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Abstract-A theoretical study is made of the phenomenon of standing Alfven wave resonance excitation 
by a monochromatic fast magnetosound in an axisymmetric model of the magnetosphere. A theory is 
developed which includes the Alfven and magnetosound wave relationship, transverse and longitudinal 
inhomogeneities of the medium, the weak transverse dispersion of Alfven waves and their dissipation on 
the ionosphere. General formulae are derived which describe the spatial structure of a monochromatic 
Alfven wave. These formulae are specified for all physically differing cases of the behaviour of magneto- 
spheric parameters. An analysis is made of the back influence of an Alfven wave on a magnetosound field. 

1. INTRODUCTION 

Standing Alfven waves in the Earth’s magnetosphere 
have been the subject of theoreticai study since the 
appearance of a fundamental paper of Dungey (1954). 
The extreme complexity of this problem forces 
researchers to restrict themselves to very simplified 
problem statements. In the development of a theory 
of standing waves (see a review by Southwood and 
Hughes, 1983 and references therein) one may note 
the following two stages. 

On the basis of equations of ideal magnetic hydro- 
dynamics and in a model of an axisymmetric (i.e. two- 
dimensionally inhomogeneous-from the mathemat- 
ical point of view) magnetosphere, Radoski (1967) 
Radoski and Carovillano (1969) and Cummings et al. 

(1969) considered two particularly simple types of 
standing Alfven waves which are Alfven eigen-oscil- 
lations. These are axisymmetric, toroidal modes for 
which m = 0, where m is the azimuthal wave number, 
and poloidal modes with unlimitedly large values of 
m + co. In these two limits the system of magneto- 
hydrodynamical equations splits into independent 
equations for Alfven waves and a fast magnetosound, 
and this makes the study drastically simpler. The solu- 
tions for Alfven waves have a remarkable feature, 
namely they are concentrated on separate magnetic 
resonance shells for toroidal modes and on separate 
field-lines lying on resonance shells, for poloidal 
modes, i.e., their eigen-functions are d-functions of 
transverse coordinates. Toroidal modes can be treated 
as oscillations of separate shells and the poloidal 
modes as separate lines of force. The field-aligned 
(along the geomagnetic field) structure of such waves 

is described by a one-dimensional differential equa- 
tion which, together with the boundary conditions 
on an ideally conducting ionosphere, leads to a one- 
dimensional problem for eigen-values. This deter- 
mines the set of field-aligned eigen-modes (harmonics) 
and eigen-frequencies. Taking account of finite con- 
ductivity of the ionosphere leads to the damping of 
the eigen-modes (Newton et al., 1978). 

Toroidal and poloidal modes are very partial solu- 
tions of the equations but, owing to their obviousness, 
are widely used when interpreting observational data. 
During the past decade standing waves have been 
intensively studied with the aid of spacecraft (see 
Takahashi and McPherron, 1984 and references 
therein), which made it possible to collect a large 
amount of experimental evidence. Unlike ground- 
based observational data, this information is free 
from the masking effect of the ionosphere, atmosphere 
and the Earths surface. They demonstrated con- 
vincingly the existence of standing waves, their 
harmonic structure and good agreement with the 
theoretical frequency spectrum of toroidal and 
poloidal modes. 

However, in the theoretical papers cited above the 
question of the excitation mechanism for standing 
waves remains unanswered. The second stage of theor- 
etical investigations that deserves mention here 
implies constructing a resonance theory of Alfven 
wave excitation in the magnetosphere as initiated in 
papers of Southwood (1974) and Chen and Hasegawa 
(1974). According to this theory, an Alfven wave is 
excited as a result of so-called Alfven resonance. Such 
resonance requires a relationship between the waves 
of both types which exists only when values of m are 
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finite and different from zero. In this case, however, 
the problem, even in the ideal MHD approximation, 
becomes greatly complicated. Therefore, the papers 
mentioned above employed an extremely simplified 
model of the medium in the form of a flat plasma 
sheet. It is supposed that the geomagnetic field is a 
homogeneous one and the plasma density depends 
only on one transverse coordinate. The nonzero value 
of m is modelled by the wave vector component in the 
direction perpendicular to the magnetic field and to 
the density gradient. The position of the resonance 
surface (in this model it is a plane) is determined by 
the condition of equality of the local Alfven frequency 
and the magnetosound frequency. 

Papers of Southwood (1974) and Chen and Hasegawa 
(1974), together with a number of subsequent ones, 
constitute a considerable part of the theory of Alfven 
resonance in a one-dimensionally inhomogeneous 
plasma (see a review by Stix and Swanson, 1980 and 
references therein). In the ideal MHD approximation 
the disturbance field has on the resonance surface a 
singularity which corresponds, in a sense, to that of 
eigen-functions of toroidal and poloidal modes. 
Taking account of effects outside the framework of 
ideal MHD eliminates this singularity. Such effects 
are the dissipation in the ionosphere as well as the 
effect of Larmor radius of ions and the electron inertia. 
These latter lead to transverse dispersion of Alfven 
waves which are called kinetic waves in this case 
(Hasegawa, 1976; see also Goertz, 1984). 

