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Mean-field buoyancy
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Abstract. The magnetic field buoyancy is derived in the frame-
work of the mean-field magnetohydrodynamics. The usual lin-
ear dependence of the rise velocity on magnetic energy density
is found for very weak fields only. The dependence is non-
linear and even non-monotonic for stronger fields. The initial
increase of the buoyant velocity with the field strength changes
to decrease for strong fields. The decrease is brought about by
magnetic tension. The saturation of the mean-field buoyancy
weakens substantially the limitations imposed by this effect on
cosmic dynamo models. The time of buoyant rise from bottom
to top of the solar convection zone is larger than two years for
a field of arbitrary strength.
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1. Introduction

Magnetic field structures in astrophysical bodies are buoyant
(Parker 1975). The buoyancy effect has long been recognized as
very important for cosmic magnetic fields dynamics. It largely
influences the dynamo models (Schmitt & Schiissler 1989; Moss
et al. 1990; Jennings 1991).

However, one can find quite different representations for
this effect in the recent publications of dynamo models with
buoyancy. The models are usually developed within the mean-
field approach. What buoyant rise velocity must be prescribed
to the mean field remains very uncertain. The buoyancy effect
is well described for the case of magnetic structures (flux tubes)
in a quiet non-turbulent atmosphere. The turbulence is probably
an unavoidable ingredient of cosmic dynamos however. The
magnetic fields in turbulent conducting fluids are known to be
intermittent (Meneguzzi et al. 1981; Gilbert 1991; Brandenburg
et al. 1991) with some spatially separated flux concentrations.
These *magnetic structures’ may be buoyant but their life time is
finite. They loose their identity in an eddy turn-over time; what
is buoyant then? The question must be certainly reformulated
as whether the mean field in the turbulent fluid is subject to
buoyancy effect.

It may be argued that presently it is not finally known how
long are the life-times of small-scale magnetic structures in stel-
lar convection zones and it is not possible to choose confidently
between the two co-existing approaches: the flux-tube dynamo
(cf, e.g., Parker 1982; Schiissler 1993) and the mean-field dy-
namo (Moffatt 1978; Parker 1979; Krause & Rédler 1982). This
situation stresses, however, the need for the mean-field buoy-
ancy description which would supply new information allowing
to choose between the two alternatives. In addition, the absolute
majority of stellar dynamo models belong to the mean-field ap-
proach while the buoyancy effect is described for the flux-tubes
only.

This paper is aimed at producing the mean-field buoyancy
expressions. The gravity and the density fluctuations caused by
small-scale magnetic forces are taken into account. The density
fluctuations are correlated with that of magnetic field which re-
sults in an advection-type term, rot(V, X B), in the averaged
induction equation. The effective velocity, V, is proportional
to the fluid compressibility and to the gravity. The drastic dif-
ference with the flux-tube buoyancy is the non-monotonous de-
pendence of the effective velocity on magnetic energy density.
The usual relation V;, ~ B? was found for weak fields only.
The velocity V, saturates at a field strength close to the energy
equipartition value and decreases with B for still stronger fields.
A non-monotonous dependence was found to result from mag-
netic tension. If only the magnetic pressure part of the complete
Lorentz force is kept in the motion equation (the usual practice in
the flux-tube buoyancy studies), the relation V3, ~ B? survives
for arbitrary field strengths. Due to the saturation, the mean-field
buoyancy is not so dramatic for stellar dynamos as could be ex-
pected from the flux-tube buoyancy expressions. The maximal
rise velocity for the solar convection zone is about 3 m s~! only.

2. Basic equations and assumptions

The turbulence contribute the mean-field induction equation,
OB/0t =rtot (—nrotB+ &) |

through the mean electromotive force (EMF),

& =<uxh>, 2.1
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where B is the mean magnetic field, u and h are fluctuating
velocity and magnetic field respectively. What we need is the
nonlinear expression in B for the mean EMF (2.1) with account
for the gravity and compressibility.

