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Abstract. We present the results of numerical simu-

lations of normal modes of the mean flow due to the 

superposition of cyclonic and anticyclonic vortices at 

high latitudes. Such a flow structure is often observed in 

the upper troposphere — the lower stratosphere in win-

ter. Our aim is to identify normal modes in the oscilla-

tion spectrum that resemble torsional oscillations. We 

solve the problem numerically, using a barotropic quasi-

geostrophic model. Additionally, we estimate the de-

pendence of the normal modes on experimental parame-

ters (the number of spherical harmonics in the stream 

function field expansion, the parameterization of viscos-

ity and hyperviscosity). 

The simulation results show that flow instability al-

most always increases with increasing amplitude of the 

anticyclonic vortex to varying degrees at different vis-

cosities and different numbers of harmonics in the field 

expansion. The spatial structure of the most unstable 

normal modes changes most chaotically when the ex-

periment parameters and the mean flow change. This 

significantly complicates the interpretation of real oscil-

lations in terms of normal modes, including the interpre-

tation of torsional oscillations. Axisymmetric normal 

modes are often present in the spectrum, but they do not 

have all the properties of torsional oscillations and do 

not dominate the spectrum. 

Keywords: hydrodynamics, atmosphere, normal 

modes, torsional oscillations. 

 

 

 

INTRODUCTION 

Much attention in atmospheric physics is paid to the 

study of low-frequency oscillations with periods from 

several days to several tens of days, having a large-scale 

structure along latitudinal circles. Of particular interest 

were the disturbances running in the zonal direction with 

periods of 4, 5, 10, 16, 25 days [Kasahara, 1980; 

Branstator, 1987; Branstator, Held, 1995; Madden, 

2007; Pogoreltsev et al., 2009; Koval et al., 2018], as 

well as quasi-stationary oscillations — teleconnections 

[Simmons et al., 1983; Blackmon et al., 1984a, b]. To 

interpret oscillations in the upper atmosphere, a theory 

of eigenoscillations of the atmosphere at rest was devel-

oped. Under this assumption, eigenoscillations of the 

atmosphere, called normal modes, are solutions of La-

place tidal equations [Jaglom, 1953; Longuet-Higgins, 

1964, 1968; Dikii, 1969]. However, in the lower layers 

of the atmosphere, such an assumption is incorrect since 

the atmosphere is not at rest, and the mean flow is not 

zonally symmetric. In this case, instead of the Laplace 

tidal equation, we get an eigenvalue problem and eigen-

functions of the differential operator depending on the 

mean flow [Dymnikov, Skiba, 1986; Dymnikov, 2007; 

Dymnikov, Filatov, 1988]. These oscillations have also 

been called normal modes, which sometimes causes 

confusion in the interpretation of research results. In this 

paper, we employ the definition of normal modes from 

[Dymnikov, Filatov, 1988] and call them new normal 

modes (NNMs). 

In the NNM spectrum, unstable components appear 

whose amplitude increases with time; therefore, the 

normal mode method is widely used to analyze the sta-

bility of mean flows. Theoretical and applied research in 

this area can be found in works by Russian and foreign 

authors [Simmons et al., 1983; Dymnikov, Filatov, 

1988; Branstator et al., 1995; Dymnikov, 2007]. We 

assume that these modes can also explain torsional os-

cillations.  

Torsional oscillations are disturbances propagating 

in the meridional direction, determined by low-

frequency filtering and zonal averaging [Zorkaltseva et 

al., 2019]. These disturbances may be eigenoscillations 

of the atmosphere (as we have suggested) or result from 

nonlinear processes such as the interaction between 

traveling and stationary Rossby waves. Mordvinov and 

Latysheva [2013] calculated the meridional component 

of the group velocity of Rossby waves and compared it 

with reanalysis data. In the β-plane approximation, the 

expression for the meridional component of the group 

velocity has the form 

 
2

2 2 2

gv 2 ,c km k m l gh     (1) 

where β is the Rossby parameter; k, m are the meridi-

onal and zonal wave numbers; l is the Coriolis pa-

rameter; g is the free fall acceleration; h is the height 

of the uniform atmosphere (~8000 m). 
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The disturbance trajectories calculated using this 

formula for Rossby waves with zonal wave numbers 

m=1, 2, 3 were plotted on torsional oscillation diagrams 

and showed good agreement. One of the objections to 

this interpretation is that torsional oscillations occur 

equally in both the Northern and Southern hemispheres, 

yet in the Southern Hemisphere stationary waves have a 

much lower amplitude and hence should produce weak-

er secondary disturbances when interacting with travel-

ing Rossby waves. The assumption that torsional oscilla-

tions can be eigenoscillations of the atmosphere remains, 

therefore, valid. In this case, they should have an axisym-

metric component and a meridional velocity component of 

~6°/day. We can assume that polar vortices are of great 

importance in their formation since sources of torsional 

oscillations are recorded in the polar region. 

