Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт солнечно-земной физики Сибирского отделения Российской академии наук (ИСЗФ СО РАН)

Рабочая программа дисциплины

Д.3 Магнитная гидродинамика

Научная специальность 1.3.4 Радиофизика

РАБОЧУЮ ПРОГРАММУ разработал кандидат физико-математических наук	Козлов Д.А.
РАБОЧУЮ ПРОГРАММУ разработал	Накаряков В.М
кандидат физико-математических наук	Пакариков В. т

1. Место и роль дисциплины (модуля) в структуре ОПОП

Дисциплина «Магнитная гидродинамика» входит в образовательный компонент основной профессиональной образовательной программы по научной специальности 1.3.4. Радиофизика.

Дисциплина является обязательной для обучающихся в аспирантуре по научной специальности 1.3.4. Радиофизика

Знания и умения, приобретаемые аспирантами после изучения дисциплины, будут использоваться для решения научных задач на этапе получения и обработки экспериментального материала, и направлены на подготовку к сдаче кандидатского экзамена и к дальнейшей научной работе.

2. Цели и задачи дисциплины (модуля)

Целью дисциплины «Магнитная гидродинамика» является знакомство обучающихся с основными законами, понятиями и методами магнитной гидродинамики как науки о взаимодействии движущейся электропроводящей сплошной среды с электромагнитным полями, приложением результатов магнитной гидродинамики для постановки и решения задач физики.

Задачами дисциплины «Магнитная гидродинамика» является:

- формирование базовых знаний в области магнитной гидродинамики: терминология, формулировка основных законов и уравнений, используемые приближения;
- приобретение навыка описания и моделирования электропроводящей сплошной среды во внешнем электромагнитном поле;
- освоение методов постановки и решения ключевых задач магнитной гидродинамики в приложении к космической плазме.

3. Требования к результатам освоения дисциплины(модуля)

Знать:

- основные понятия и термины дисциплины;
- формулировку основных законов магнитной гидродинамики;
- границы применимости магнитогидродинамического подхода в решение задач физики плазмы;
- вид уравнений магнитной гидродинамики в различных приближениях;

Уметь:

- проанализировать характеристики исследуемой среды или процесса для выбора оптимального описания в рамках магнитной гидродинамики;
- осуществлять грамотную постановку магнитогидродинамической задачи и находить способы ее решения;

Владеть:

- основными методами описания плазменных сред в приближении магнитной гидродинамики;
- алгоритмами решения ключевых задач магнитной гидродинамики.

4. Объем дисциплины (модуля) и виды учебной работы

Общая трудоемкость дисциплины составляет 3 зачетных единиц, 108 часов.

Вид учебн	ой работы	Всего часов / зачетных единиц
Аудиторные занятия	(всего)	36/1
В том числе:		
Лекции		36/1
Лабораторные работы		
Практические занятия		
Самостоятельная работа	(всего)	36/1
Вид промежуточной аттестации (эк	сзамен)	36/1
Контактная работа	(всего)	36/1
Общая трудоёмкость	(часы/зачетные единицы)	108/3

5. Содержание дисциплины

5.1. Содержание разделов и темы дисциплины

Раздел 1. Введение

- Тема 1.1. Предмет дисциплины. Сплошная среда.
- Тема 1.2. Уравнения Максвелла. Дифференциальная и интегральная форма. Граничные условия. Вектор Умова-Пойнтинга.
- Тема 1.3. Уравнения механики сплошных сред. Закон сохранения массы. Уравнение непрерывности с учетом притока массы. Закон сохранения импульса. Переменные Эйлера и Лагранжа. Субстанциональная производная. Уравнение баланса энергии. Уравнение состояния.