We do not wish to overload the treatment by considering
the other effects but buoyancy. Several assumptions are made to
single-out the conditions in which the buoyancy dominates. The
mean velocity (rotation) is assumed zero to exclude the a-effect.
The spatial inhomogeneity of averaged fields is neglected. This
excludes the diffusive contributions to (2.1) and the turbulent
transport effects (diamagnetism). .

Nearly all derivations to follow are made within the Second-
Order Correlation Approximation (SOCA); the first-order
smoothing is another name often used for it. Though this approx-
imation may be (an has been) a subject of criticism, it was never
demonstrated to produce unreasonable results and remains the
principal tool of the mean-field magnetohydrodynamics. De-
tailed discussions of the essence and validity limits of the ap-
proximation can be easily found in literature (cf., e.g., Moffatt
1978; Krause & Ridler 1980). Hence, we may restrict ourselves
to note only that within SOCA the linearized equations for fluc-
tuating fields are used to derive the second-order correlations
contributing the mean field equations. In particular, the motion
equation can be written as

pOu/Ot —Vé —(B-V)h/p+V (p' +(h- B)/,u) —pg=1,22)

where p and p’ are the mean and fluctuating densities, g is the
gravity, p’ is fluctuating pressure, and & is the viscous stress
tensor,

oij = pv (Viu; + Vju;) + p€éijdivu

(the volume viscosity, £, does not contribute the resulting ex-
pressions and practically can be omitted). We suppose the buoy-
ancy effect be not sensitive to what is a particular source of the
turbulence and prescribe the random body force f as the turbu-
lence driver.

We assume next the pressure fluctuations to be proportional
to that of density:
p = C% . (2.3)
This means that some thermodynamic quantity is not perturbed
by the turbulence. E.g., if the heat conductivity is high enough

to keep the temperature constant against the turbulent perturba-
tions, we can write

02=c%=<@> =
op)

where v = ¢, /¢, is adiabaticity index with ¢, and ¢, being the
specific heats at constant pressure and volume respectively, the
ideal gas law,

ep(y = DT/, (2.4a)

p = (Cp —cp)pT',
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was used. For the opposite case of very low heat conductivity,
the adiabatic fluctuations with constant specific entropy, S, can
be considered to get

(2),-

It is advantageous in many respects to use Fourier-transfor-
med equations. From (2.2) we find

C* = C} cp(y — DT . (2.4b)

pWk?* — iw)a + p(v + €)(k - d)k — i(B - k)h/p
e . T (2.5)
+ik (C?p' + (B -h)/u) — p'g = T,

where the hat above letters means Fourier transform, e.g.,
u(r,t) = /exp(ir -k —iw) ik, w) dk dw .

We shall need also the equations for fluctuating magnetic
field and density. Under the approximations adopted they read
1(B - k)i —i(k - 1)B

nk? — dw
ik -@)p. 2.7

On using the equation (2.6), the following representation for
the mean electromotive force (2.1) can be found,

h(k,w) = : (2.6)

iwp =

& =icim / / (B 1) < fynl, )i (K, ) >

dk dk’ dw dw’
nk? —iw

(2.8)
— Bimkp < lp(k,w)tl;(k',w') > |

The equation of motion should be addressed to define the spec-
tral tensor < 4, %; >. Substitution of (2.6) and (2.7) into (2.5)
yields the closed equation for fluctuating velocity:

(Wk? —iw)a + (v + )k - d)k

+;iw[—(Vok)(V-ﬁ)k+V2(k~ﬁ)k+(k~V)2ﬁ

nk? — (2.9

— (k- (k- V)V] —

(k-d) iC%*k-d) R
g+ =
w w

where V = B/(up)'/? is the Alfven velocity. The Fourier-
amplitude, @i, can be splitted into its solenoidal (incompressible),
#°, and potential (compressible), a7, parts:

i =a%+af,
ﬁ;s = ﬂijﬂj, ﬁf = kzok;)ﬁj 5
where k° = k/k is the unit vector in the direction of the wave-
vector k and ;;(k) = 6;; — k7 k5 is the projection tensor. Con-
volutions of the equation (2.9) with m;; and k7 k7 yield the equa-
tions for the solenoidal and potential constituents of the velocity
field,