We have previously studied the NNM dependences 

on the mean flow in a simple barotropic model of dif-

ferential rotation of the solar atmosphere in the tacho-

cline region [Mordvinov et al., 2013]. The main atten-

tion in that paper was, however, paid to the rates of 

NNM increase, and not to their spatial structure, since 

the layer in which the instabilities develop has a thick 

convective shell masking the structure of the flows be-

neath it. In Earth's atmosphere, observations provide 

more complete information, which makes it possible to 

analyze not only the growth rates and periods of eigen-

oscillations, but also their spatial structure.  

Mordvinov and Zorkaltseva [2022] have really ob-

tained normal modes similar in structure to torsional 

oscillations, yet could not reproduce all properties of the 

oscillations. The main problem is to parameterize the 

mean flow. Flows in the atmosphere are constantly 

changing; it is, therefore, difficult to choose any specific 

synoptic configurations as a possible source of the oscil-

lations we are interested in. This is especially difficult to 

do in the troposphere. In the stratosphere, flows have a 

simpler configuration, and it becomes possible to re-

solve such a problem. In this paper, we use the polar 

cyclone + anticyclone configuration, which is the most 

common in the lower stratosphere, in our calculations to 

study NNM at this level and to try to interpret torsional 

oscillations. 

 

MODEL 

We adopt the same mathematical flow model as in 

[Mordvinov et al., 2023]. The method of solving the 

problem was described in [Mordvinov et al., 2013]. To 

describe the flow, we use the barotropic equation of 

quasi-geostrophic potential vortex [Dikpati, Gilman, 

2001; Dymnikov, Filatov, 1988]:  
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where ψ is the stream function related to the horizon-

tal velocity vector by the relation 

, ;j
y x

  
    

  
v k i  λ is the longitude; 

μ=cosθ; θ is the polar angle (latitude); a is the Earth 

radius; Ω is the Earth angular velocity; 

0 2 sin 45L gh l gh    is the Rossby —

Obukhov radius; r is the Rayleigh friction coefficient, 

assumed to be 10 days
–1

; K is the coefficient of turbu-

lent viscosity; N is the parameter that determines the 

accepted model of viscosity parameterization. For 

ordinary turbulent viscosity N=1, and the coefficient 

K is equal to the coefficient of effective turbulent 

kinematic viscosity v. Parameterizations N>1 corre-

spond to hyperviscosity. We have considered two 

variants of hyperviscosity — N=2 and N=3. We 

solved the problem in spherical geometry by expand-

ing stream function perturbations with respect to 

spherical functions. When approximating the fields, 

we used a triangular truncation. 

After linearization, substitute the solution of the per-

turbation equation as a normal mode 

   , , , .tt e Y


 



        (3) 

In this expression, σ' determines the rate of normal 

mode amplitude increase (or damping) (incre-

ment/decrement), and the superposition of spherical 

functions Yγ(μ, λ) characterizes the spatial structure of 

the normal mode. Both values are complex. The substi-

tution yields the problem of eigenvalues and eigenfunc-

tions of the D operator: 
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where 

 , ;
f g f g

J f g
   

 
   

;n nG k    ;   

   , ,m n m n     is the wave vector; m is the order 

of the spherical function in the expansion (zonal wave-

number); n is the degree of spherical function  , ,Y    

 
4

1 1 ,
NNr r Kn n a      1 .nk n n   

Elements of the D matrix depend on the mean flow 

 , .    The number of spherical functions in the field 

expansion  determines the size of the D matrix; and 

the viscosity parameterization, diagonal terms of the r1 

matrix. It is convenient to write the viscous term as 

    1 1 1 .
NN

t Nr r g         In the absence of tur-

bulent viscosity, g0=0. For ordinary turbulent viscosity, 

N=1. For the hyperviscosities N=2 and N=3, coeffi-

cients g1, g2, and g3 were calculated from the condition 

of equality of hyperviscosity of the ordinary turbulent 

viscosity for the selected harmonic. For example, if a 
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harmonic having a degree   is chosen, the equation for 

finding the coefficient gN looks like 

 1 .
NN

t Nr g       Figure 1 plots the viscosity term 

versus the degree of spherical function for 10   (a) 

and 20   (b). 