Раздел 2. Уравнения магнитной гидродинамики

- Тема 2.1. Приближение магнитной гидродинамики. Система уравнений магнитной гидродинамики. Консервативная форма записи уравнений.
- Тема 2.2. Неадиабатические процессы: теплопроводность, вязкость, электрическое сопротивление, радиационные потери.
- Тема 2.3. Уравнение индукции. Магнитное число Рейнольдса. Идеальная и неидеальная среда. Несжимаемая среда. Теорема Альфвена. Вмороженность силовых линий в идеальной среде. Магнитная силовая трубка. Поток магнитного поля через жидкую поверхность.
- Тема 2.4. Системы уравнений идеальной, резистивной и холловской МГД. Двухжидкостная магнитная гидродинамика. Обобщенный закон Ома.

Раздел 3. Магнитостатика

- Тема 3.1. Условия равновесия. Уравнение магнитной гидростатики.
- Тема 3.2. Равновесная стратифицированная атмосфера. Модель Паркера солнечного ветра.
- Тема 3.3. Простейшие цилиндрические равновесные конфигурации: θ-пинч, z-пинч.
- Тема 3.4. Бессиловые магнитные конфигурации. Приближение потенциального поля.
- Тема 3.5. Поддержка солнечного протуберанца. Модель Киппенхана-Шлютера.
- Тема 3.6. Равновесие в тороидальных конфигурациях. Уравнение Грэда-Шафранова.

Раздел 4. МГД волны

- Тема 4.1. Малые возмущения. Линеаризация уравнений идеальной магнитной гидродинамики. Плоские волны. Альфвеновские и магнитозвуковые волны. Альфвеновская скорость.
- Тема 4.2. Полярные диаграммы фазовых и групповых скоростей.
- Тема 4.3. Слабонелинейные эффекты. Нелинейный каскад.
- Тема 4.4. МГД спектроскопия и сейсмология.

Раздел 5. Разрывы

- Тема 5.1. Слабые и сильные разрывы в идеальном газе. Классификация слабых разрывов. Энтропийный разрыв. Альфвеновский разрыв. Быстрый и медленный магнитозвуковой разрыв. Диаграмма скоростей разрыва.
- Тема 5.2. МГД-разрывы идеальной жидкости. Скачок величин на разрыве. Тангенциальный разрыв. Контактный разрыв. Вращательные или альфвеновские разрывы.
- Тема 5.3. Ударные волны. Волны включения и выключения. Ударная адиабата. Структура ударного фронта с учетом диссипации.

Раздел 6. МГД волны в неоднородной среде

- Тема 6.1. Плазменный волновод. Моды плазменного слоя и цилиндра.
- Тема 6.2. Резонансное поглощение.
- Тема 6.3. Эффект перемешивания фаз.

Раздел 7. МГД неустойчивости.

- Тема 7.1. Классификация гидродинамических неустойчивостей. Неустойчивость Рэлея-Тейлора, неустойчивость Кельвина-Гельмгольца.
- Тема 7.2. Метод малых колебаний. Энергетический принцип. Неустойчивости цилиндрических пинчей. Изгибная и сосисочная неустойчивости.
- Тема 7.3 Неустойчивости в среде с конечной проводимостью. Резистивная тирингнеустойчивость.

Раздел 8. Магнитное пересоединение

- Тема 8.1. Эволюция токового слоя.
- Тема 8.2. Модель магнитного пересоединения Свита-Паркера.
- Тема 8.3. Проблема быстрого магнитного пересоединения.

5.2. Разделы дисциплины (модуля) и виды занятий

№	Раздел	USCOB					СРС			
		часов	Лекции	Лабораторные	Практические	Семинары				
				занятия	занятия					
1.	Введение	6	2				4			
2.	Уравнения									
	магнитной	12	6				6			
	гидродинамики									
3.	Магнитостатика	8	4				4			
4.	МГД волны	8	4				4			
5.	Разрывы	8	4				4			
6.	МГД волны в неоднородной среде	12	6				6			
7.	МГД неустойчивости	14	6				8			
8.	Магнитное пересоединение	4	4							
9.	Экзамен	36								
Ит	ого (часов)	108	36				36			
Ит	ого (з.е.)				3					