(Wk?* — iw)ad + [k - VY0 — 7 VKAV - 6P)]

nk? — iw

(k-

'llp) N
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(Qu+9k* —iw) a?
1

Moy [(K*V? = (k- V)?) 28 — Kk - V)(V - &5)] (2.106)
. 2 2 A,

B Ry

We assume next the fluid compressibility be small, i.e., the
’sound velocity’, C, be large as compared to the typical values
of the turbulent velocity. In this case, the solution of the system
(2.10) can be found by the perturbation method. In the zeroth
order in the compressibility the equation (2.10b) reads
K2C?

P o_
; =0,

2.11q)

with the obvious result, & = 0. In the same approximation
the equation (2.10a) produces the well-known (cf. Krause &
Rédler 1980) relation for incompressible turbulence affected by
the mean magnetic field:

o¥ =8O /N | (2.11b)
where
850 _ £ =1+ (k- V)

Wk? —iw)p ’ (nk? — iw)(vk? — iw)

5@ can be identified with the velocity amplitude of the so-
called ’original turbulence’ (Riidiger 1989), i.e., with the veloc-
ity field which would take place under real sources of turbulence
but if the mean magnetic field were absent.

Obviously, finite compressibility must be included to ac-
count for the buoyancy effect. We have to do the next step in
the perturbation procedure. This yields

wk - V)(V - a5®)

0 = 9?0 4k, _
u'l, U, + 1ik202(nk2 . Z(AJ)N ) (2 12(1)
g5 _ B0 mke00) (V) g,
N N@wk? —iw) \nk? —iw 7 w (2.120)
(k- V)(V - a5©) whk-V) o\
iC2N2(Wk? — do)(k? — i) \nk? —dw 9 797 ) >
where
A w 7
uf(O) - e Jid 2.13)

is the potential part of the velocity amplitude for the original
turbulence.

It remains to define the original turbulence. The turbulence
is assumed statistically steady and homogeneous,

< Ak, w) (K W) > = Quj(k, w)S(k + K )S(w +w')
and spatially-isotropic,

Qij(k,w) = (E(k, wymi;(k) + 2EP(k, w)k; k) /

2.14
(167k?) . @19
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E and EP are the spectra for incompressible and compressible
parts of the turbulence, respectively, which both contribute to
the total turbulence intensity:

oo
<(u(0))2>=/ (E+EP) dkdw,
0 - oo
< W0y > = / Edkdw, <@PO)?>= / BP dk dw .
0 0

It may be seen from (2.13) that the spectrum E? is of the second-
order in the fluid compressibility. We include it in (2.14) for
completeness only. It does not contribute to the final results.

It can be easily shown that the ’incompressible’ solution
(2.11) is such that the mean electromotive force (2.8) equals
zero. Thus, we really have no mean-field transportation effect
without density fluctuations.

3. The buoyant rise velocity
3.1. The general expressions and their interpretation

The non-trivial representation for the mean EMF (2.1) can be
found by substitution of the *compressible’ solution (2.12) and
(2.14) into (2.8). After some algebra we derive the advection-
type expression,
& =V, xB, (3.

with the following representation for the effective velocity:

) ‘gCZ/ /

where

nk?E(k,w)

2k4+ 2 52K(k,w”3)dkdw,(32)

KV
(V2k4 + w2)1/4(172k2 + w2)1/4

/8:

(3.3)

is the normalized field parameter. As expected, the velocity is
proportional to both the gravity, g, and the fluid compressibility,
C~2.The magnetic field dependence enters, however, in a rather
complicated way through the kernel function

[ arctan ( M >

_ e
K = 16,64{2ﬁcos(¢/2)
B — sin(¢/2)
+ arctan (__-._ o )}
(B +3) In <52
48 sin(¢/2)

where we introduced the ’angle’ ¢ defined by the relation

cos(¢/2)
(3.4

—2(sin(¢/2) + 1
B% +2sin(¢/2) + 1 ) }

vnk* — w?