Recently there emerged a challenging problem of 
constructing a theory for Alfven resonance in non- 
one-dimensional models of the magnetosphere. There 
are already a number of papers devoted to this ques- 
tion (Krylov et al., 1981 ; Krylov and Lifshitz, 1984; 
Southwood and Kivelson, 1986). These papers have 
a limitation in common, namely that it is impossible 
to use the formulae obtained for specific applications. 
They establish some qualitative properties of the solu- 
tion of MHD equations and, in particular, the con- 
clusion about the presence of a resonance surface is 
drawn and the solution singularity is investigated near 
it. However, mathematical difficulties encountered 
when solving non-one-dimensional equations remain 
unresolved ; the explicit form of these solutions has 
not been found. 

The present paper is devoted to the theory of Alfven 
resonance in an axisymmetric model of the magneto- 
sphere. The result obtained involves formulae which 
totally define the spatial structure of the field of a 
monochromatic Alfven wave. The formulae bring 
about some kind of synthesis of the theory of Alfven 
resonance in a flat sheet with the theory of toroidal 
mode in an axisymmetric magnetosphere ; they reduce 

the solution of the two-dimensional problem to a con- 
secutive solution of two one-dimensional problems, 
and these latter can be solved explicitly in most prac- 
tically important cases. In particular, the success of 
the toroidal mode theory in determining the frequency 
spectrum of standing waves finds its explanation and 
a rigorous mathematical substantiation is given for 
the use of the flat sheet model. 

2. FORMULATION OF THE PROBLEM 

In our treatment of the magnetosphere we shall be 
using a curvilinear orthogonal coordinate system x’, 
x2, x3 in which surfaces x’ = const. coincide with 
magnetic shells, the coordinate x2 specifies the line of 
force on a given shell and x3 specifies a point on a 
given line of force (see Fig. 1). The system is assumed 
axially symmetric; this is the only constraint we 
impose on the model magnetosphere. It is of import- 
ance theoretically because it changes the problem 
from a three-dimensionally inhomogeneous (as it 
actually is) over to a two-dimensionally inhomo- 
geneous problem, which significantly simplifies mathe- 
matical developments. At the same time the two- 
dimensionally inhomogeneous model is much more 
tenable as compared with the usually used one- 
dimensional model and, in the known approxi- 
mation, describes adequately the inner part of the 
magnetosphere, which cannot be said about the one- 
dimensional model. It should be stressed that sym- 
metry about the equator is not assumed. For an axially 

FIG. 1. A CURVILINEAR,• RTHOGONALSYSTEMOFCOORDINATES 

(.x',.2)IN THE ~C~UDIONAL PLANE (x' = const.). 
Emphasis is deliberately placed on the possible North-South 
asymmetry of the magnetosphere. The figure singles out : the 
equatorial line that is a separatrix for coordinate curves 
x3 = const., one of the magnetic shells and coordinate lines 
x3 = const. corresponding to the intersection of this shell 
with the ionosphere in the Northern and Southern (x: 

and .a?) Hemispheres. 
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symmetric system it is natural to use as the coordinate 
x2 the azimuthal angle rp. We denote by x!+ and x3 
the coordinates of intersection of the line of force with 
the ionospheres of the conjugate hemispheres ; they 
are functions of the magnetic shell : x: = x’,(x’). 

Disturbances in a wave will be assumed by co- 
variant components of the disturbed magnetic field 
vector, and we shall operate on both the components 
themselves and their Fourier-harmonics 

s 

cc 
&(x’,x2,x3,t) = &(x’,x2,x3,m) e-‘“‘dw. 

-cc 

Taking into account the axial symmetry of the system 
the dependence of a disturbance can be chosen in the 
form exp (ik2x2), where k, is a covariant azimuthal 
component of the wave vector. When x2 = cp, then 
k, = m, where m is the azimuthal wave number. In 
fact, we shall not need such a representation, but for 
the estimations we shall be using the representation 
of a certain typical mean value of k, - a/ax2 (or a 
corresponding value of m). An important factor 
deserves mention here. If an azimuth-bounded dis- 
turbance is considered, then the axial symmetry con- 
dition can be regarded as satisfied, provided that the 
parameters of the medium are independent of azimuth 
cp within the region in which the disturbance is loca- 
lized. Such a requirement is a less stringent one, 
i.e., in the dayside sector it can be considered 
roughly satisfied on magnetic shells as far as the 
magnetopause. 