5.3. Разделы и темы дисциплины (модуля) и междисциплинарные связи

			N_0N_0	разделов	и/или	тем	данной
$N_{\underline{0}}$	Наименование	обеспечиваемых	дисци	иплины,	необхо	димы	х для
Π/Π	(последующих) дисципли	н и практик	изуче	R ИН	обе	еспечи	иваемых
			(посл	едующих)	дисципл	ІИН	
1	Исследовательская работа	ı	Разде	лы 1-8		•	

5.4. Перечень лекционных занятий

$N_{\underline{0}}$	№ раздела и темы	Наименование	Трудоемкость	Оценочные
Π/Π	дисциплины (модуля)	используемых	(часы)	средства
		технологий		
1.	Темы 1.1-1.3	лекция	2	устный опрос
2.	Темы 2.1-2.4	лекция	6	устный опрос
3.	Темы 3.1-3.6	лекция	4	устный опрос
4.	Темы 4.1-4.4	лекция	4	устный опрос
5.	Темы 5.1-5.3	лекция	4	устный опрос
6.	Темы 6.1-6.3	лекция	6	устный опрос
7.	Темы 7.1-7.3	лекция	6	устный опрос
8.	Темы 8.1-8.3	лекция	4	устный опрос

5.5. Перечень семинарских, практических занятий и лабораторных работ

Данный вид занятий не предусмотрен

5.6. Тематика заданий для самостоятельной работы

Раздел	Тема	Вид самостоятель	Задание	Рекомендуемая	Количество
		ной работы		литература	часов
1	1.1			2, глава 1, п. 1.1- 1.2 3, глава 1, п. 1.1	1
			Повторить	4, глава 2	
	1.2		материал	1, глава 1, п.1-2	1
	1.3		лекции по	2, глава 1, п. 1.3	2
2	2.1		конспектам	3, глава 1, п. 1.2	1
	2.2		лекций,	1, глава 1, п. 4-5	1
	2.3		проанализирова	1, глава 1, п. 3	2
	2.4	Работа с	ть и	2, глава 1, п. 1.4	2
3	3.1	конспектами	воспроизвести	2, глава 3, п. 3.1	2
		лекций, работа с	математические	4, глава 4, п. 4.6-	
		литературой	выкладки,	4.8	
	3.2	1 71	дополнить	2, глава 3, п. 3.2	2
4	4.1		материалы	1, глава 2, п. 1	2
			лекций	2, глава 6, п. 6.1-	
			информацией	6.2	
			из	3, глава 2, п. 2.1-	
			рекомендуемой литературы	2.2 4, глава 6, п. 6.1-	
			литературы	6.5	
	4.2			1, глава 2, п. 2	2
5	5.1			1, глава 2, п. 2-3	4
3	J.1			1, 131aba 3, 11. 2-3	7

			2, глава 2, п. 2.1-	
			2.2	
			4, глава 6, п. 6.6	
6	6.1		1, глава 3, п. 1	2
			2, глава 2, п. 2.5	
	6.2		1, глава 4, п. 1	2
			2, глава 5, п. 5.1-	
			5.2	
	6.3		1, глава 4, п. 2	2
			2, глава 5, п. 5.4,	
			5-6-5.7	
7	7.1		2, глава 4, п. 4.1	2
			5, глава 3, п. 3.13	
	7.2		2, глава 4, п. 4.2-	3
			4.3	
	7.3		6, глава 6	3

5.7. Методические указания по организации самостоятельной работы студентов

Каждый вид самостоятельной работы направлен на закрепление и углубление знаний, полученных во время аудиторных занятий.

1) Работа с конспектами лекций

Студент повторяет содержание лекции, используя материалы конспекта, в случае необходимости дополняет их информацией из рекомендуемой и дополнительной литературы.