(l/2k4 + w2)1/2(772k4 + w2)1/2 :

cos(¢) =

The usual result is a buoyant rise velocity proportional to
the second power of the magnetic field strength. With equation
(3.2) this is the case for weak fields only. When (3 (3.3) is small
for those wave numbers and frequencies which give the main
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contribution to the spectral integral in (3.2), we can put 5 — 0
in (3.4) to find

K =cos¢/15.
Then, for the weak field case we find

gB?

15C2up / /

For the opposite case of large 5 we can keep in (3.4) only
the lowest-order term in the small parameter 37! to find,

nk*(wnk* — wHE(k,w)
(772k4 + w2)2(V2k4 + w2)

dk dw.(3.5)

™

K= .
3233 cos(¢/2)
Rather unexpectedly, the velocity (3.2) decreases with B in this
strong magnetic field case:

nkE

vie 7r(2up)‘/2//
b= T8 3BC? 72k +w?

W2k + PPkt + W)
W2kt +

w2)1/2(n2k4 + w2)1/2 + I/nk4 —w?

This result is in drastic contrast with the usual relation
Vi, ~ B2. The discrepancy is certainly rooted in the differ-
ence of our approach from that producing the B2-law. The key
point is the inclusion of the magnetic tension forces which are
usually ignored in buoyancy studies. If the above derivations
are repeated by taking only the magnetic pressure part of the
Lorentz force into account, the B2-expression (3.5) results for
arbitrary field strength. Therefore, the non-monotonous depen-
dence of Vj, on B results from magnetic tension. (We use the
term ’tension’ in the sense that the complete Lorentz force =
magnetic pressure + magnetic tension.) It is worth noting that
if the pressure is neglected but tension included then no mean-
field transport results, V;, = 0. Hence, the mean-field buoyancy
is produced solely by magnetic pressure. Only the tension mod-
ifies the effect but the modification is very strong.

The following qualitative explanation of the result may
be suggested. Turbulent wiggling of the mean-field lines of
force produces random magnetic inhomogeneities. The mag-
netic pressure is higher than the average value in the regions of
concentrated flux and lower than the average in the flux deple-
tion regions. The resulting density fluctuations and gravity cause
the flux concentrations to rise somewhat and the flux depletions
to sink somewhat during the flux irregularities life-time. The
rising flux is stronger. On average, the flux is transported up-
wards producing the mean-field buoyancy. For a given spectrum
of magnetic irregularities, only magnetic pressure is efficient to
produce the density inhomogeneities and the resulting buoy-
ancy effect. For the irregularities formation, however, magnetic
tension is important. If the mean-field is very strong, the irregu-
larities are difficult to produce against the magnetic tension and
the buoyancy is suppressed.

(3.6)

1/2
) dk dw.
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3.2. The mixing-length approximation

The above expressions for the buoyant velocity should be fur-
ther adapted for application purposes because they include the
spectral function E and other parameters purely known for real
objects. The mixing length approximation is convenient for ap-
plication purposes. We arrive at one of the variants of this ap-
proximation if replace d/dt in the starting equations for fluc-
tuating fields by 7~! (cf. Durney & Spruit 1979) and consider
a single-scaled spectrum E ~ &(k — [~'); 7 and [ being the
convective turn-over time and mixing length respectively. It is
not necessary, however, to repeat all the derivations with these
new equations to find the mixing-length representation of the
above results. We may found them formally (Kichatinov 1991)

by substituting the following expressions,
Ek,w) =2 < @w®? > §(k—1"H6w), vk* =nk* =771, (3.7)

into the above equations. Thus obtained mixing-length repre-
sentation of the velocity (3.2) reads
Vo = —g < W)’ > 102K (8)/C? (3.8)

where K and 3 are the mixing-length analogues of (3.3) and
(3.4):
1 2 B -3
1
1657 ( TR
and 8 = Vr/l is the field strength normalized to the energy
equipartition value. The function (3.9) tends to a constant,

