of the
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Figure 7. The amplitude damping of shock waves (solid lines) and linear ones (dashed lines),
which is calculated for the wave source energy ε̃ = 1029 erg and different initial amplitudes.
The initial amplitude values are specified in the figure as ratios χ of those to a fast-mode speed
in the wave source.
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wave amplitudes throughout propagation. The mentioned property of nonlinear
waves (in Figure 7) allows us to be not precise about the value of the initial
wave amplitude. Therefore, we can use the value that follows from the strong
point-like explosion theory.

4. Discussion and Conclusion

We have modeled propagation of shock-associated EUV waves and Moreton
waves, using the nonlinear geometrical acoustics method. This method takes
into account characteristic properties of nonlinear waves: i) dependence of the
wave velocity on its amplitude, ii) wave energy dissipation in the shock front,
and iii) wave duration increase with time. The method allows one to calculate
nonlinear evolution of a shock wave and its propagation pattern. However, the
generally accepted variant of this approach includes nonlinearity effects only for
describing the amplitude and duration of a wave, and does not it for the wave
velocity value. So, using such a non-self-consistent approach results in the loss
of an important effect concerning wave kinematics.

We have applied another approach, appending the additional term to the ray
equations. This has allowed the finite wave amplitude to be taken into account.
We have solved self-consistently the modified ray equations and the equations
describing the wave amplitude and duration evolution along a ray tube. It is this
approach that has been developed in this paper to analyze coronal shock wave
propagation along the solar surface.

One of the results of our analysis is deceleration of EUV and Moreton waves
at the initial stage of propagation. Since we use the spherically symmetric and
isothermal model of the solar corona, deceleration is a direct consequence of their
nonlinearity. Thus, EUV and Moreton waves having the sufficient amplitude (and
therefore being observable) have to decelerate in the quiet Sun’s regions where
average plasma parameters are constant along the solar surface. Note that the
large-scale waves under study are registered just in these regions. Calculated
wave deceleration is supported by the EUV and Moreton wave observations
analyzed by Warmuth et al. (2001, 2004a). Also we notice here that EUV waves
not associated with a coronal MHD wave show only slight or no deceleration
(see, e.g., Wills-Davey and Attrill, 2009).

The simple corona model also let us find other features of wave kinematics,
e.g., i) the wave source height contributes to the initial portion of a velocity plot,
and ii) the rate of wave deceleration and damping becomes lower as the wave
source energy (or the wave length, respectively) grows. All this findings will be
applied for modeling EUV wave propagation in the 17 January 2010 event in
companion Paper III (Grechnev et al., 2010a).

Modeling waves in the linear approximation does not reveal their deceleration.
On the contrary, linear waves undergo only small acceleration caused by a slightly
increasing inclination of the coronal wave front over the solar surface. This effect
was first discovered by Uchida (1968). However, because of the error that he made
in the expression for the barometric distribution of the coronal plasma density
(the scale height was halved), the wave front inclination over the solar surface
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was very large. As a result, linear waves underwent considerable acceleration in
the Uchida’s original model.

Another important result of our modeling is duration (and length) increase
of Moreton and EUV waves. This effect is also confirmed by observations (e.g.,
Warmuth et al., 2001; Veronig et al., 2010). In contrast, a linear disturbance
keeps its duration unchanged in a steady-state medium. Note that in the linear
approximation, the wave amplitude and duration also vary due to the viscosity,
the thermal conductivity and the finite plasma conductivity, however, these
effects are negligible against nonlinear factors.

To summarize, we believe that wave deceleration and its duration increase,
both being the attributes of shock wave evolution, point out a crucial role of
nonlinearity in the behavior of EUV and Moreton waves (at least, it concerns
some of them).

In conclusion, we will briefly discuss the method limitations for solving the
shock wave propagation problem. The main limitation is associated with laws (6)
of a shock wave damping, which are derived by using the relations for simple flat
MHD waves in a homogeneous medium. So, we have to meet two requirements.
First, the shock wave length should be smaller than the radius of curvature of the
wave front and the smallest medium variation scale. The fulfilment of these con-
ditions also ensures validity of the linear ray approximation (1), which involves
actually even less limitations. The smallest variation scale in our modeling is
that of plasma density. So, we realize that our computation lies at the boundary
of applicability of nonlinear geometrical acoustics since characteristic shock wave
length Λ and density scale ρ/ |∇ρ| are of the same order of magnitude.

Second, a nonlinear factor Ush/a should be small. Under this condition, damp-
ing laws (6) are derived and this very condition ensures a correct calculation
of the terms involving Ush in ray equations system (5). With respect to the
limitations of laws (6), the point-like atmospheric explosion theory (Kestenboim,
Roslyakov, and Chudov, 1974) suggests that these laws satisfactory describe
spherical shock wave propagation up to Ush/a ≤ 1. When we choose the initial
value Ush = a in Section 3, we do not therefore go beyond the scope of the
application of relations (6). However, ray equations (5) and equations (4) at
Ush/a ≈ 1 are able to yield an error in calculations. Nevertheless, this error is
insignificant due to the nearly spherical shape of the wave front at the initial
phase of propagation and then it disappears owing to rapid decrease in Ush.
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Warmuth, A., Vršnak, B., Magdalenić, J., Hanslmeier, A., and Otruba, W.: 2004b, Astron.

Astrophys. 418, 1117.
White, S. M., and Thompson, B. J.: 2005, Astrophys. J. 620, L63.
Wills-Davey, M. J., and Attrill, G. D. R.: 2009, Space Sci. Rev. 149, 325.
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