2) Работа с литературой

Студент осваивает материал, предназначенный для самостоятельного изучения, используя рекомендуемую и дополнительную литературу, составляет подробный конспект темы, анализирует и воспроизводит необходимые математические выкладки.

6. Учебно-методическое и информационное обеспечение дисциплины 6.1. Основная литература

Автор, название, место издания, издательство, год издания	Количество
учебной и учебно-методической литературы	экземпляров
1. Куликовский А.Г., Любимов Г.А. Магнитная гидродинамика.	ЭБ
М.: Логос, 2005.	(http://irbis.iszf.irk.ru):
	неограниченный доступ
2. Половин Р.В., Демуцкий В.П. Основы магнитной	ЭБ
гидродинамики. М.: Энергоатомиздат, 1987.	(http://irbis.iszf.irk.ru):
	неограниченный доступ
3. Кирко, И.М. Магнитная гидродинамика. Современное	ЭБ
видение проблем. Москва, Ижевск. Регулярная и хаотическая	(http://irbis.iszf.irk.ru):
динамика, Ижевский институт компьютерных исследований,	неограниченный доступ
2013.	
4. Шерклиф Дж. Курс магнитной гидродинамики. М. МИР,	ЭБ
1967.	(http://irbis.iszf.irk.ru):
	неограниченный доступ
5. Альвен Г., Фельтхаммар ГК. Космическая электродинамика.	ЭБ
М.: МИР, 1967.	(http://irbis.iszf.irk.ru):
	неограниченный доступ
6. Прист Э., Форбс Т. Магнитное пересоединение:	ЭБ

магнитогидродинамическая	теория	И	приложения.	M.:	(http://irbis.iszf.irk.ru):
ФИЗМАТЛИТ, 2005.					неограниченный доступ

6.2. Дополнительная литература

Автор, название, место издания, издательство, год издания	Количество	
учебной и учебно-методической литературы	экземпляров	
1. Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных	ЭБ	
сред. М.: Наука, 1957.	(http://irbis.iszf.irk.ru):	
	неограниченный доступ	
2. Ландау Л.Д., Лифшиц Е.М. Гидродинамика. М.: Наука, 1986.	ЭБ	
	(http://irbis.iszf.irk.ru):	
	неограниченный доступ	

6.3. Профессиональные базы данных, используемые при осуществлении образовательного процесса по дисциплине:

- http://ssrt.iszf.irk.ru/indexru.shtml
- Архив наблюдений радиоастрофизической обсерватории ИСЗФ СО РАН (http://badary.iszf.irk.ru/)
- База данных многолетних наблюдений солнечной активности в ГАО РАН
 (http://www.gaoran.ru/database/csa/,
 http://www.gaoran.ru/database/esai/,
 http://www.gaoran.ru/database/esai/,
 http://www.gaoran.ru/database/esai/,
 http://www.gaoran.ru/database/esai/,
 http://www.gaoran.ru/database/esai/,
 http://www.gaoran.ru/database/ http://www.gaoran.ru/database/
- Международная база данных наблюдений Солнца «Виртуальная солнечная обсерватория» (https://sdac.virtualsolar.org/cgi/search)
- Научная база данных Scopus (https://www.scopus.com)
- Научные данные (материалы) издательства Cambridge University Press (http://www.cambridge.org)
- 6.4. Информационные, информационно-справочные системы, используемые при осуществлении образовательного процесса по дисциплине:Информационно-справочная информация в библиотеке ИСЗФ СО РАН (http://irbis.iszf.irk.ru)
- Государственная публичная научно-техническая библиотека России (http://www.gpntb.ru/)
- Журналы Американского физического общества (http://publish.aps.org/)
- научная электронная библиотека + Российский Индекс Научного Цитирования (https://elibrary.ru)
- Международный каталог и поисковая система по публикациям в области астрофизики (http://adsabs.harvard.edu/abstract_service.html)
- Онлайн-каталог изображений Солнца Гелиовьюер (https://helioviewer.org/)
- Монитор солнечной активности (<u>https://www.solarmonitor.org</u>)