K(Pp) =

arctan(ﬂ)) , (3.9

= 1/15, (3.10)
when (3 is small and decreases with 3 as
K=m/328%, (3.11)

in the strong field limit (3 > 1) to reproduce the simplified
versions of the above expressions (3.5) and (3.6) in the mixing-
length approximation.

4. In a stellar convection zone
4.1. The ’original turbulence’

The velocity u® corresponds to the original turbulence. By
definition, this is the turbulence which would take place under
the actual source of the turbulence but if the mean magnetic
field where absent. In the stellar convection zones the source is
the superadiabaticity of stratification. The known mixing-length
relation,

lgaAT
AT or

can be applied to estimate the original turbulence intensity. A
complication comes however from the mean magnetic field in-
fluence on convective heat transport and the resulting superadi-
abatic temperature gradient, VAT'. For this reason the original

< (@W? >= 4.1
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turbulence still depends on the magnetic field. The aim of this
subsection is to define the dependence explicitly.

We start from the mixing-length representation for the con-
vective heat flux introduced by Wasiutynski (1946),
F=—prc, <uuy; > V;AT . 4.2)
The velocity correlation tensor is needed to derive the (tenso-
rial) heat conductivity. The small fluid compressibility can be

neglected now and the equations (2.11), (2.14) and (3.7) can be
used to find

< wiuy >=< WO? > (%\I’(,@)éij + Wl(ﬂ)%) ,  (4.3)

where the factor 1/3 is introduced for convenience. Only the
function

2 _ 2
() = 8i62 (g2+11 + p ,;- ! arctan(ﬁ)) ,

of the two contributing fuctions of 3 will be needed. If the
dominating component of the mean magnetic field is the toroidal
one, the equations (4.1), (4.2) and (4.3) give

(4.4)

v OAT
3 o
pepTgl? (BATN?

127 < ar ) ‘

F.=—pc,T < w®? >
4.5)

=¥(p)

It seems natural to assume that the mean magnetic field
does not suppress the convective heat flux. Otherwise the stellar
luminosity would be modulated with the magnetic cycle period.
The variations for the Sun, if any, are extremely small (Stix
1989). The physical reason for this assumption is the nonlinear
nature of the convective heat transport: suppression of the heat
flux would result in an increased superadiabatic temperature
gradient which strongly opposes suppression by amplifying the
convective mixing. Our final assumption is the independence
of the convective turn-over time 7 on the magnetic field. Under
these assumptions we find

AAT\? OATN? |
(ar) (a—)w ® .

0

(4.6)

where the subscript ’0” means the value for zero magnetic field.
Combining (4.1) and (4.6) we find
< @Oy >=u2)0'2(B), 4.7
where v’ is the rms velocity for the nonmagnetic case which
can be taken from the (nonmagnetic) stellar convection zone
models (cf., e.g., Baker & Temesvary 1966). Eq. (4.7) describes
the original turbulence dependence on the magnetic field. The
dependence is very weak. For 3 = 1, ¥ = 37/16, i.e, u® and
u’ differ less than by a factor of 3/4. The magnetic modification
is larger for 3 > 1 but a stellar dynamo can hardly produce
the very strong field regime. Nevertheless, we shall take the
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Fig. 1. The buoyant-to-convective velocities ratio as a function of the
normalized field 3 = B/ [(up)l/ 24']. The broken line shows the asymp-
totics (4.13) and (4.14) for the weak and strong field cases

weak magnetic modification (4.7) of the original turbulence into
account when estimating the buoyant velocities.