We use a simplified viscosity parameterization. This 

is primarily due to the two-dimensionality of the prob-

lem [Danilov, Gurari, 2000]. For barotropic processes 

having a horizontal scale far exceeding the characteris-

tic height of the atmosphere, the very concept of vis-

cosity becomes less defined. Along with the effects of 

damping of disturbances, we should take into account 

their intensification due to the combined effect of baro-

clinic waves and vortices on the barotropic component — 

the so-called negative viscosity. It is very difficult to 

calculate, and even estimate, this driving force. In some 

cases, in particular during blocking in the troposphere, 

this driving force is completely balanced out by the or-

dinary viscosity and the turbulent viscosity term can be 

ignored [Dymnikov, Filatov, 1988; Dymnikov, 2007]. 

In the linearized problem of eigenfunctions and eigen-

values, such complications make no sense at all and the 

viscosity is parameterized in the form we used. A result 

of the simplifications is the inability to relate the calcu-

lations to specific synoptic situations. They have to be 

considered only as a statistical trend. This, nonetheless, 

fully corresponds to the very concept of torsional oscil-

lations, which are also statistically identified after aver-

aging and filtering [Zorkaltseva et al., 2019].  

The procedure for specifying the mean flow 

 , ,    for which normal modes are computed is also 

simplified. We chose one of the most frequent configu-

rations as the object of research — polar cyclone + mid-

latitude anticyclone, approximating the stream function 

of each of the vortices by a simple Gaussian. In a way, 

this configuration can be considered as a result of aver-

aging of winter flows in the upper troposphere — the 

lower stratosphere. An alternative may be to use a cli-

matic mean flow, as is often done, but we are interested 

not so much in the normal modes themselves as in their 

dependence on the parameters of the mean flow, and 

hence it is much more convenient to specify the stream 

function in a simplified form. However, even in such a 

simple variant, the location of Gaussian centers, their 

size and amplitude may be different. All these variables 

affect the calculation results, which is why the problem 

becomes multiparametric. Since such a problem can be 

solved only by numerical methods, a need arises to as-

sess the NNM dependence not only on the structure of 

the mean flow, but also on parameters of numerical ex-

periments. 

 

RESULTS OF NUMERICAL 

EXPERIMENTS 

As we have already noted, in the winter stratosphere 

of the Northern Hemisphere, the main structural features 

are the cyclonic vortex over the pole and the anticyclon-

ic vortex at midlatitudes [Large-scale..., 1988]. It is 

known that for small meridional velocity gradients, the 

zonally symmetric flow of the polar vortex is stable, 

with large-scale normal modes being the least damping. 

When the anticyclonic vortex strengthens and stream 

function gradients increase, unstable normal modes ap-

pear. Instability grows especially rapidly with increas-

ing zonal inhomogeneity of the mean flow. Verify these 

preliminary conclusions numerically. 

Define the stream function of the mean flow as the sum 

of two Gaussians    2 2

1 1 2 2exp exp ,a k p a k p      

corresponding to the cyclonic vortex over the pole and 

the anticyclonic vortex over midlatitudes. Here p is the 

orthodromy (angular distance between the vortex center 

 

 

Figure 1. Viscosity dependence on the degree of spherical function for γ'=10 (a) and γ'=20 (b): blue — Rayleigh friction at 