- Международная система индексирования публикаций Web of Science (http://webofknowledge.com)
- Научные ресурсы зарубежного издательства Elsevier B.V. Freedom Collection (https://www.elsevier.com)

6.4. Программное обеспечение

Программное обеспечение, используемое при осуществлении образовательного процесса по дисциплине:

№ 1	Наименование программного продукта Місгоsoft Office 2010	Кол- во	Обоснование для пользования ПО (Лицензия, Договор, счёт, акт или иное) Номер Лицензии	Дата выдачи лицензии 30.01.2009	Срок действия права пользования бессрочно
	Russian Academic OPEN 1 License No Level		Microsoft47790919		-
2	Microsoft Windows Professional 7 Russian OPEN 1 License No Level Legalization Get Genuine	5	Номер Лицензии Microsoft47771806	06.12.2010	бессрочно
3	7-Zip	1	Свободно распространяется на условиях лицензии GNU LGPL		бессрочно
4	Adobe Acrobat Reader DC	1	Лицензионное соглашение на программное обеспечение Adobe.		бессрочно
5	Mozilla Firefox	1	Свободно распространяется на условиях тройной лицензии Mozilla (MPL/GPL/LGPL).		бессрочно
6	VLC Media player	1	Свободно распространяется на условиях лицензии GNU GPL		бессрочно
7	Операционная система Ubuntu	6	свободная лицензия		бессрочно
8	Дистрибутив Python Anaconda	6	свободная лицензия		бессрочно
9	Офисный пакет Libre Office	6	свободная лицензия		бессрочно

7. Образовательные технологии

В учебном процессе используются интерактивные формы проведения занятий в форме лекций с разбором кейс-задач.

Аудиторные занятия проводятся в интерактивной форме с использованием мультимедийного обеспечения (ноутбук, проектор). Презентации позволяют качественно иллюстрировать аудиторные занятия схемами, формулами, чертежами, рисунками и структурировать материал занятия. Электронная презентация позволяет отобразить процессы в динамике, что улучшает восприятие материала.

Самостоятельная работа включает в себя:

- работа с конспектами лекций;
- самостоятельное проведение необходимых аналитических выкладок для получения основных законов и уравнений;
- изучение и конспектирование тем для самостоятельного изучения с использованием основной и дополнительной литературы;
- формулирование проблемных вопросов по пройденным темам для разбора на семинарах.

При необходимости в процессе освоения материала аспирант может получить индивидуальную консультацию у преподавателя.

8. Материально-техническое обеспечение дисциплины (модуля)

Специальные помещения	Мебелью на 10 посадочных мест, доской меловой,			
для проведения занятий	техническими средствами обучения, служащими для			
лекционного типа, занятий	представления учебной информации большой аудитории:			
семинарского типа,	проектор «Sanyo PROxtra PLC-XU115»,			
групповых и	ноутбук «15,4" Toshiba Satellite» OEM Windows Vista Home			
индивидуальных	Basic			
консультаций, текущего	экран Projecta Compact EL 240x240 MWS STD раздвижной,			
контроля, для проведения	УсилительElectroVoiceQ44-II			
промежуточной аттестации	Звуковой пульт SoundcraftSpirit M4			
	колонкиElectroVoiceEV-6.2T			
помещение для	Мебелью на 6 посадочных мест, Системный блок Intel			
самостоятельной работы	Pentium 4 630, 3000 MHz (4 шт.); Системный блок OctalCore			
	AMD FX-8350, 4000 MHz (1 шт.), Системный блок			
	QuadCoreIntelCore i5-2500, 3700 MHz (1 шт.). Монитор Асег			
	EB222Q (3 шт.); Монитор Philips 223V5 (1 шт.); Монитор			
	Belinea 101725 (1 шт.); Монитор LG E2251 (1 шт.). С			
	неограниченным доступом к сети Интернет и в			
	Электронную информационно- образовательную среду.			