4.2. Estimating the rise velocities

The deviation of the stellar convection zones stratification from
adiabaticity is very small except for the near-top layer with par-
tial ionization. E.g., the relative value of this deviation for the
Sun is about 10™* (Stix 1989). We find from (2.4) for this case
g/C* = (kH)™", (4.8)
where H = (v — 1)e,T/(vg) is the pressure scale height and
the parameter x accounts for the thermodynamic properties of
the turbulence: x = « for adiabatic and x = 1 for isothermal
fluctuations. Substitution of (4.7) and (4.8) into (3.8) gives the
following expression for the absolute value of the rise velocity,

v?

15k Hu' (4.9)

b =
where the usual relation 7 = [ /u’ was used, the function Q(3) is
expressed through the functions K and ¥ defined by (3.9) and
4.4),

QB = 15K(B)/ V%)

The factor 15 was introduced to normalize @) to unity at the
origin, Q(0) = 1. With this choice, @ can be understood as the
quenching function of the buoyancy effect by magnetic tension.

In a more consistent account for the thermodynamic proper-
ties of the turbulence one could use the energy equation instead
of the simple relation (2.3). However, we can find from (4.9)
that the rise velocity changes by a factor of 5/3 only between the
opposite limits of very high (x = 1) and very low (x = 5/3) tem-
perature conductivities. It would be rather strange if somewhere
between this limits the relation (4.9) was strongly violated. Note
that the velocity (4.9) keep the isothermal fluctuations is slightly
amplified as compared to the adiabatic fluctuations.

(4.10)
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The equation (4.9) is similar to the flux-tubes rise velocity
expression (Parker 1978),

R?V?

Viube = C"lm,— .

4.11)
where R is the tube radius and cis a constant of order unity. Note
that in our case the magnetic structure ’radius’ is the turbulence
scale [. There are, however, two significant differences. First,
the mean-field buoyancy is a statistical effect. Probably for this
reason the velocity (4.9) is about an order of magnitude smaller
for the weak field case. Second, the expression (4.9) includes the
buoyancy quenching and the difference with (4.11) is amplified
when the field is not weak.

The mixing-length is usually supposed to be roughly equal
to the pressure scale height. In this case the ratio of the buoyant
to convective velocity can be found from (4.9) with an accuracy
within a factor close to unity to equal

Vo/u' = FQ(B)/15. (4.12)
The ratio is very small for both extremes of weak,

Vo/u' = B%/15 forf< 1, (4.13)
and strong fields,

Vi 1/ 7\ /2

— =< | = 1. 4.14
" g (3[3) for 8> (4.14)

The ratio (4.12) is shown in Fig.1 as a function of 3. The
buoyant velocity cannot be larger than about 6 percent of the
convective velocity. Moreover, it is rather improbable that a stel-
lar dynamo canreach the 5 > 1 region where the maximal value
is placed. E.g., if we adopt B ~ 2 kG for the Sun, the parameter
(3 is slightly smaller than unity over the entire convection zone
except for very thin layers at the top and bottom (cf., e.g., the
SCZ model by Spruit 1974). V;, /v’ ~ 0.02 is probably a plau-
sible value for the Sun. This means that with v/ ~ 50 m s~!
for the large-scale solar convection (Stix 1989) we find the rise
velocity of about 1 m s~ only. In any case the velocity cannot
be larger than about 3 m s~!. Even with this latter value the
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time of rise from the bottom to top of the SCZ is about 2 yr; 6
yr seems to be a more reasonable evaluation.

The estimations indicate that the mean-field buoyancy may
considerably influence the magnetic fields on long time scales
but in no case the buoyancy is so deeply disastrous for the stellar
dynamos as it is often claimed.
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