N=0; light blue — ordinary turbulent viscosity at N=1; red and brown — hyperviscosity at N=2 and N=3 respectively 
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and an arbitrary point on the sphere); k1,2 are the coeffi-

cients characterizing the Gaussian width, k1=1, k2= 1, 

...6; a1=0.5, a2=0.5. In radians, the Gaussian width is relat-

ed to the coefficient k by 1 2 .k   The anticyclone 

center is located at 60° N. During the numerical exper-

iment, we change the amplitude of the anticyclonic 

vortex and its width. The eigenfunctions of Equation 

(4) are computed up to a constant factor, so NNMs do 

not depend on amplitudes of the vortices, but on their 

ratio. Accordingly, the problem can be solved not in 

absolute, but in relative units. Since the cyclonic vor-

tex is centered about the pole, the ratio of vortex am-

plitudes determines the degree of deviation of the fluid 

flow from the zonally symmetric one, which is crucial 

for the development of instabilities. Consider how in-

crements and spatial structure of the most unstable 

NNMs depend on the amplitude of the vortices and 

numerical experiment parameters. 

1. NNM growth rate 

Figure 2 plots characteristic times of increase in am-

plitudes of the most unstable NNMs 1/t   (day) as 

function of the anticyclone amplitude a2 for different 

numbers of harmonics in the stream function expansion, 

with different viscosity parameterizations and selected 

harmonics 10l     and 20.l     Plots of dark 

blue color correspond to the number of harmonics nmax 

in expansion, 13; blue, 15; red, 17; brown, 19. 

Note immediately that for the harmonic 

20l    results of increment calculations practically 

coincide with the results of calculations for ordinary 

turbulent viscosity. For the harmonic 10l    , calcu-

lations with higher hyperviscosity orders N show a rise 

in the characteristic time of increase in amplitudes of 

the most unstable normal modes, i.e. an increase in the 

hyperviscosity order reduces the growth rate of insta-

bilities. However, at the highest amplitude of the anticy-

clone, the amplitude increments depend only on the 

number of harmonics in the stream function expansion 

rather than on the order of hyperviscosity. 
The plots corresponding to nmax=15 (blue) demon-

strate an unusual dependence on anticyclone amplitude. 
With an axisymmetric cyclonic mean flow, the flow 
turns out to be more unstable than with the superposi-
tion of the cyclonic vortex and the low-amplitude anti-
cyclone. With a further increase in the anticyclone am-
plitude, instability increases, and the characteristic time 
of increase in the NNM amplitude decreases. For the 
number of harmonics in the expansion nmax =17 (red) 
and nmax=19 (brown), there is no such feature on the 
plots, the degree of instability increases smoothly as the 
number of harmonics and the anticyclone amplitude 
increase. We cannot yet explain features of the plots for 
nmax=15.  

Except for the feature at nmax=15, the dependences 
of instability increments on the anticyclonic vortex am-
plitude proved to be quite expected — rates of increase 
in the amplitude of the most unstable modes rose with 
increasing amplitude of anticyclonic vortex. Nonethe-
less, they also depend on the number of harmonics in 
the expansion — when nmax changes from 15 to 19, the 
characteristic time of instability development changes 
by 50–100 %. To a somewhat lesser extent, but within 
approximately the same range, the calculation results 
depend on parameterization of hyperviscosity. With a 
further increase in the number of harmonics in the ex-
pansion, these differences should probably decrease. 
This is evidenced by theoretical assessments of the con-
vergence of calculations of D eigenvalues and their es-
timates [Dymnikov, Skiba, 1986]. 

 
 

 

Figure 2. Characteristic times of increase in amplitude of the most unstable NNMs as function of the anticyclone amplitude for dif-

ferent numbers of harmonics in the expansion: dark blue — nmax=13, blue — nmax=15, red — nmax=17, brown — nmax=19 
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2. NNM spatial structure  

A more difficult problem is to estimate changes in 

the NNM spatial structure depending on changes in the 

mean flow and numerical experiment parameters. For 

the analysis, we have used two representations of the 

NNM spatial structure — maps of NNM stream func-

tion distributions and NNM spectra in spherical function 

expansion. The former method is convenient for visual 

analysis and qualitative comparison. The latter method 

is less descriptive, but it allows us to quantify some 

characteristics of the NNM structure. 

In Figure 3, a, b, columns 1, 2 illustrate distributions 

of the stream function of the fastest increasing NNMs at 

different mean flow configurations, depicted in the polar 

projection in columns 4. The normal mode stream func-

tion distributions are given in horizontal (columns 1) 

and polar (columns 2) projections. In all cases, the mean 

flow is a superposition of the polar cyclonic vortex and 

the anticyclonic vortex at midlatitudes. The anticyclonic 

vortex amplitude increases in the Figures from top to 

bottom. NNMs are plotted for 13 (a) and 15 (b) harmon-

ics in the field expansion at ordinary turbulent viscosity. 