9. Контроль качества освоения программы аспирантуры

Цель контроля – получение информации о результатах обучения и степени их соответствия результатам обучения.

Планируемые результаты освоения дисциплины

Знать:

- основные понятия и термины дисциплины;
- формулировку основных законов магнитной гидродинамики;
- границы применимости магнитогидродинамического подхода в решение задач физики плазмы;
- вид уравнений магнитной гидродинамики в различных приближениях;

Уметь:

- проанализировать характеристики исследуемой среды и исследуемого процесса для выбора оптимальногоописания в рамках магнитной гидродинамики;
- осуществлять грамотную постановку магнитогидродинамической задачи и находить способы ее решения;

Владеть:

- основными методами исследования плазменных сред в приближении магнитной гидродинамики;
- алгоритмами решения ключевых задач магнитной гидродинамики.

Текущий контроль

Текущий контроль успеваемости аспиранта, т.е. проверка усвоения учебного материала, регулярно осуществляется на протяжении семестра. Текущий контроль знаний обучающихся организован как устный групповой опрос в виде собеседования и совместного решения кейс-задач

Оценочные средства для оценки текущей успеваемости студентов

Характеристика ОС для обеспечения текущего контроля по дисциплине

Раздел/	OC	Содержание задания		
Тема*				
Разделы 1-8	собеседование	Составить и обсудить на занятии проблемные		
		вопросов по изученному разделу.		
Разделы 3, 4, 6	кейс-задача	Познакомиться с явлениями, изучаемыми в		
		физике Солнца и околоземного космического		
		пространства, применить теоретические знания		
		для исследования данных проблем		

Вопросы для собеседования

- 1. Назовите условия применения приближения магнитной гидродинамики.
- 2. В чем разница между переменными Эйлера и Лагранжа?
- 3. Какие уравнения входят в систему уравнений магнитной гидродинамики?
- 4. Влияние сжимаемости среды на форму уравнений магнитной гидродинамики, условие несжимаемости.
- 5. Объясните явление вмороженности магнитных силовых линий.
- 6. Опишите конфигурацию θ -пинча, z-пинча.
- 7. Назовите условие бессилового магнитного поля.
- 8. Поясните физический смысл величин в уравнении Грэда-Шафранова.

- 9. Критерии подобия: физический смысл числа Рейнольдса, магнитного числа Рейнольдса, числа Гартмана.
- 10. Назовите основные характеристики альфвеновских и магнитозвуковых волн в однородной плазме.
- 11. Перечислите основные типы сильных МГД-разрывов.
- 12. Чем характеризуется тангенциальный разрыв, контактный разрыв, вращательный разрыв?
- 13. Что такое ударная волны?
- 14. Условия развития гидродинамических неустойчивостей.
- 15. В чем заключается метод малых колебаний при исследовании неустойчивостей?
- 16. Как применяется энергетический принцип для исследования неустойчивостей?

Темы заданий для кейс-задач

- 1. Модели плазменных конфигураций, часто используемые в солнечно-земной физике: цилиндрические конфигурации, петли, магнитосферы планет и др.
- 2. Звездный ветер, модель Паркера.
- 3. Сильные МГД разрывы в космической плазме. Магнитопауза.

Промежуточная аттестация

Промежуточная аттестация студентов по дисциплине осуществляется по окончанию дисциплины, в виде экзамена в соответствии с графиком учебного процесса. Проверка наличия конспектов по дисциплине является допуском к экзамену. В случае наличия учебной задолженности (пропущенных занятий и (или) невыполненных заданий), студент отрабатывает пропущенные занятия и выполняет задания.