Each panel in columns 1 shows characteristic times of 

increase in the NNM amplitude (T) and the oscillation 

period (T1). In columns 3 are isolines of NNM spectra 

in the coordinates n (X-axis) and n+m (Y-axis). Ax-

isymmetric harmonics are located on the diagonal blue 

line y=x . On the NNM spectra are plots of the energy 

dependence of spherical functions on the degree n in the 

expansion of NNMs in harmonics. By the spherical 

harmonic energy is meant the sum of squares of the real 

and imaginary coefficients in the expansion. It can be 

seen, for example, that in the spectrum of the most un-

stable mode with an axisymmetric mean flow and 13 

harmonics, only one spherical function (axisymmetric) 

prevails in the expansion, for which n=5, m=0, the time 

of amplitude increase e times is 2.64 days, and the oscil-

lation period is 7916 days, i.e. this NNM is stationary. 
Figure 4 exhibits the most unstable NNMs for the same 

configurations of the mean flow as in Figure 3, but for 17 
(a) and 19 (b) harmonics in the stream function field ex-
pansion. 

With the number of harmonics in the expansions 

nmax=13 (a) and nmax=15 (b), modes with the axisym-

metric structure are seen to prevail (7 of 12 cases). They 

have a different number of sign changes along the me-

ridian, different oscillation periods, and different incre-

ments. At nmax=17 and nmax=19, the axisymmetric 

modes are at least not the most unstable. In 8 of 24 cas-

es, the structure of the most unstable modes was almost 

unchanged with a variation in the anticyclone amplitude 

(6 cases at nmax=17 and nmax=19, and 2 cases at 

nmax=15), but in other cases the changes in the structure 

of unstable modes were large. For clarity, in Figure 5 

we have plotted composite spectra of the most unstable 

modes in the coordinates n, n+m  at different viscosity 

parameterizations (from top to bottom: N=0, 1, 2, 3), 

the number of spherical harmonics in the expansion 

(from left to right: nmax=13, 15, 17, and 19), and anticy-

clonic vortex amplitudes (a2=0... 5) The dark blue color 

corresponds to zero anticyclone amplitude (zonally 

symmetric flow), blue — 1, light blue — 2, turquoise — 

3, beige — 4, orange — 5. At N=0, there is no turbulent 

viscosity; at N=1, the turbulent viscosity is ordinary; 

N=2, 3 correspond to hyperviscosities of degrees 2 and 3. 

 

 

Figure 3. The most unstable NNMs at different configurations of the mean flow for 13 (a) and 15 (b) harmonics in the 

field expansion at ordinary turbulent viscosity. In Figures a and b from left to right are NNM stream functions in horizon-

tal and polar projections, NNM spectra in coordinates n (X-axis) and n+m (Y-axis), and distributions of the stream func-

tion of the mean flow in the polar projection in relative units 
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Figure 4. The same as in Figure 3, but for 17 (a) and 19 (b) harmonics in the field expansion 

 

The results of calculations of the spectra show that 

the structure of the most unstable NNMs depends heavi-

ly on the number of harmonics in the expansion (see 

Figures 3, 4, and 5). The dependence of the spectra on 

the degree of hyperviscosity is probably somewhat 

smaller. 

Spectral representation of the NNM structure in 

Figure 5 cannot provide information on regularities 

of the appearance of NNM with a particular spatial 

structure, especially in cases where the NNM struc-

ture is complex with a large number of harmonics in 

the expansion. Figure 6 plots the average degree of 

spherical functions in the expansion for 10.l     

versus the anticyclone amplitude a2. Panels show cal-

culations with viscosity parameterizations N=0, 1, 2, 

3. In all cases, we took into account Rayleigh friction 

with a characteristic damping time of 10 days. 

With the exception of the calculation results for hy-

perviscosity N=3, the plots of the dependences of the 

average degree of spherical functions behave in the 

same way at the number of harmonics in the expansion 

nmax=17 (red) and nmax=19 (brown). With increasing 

anticyclone amplitude, the average degree of spherical 

functions first decreases and then increases, i.e. at first 

the NNM structure has a larger scale, and then higher 

harmonics appear again in the expansion. The behavior 

of the plots at nmax=13 (blue) and nmax=15 (blue) is more 

complex. 