Оценочные средства для проведения промежуточной аттестации

Вопросы к экзамену

- 1. Уравнения магнитной гидродинамики (МГД). Закон Ома для медленных процессов.
- 2. Уравнения динамики проводящей жидкости.
- 3. Различные формы записи уравнений МГД.
- 4. Интегральная форма уравнения непрерывности и уравнения движения.
- 5. Уравнение индукции. Вмороженность магнитных силовых линий.
- 6. Диффузия магнитного поля в неподвижной плазме. Относительная роль конвекции и диффузии.
- 7. Задачи магнитостатики: бессиловые конфигурации, пинч с обращенным полем.
- 8. Задачи магнитостатики: равновесные тороидальные конфигурации, уравнение Грэда-Шафранова.
- 9. Стационарные течения вязкой жидкости.
- 10. Классификация малых МГД-возмущений. Фазовые и групповые скорости.
- 11. Классификация слабых разрывов. Условия на слабом разрыве.
- 12. Простые МГД-волны.
- 13. Сильные разрывы. Граничные условия на разрывах. Тангенциальный и вращательный разрывы.
- 14. Ударные волны. Граничные условия на фронте. Ударная адиабата.
- 15. Структура ударного фронта с учетом диссипации.
- 16. Устойчивость и эволюционность ударных волн.
- 17. Гидродинамические неустойчивости, развивающиеся на границе сред.
- 18. МГД-неустойчивости пинчей.

19. Магнитное пересоединение.

Задания к экзамену

- 1. Построить условие равновесия для θ-пинча
- 2. Построить условие равновесия для z-пинча
- 3. Построить условие равновесия для пинча с обращенным полем.
- 4. Построить решение для течения Гартмана
- 5. Построить решение для течения Куэтта.
- 6. Построить граничные условия для тангенциального разрыва
- 7. Построить граничные условия для вращательного разрыва
- 8. Построить граничные условия на фронте ударной волны.

Оценивание обучающихся происходит с использованием нормативных оценок на экзамене – 5 – отлично, 4-хорошо, 3-удовлетворительно, 2 – неудовлетворительно.

Критерии оценивания результатов обучения

Критерии	Шкала оценивания				
	«отлично»	«хорошо»	«удовлетворит ельно»	«неудовлетвор ительно»	
Владение специальной терминологие й	Свободно владеет терминологией из различных разделов курса	Владеет терминологией, делая ошибки; при неверном употреблении сам может их исправить	Редко использует при ответе термины, подменяет одни понятия другими, не всегда понимая разницы	Не владеет терминологией по курсу	
Глубина и полнота знания теоретических основ курса	Демонстрирует прекрасное знание предмета, соединяя при ответе знания из разных разделов, добавляя комментарии, пояснения, обоснования	Хорошо владеет всем содержанием, видит взаимосвязи, может провести анализ и т.д., но не всегда делает это самостоятельно без помощи экзаменатора	Отвечает только на конкретный вопрос, соединяет знания из разных разделов курса только при наводящих вопросах экзаменатора	Не владеет теоретическими основами курса	
Умение проиллюстрир овать теоретический материал примерами	Отвечая на вопрос, может быстро и безошибочно проиллюстриро вать ответ собственными примерами	Может подобрать соответствующ ие примеры из имеющихся в учебных материалах	С трудом может соотнести теорию и практические примеры из учебных материалов; примеры не всегда	Не может соотнести теоретические знания и практические примеры	

			правильные	
Дискурсивные умения	Демонстрирует различные формы мыслительной деятельности: анализ, синтез, сравнение, обобщение и т.д. Владеет аргументацией, грамотной, лаконичной, доступной и понятной речью.	Присутствуют некоторые формы мыслительной деятельности: анализ, синтез, сравнение, обобщение и т.д. Хорошая аргументация, четкость, лаконичность ответов.	анализ, синтез,	Не может применить формы мыслительной деятельности: анализ, синтез, сравнение, обобщение и т.д. Отсутствует аргументация, логика при ответе.