Note that we have identified only tendencies for the 

NNM structure to change depending on various factors. 

Unlike the NNM increments demonstrating pronounced 

stable dependences, the NNM spectra change more cha-

otically when problem parameters change, and it is im-

possible to predict which structure unstable NNM will 

have in one case or another at any given mean flow. 

This significantly deteriorates the applicability of the 

NNM method to prediction of the structure of develop-

ing flows. Apparently, without taking into account the 

nonlinearity of the interaction processes, it will be very 

difficult to identify the structure of flows during the 

development of instability. This conclusion also applies 

to the interpretation of observable oscillations, including 

torsional oscillations. Axisymmetric fastest-growing 

modes appear quite often, but they differ greatly in their 

meridional structure, oscillation periods, and incre-

ments. Finally, the problem of meridional propagation 

of oscillations remains unresolved. The effect of merid-

ional motions can be seen at high latitudes when analyz-

ing real and imaginary components of axisymmetric 

NNMs, yet it is not global in nature and we cannot con-

firm it with quantitative calculations. In general, the 

problem of interpreting torsional oscillations remains 

unsolved. 

 

CONCLUSION 

We have numerically computed NNMs in the ba-

rotropic quasi-geostrophic model of the flow caused by 

the superposition of cyclonic and anticyclonic vortices. 

This flow structure is often found in the circulation of 

the winter atmosphere in the upper troposphere or the 

lower stratosphere. Depending on amplitude, structure, 

and location of the vortices, the mean flow can be either 

stable or unstable. To study the initial stage of instabil-

ity development, the normal mode method is often used 

which allows us to estimate thresholds of instability 

occurrence in a linear approximation depending on the 

mean flow structure. The normal mode method can be 

employed to interpret the oscillations observed in the 

atmosphere. Problems of both types are solved numeri-

cally, which is why calculated NNMs depend not only on 

the mean flow structure, but also on numerical experi-

ment parameters. In our case, the experiment parameters 
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were the number of harmonics, applied to the field ex-

pansion of stream function perturbations, and viscosity 

parameterizations. Firstly, the NNM dependences on the 

mean flow and, secondly, the dependences on experi-

ment parameters were estimated. 

The behavior of increments of the fastest growing 
NNMs depending on external conditions proved to be 
simpler than NNM structures. Flow instability always 
increased with increasing anticyclone amplitude, of 
course, to varying degrees with different viscosity pa-
rameterizations and the number of spherical harmonics 
in the field expansion of stream function perturbations. 
The situation with the NNM spatial structure turned out 
to be more difficult. Even relatively small changes in 
the experiment parameters and the mean flow (anticy-
clone amplitude) significantly changed the structure of 
the most unstable NNMs. On average, with an increase 
in the anticyclone amplitude and the number of harmon-
ics in the expansion, the structure of unstable modes 

became larger-scale, spherical functions of degrees n=1, 
2 prevailed in it, yet this was not always the case. The 
viscosity parameterization had a less strong effect on the 
NNM structure.  

Axisymmetric oscillations appeared quite often 
among the fastest growing NNMs, but they differed 
greatly in their meridional structure, periods, and incre-
ments. Furthermore, they did not ensure meridional 
propagation of disturbances, which is typical of torsion-
al oscillations. In this regard, the numerical experiments 
have not given any convincing evidence in favor of the 
hypothesis of torsional oscillations as eigenoscillations 
of the atmosphere for the mean flow caused by the su-
perposition of polar cyclone + anticyclone flows. 
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Figure 5. Composite spectra of the most unstable NNMs with viscosity parameterizations N=0, 1, 2, 3 (from top to bottom), the 

number of spherical harmonics in the expansion nmax=13, 15, 17, 19 (from left to right), and different anticyclonic vortex amplitudes 

(highlighted in color) 10.l     In each panel are characteristic times T of increase in amplitudes of the most unstable NNMs 
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Figure 6. Average degree of spherical functions in the NNM expansion versus the anticyclone amplitude a2 for different 

numbers of harmonics in the expansion: dark blue — nmax=13, blue — nmax=15, red — nmax=17, brown — nmax=19; γ'=10 
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