Similar to k, we shall also be treating the other 
components of the wave vector: k, - a/ax’ and 
k, - a/8x3. Note that relevant physical components, 
i.e., those in a localEuclidian basis, are given by the 

relation li = k,/,/g,, where gi represents diagonal 
components of a metric tensor. 

The standing Alfven waves of interest pertain to a 
class of so-called quasi-perpendicular Alfven waves 
whose characteristic values of the transverse and the 
longitudinal wave vectors satisfy the relation 
k, >> (o/q)“‘k,, , where wi = e B,/mic is the cyclotron 
frequency of ions. Quasi-perpendicular Alfven waves 
have a nearly linear polarization in a plane normal to 
the external magnetic field. In this paper we restrict 
ourselves to a consideration of the oscillations with 
not too great values of azimuthal wave number m 
such that for an Alfven wave the condition 

I& << IC, (1) 

is satisfied. Such waves are close to toroidal modes. 
In this case the Alfven wave can be described by the 
component B2 and the magnetosound wave can be 
represented by the component B,. On the order of 

magnitude we have E, N l/U, where V is a typical 

scale of the solution for the coordinate x’, and 
k2 - m/L, where L is the length of the line of force. 
The condition formulated above can be rewritten as 
m << L/V. It is not too stringent because, as will be 
shown below, %? << L (a typical value of L/V - 102). 
Moreover, that this condition is satisfied is actually 
provided by the excitation mechanism for an Alfven 
wave. 

In this paper we adopt the hypothesis according to 

which a magnetosound is generated by an external 
source and penetrates, then, into the magnetosphere. 
Such a source may be provided by an instability of a 
proton flux reflected from the bow shock front 
(Gul’elmi, 1984) or the Kelvin-Helmholtz instability 
on the magnetopause (Kivelson and Pu, 1984). Simple 
reasoning shows that on a resonance surface the 
magnetosound is located in the opacity region, i.e., 
does not oscillate but drops exponentially along the 
coordinate x’ towards the Earth. A typical scale of 
such a decline is of the order L/m and for the mag- 
netosound wave might be able to penetrate sufficiently 
deep into the magnetosphere, the value of m must not 
be too large (m & 10). This does not, however, rule 
out the possibility that the magnetosound may have 
an oscillatory character in the outer magnetosphere. 

Disturbed fields of a monochromatic wave obey the 
equations 

curlE=iEB, curlB= -iEaE, 
C C 

(2) 

where 2 is the dielectric permittivity tensor. For the 
oscillations of our interest, it can be considered 
diagonal. Physical components of the tensor are given 
in a paper by Akhiezer et al. (1974) 

E,, = $(I-;k:pf), &22 = $(I-2$k:p’), 

2 
&3x = ___ 

w2A2. s 
(3) 

Here A = B,-J,,&%@ is the Alfven velocity, pi = vi/w, 
is the Larmor radius of ions, the remaining notations 
are : 

and w(z) is the (known in plasma physics) function 
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s te-"" dt 
w(z) = k _t t--z = 1 -ze-Z2/2 :e’zlz dt 

s 

+i ; 0 
l/2 

z e-‘+. (4) 

For real z it has the following limiting expressions : 

l-z’+ . . . +i(n/2)“*z, 

IzI << 1, 

w(z) = 1 3 . x I’* 
-___ z* 4z4 + ...+I j 

0 
z e-z2/2 

IZI >> 1. 

In the approximation of ideal MHD pi = A, = 0. 
In this case, in a homogeneous plasma, the relations 
(2) and (3) describe the independent magnetosound 
and Alfven waves with the dispersion laws, respec- 
tively, cu2 = k2A2 = (ki+k:)A* and w* = k&4’. A 
distinctive feature of the Alfven wave is the absence 
of transverse dispersion, namely the frequency w does 
not depend on the transverse wave vector k,. When 
leaving the framework of ideal MHD the Alfven wave 
shows a weak transverse dispersion which is described 
for quasi-perpendicular waves by a simple formula 

where 

02 = k;A*(l+k:Az), (5) 

A2 = Ii,z+jp:. (6) 

Here and in what follows, it is assumed that k,A << 1. 
Such waves were called the kinetic Alfven waves 
(Hasegawa and Uberoi, 1982). Even if dispersion is 
taken into account, the approximate equality w N k,,A 
remains valid so that in the argument of the function 
w one can put 

where s = c/w, is the electron inertial (skin) length 
and Be = 8xn,T,/B~ is the electron to magnetic pres- 
sure ratio. One may write 

Specifically, we have 

When s - ps (i.e., 8, - me/m,), the value of A: is com- 
plex, and Im A,’ < 0. As is apparent in (5) this cor- 
responds to the damping of the wave. The physical 

mechanism for such a damping is Cherenkov 
resonance on electrons. 

In an inhomogeneous, axially symmetric plasma, 
from (2) and (3) one may derive the system of 
equations 

Here g = g,g,g3 is a determinant of the metric tensor. 
The parameter A* has the same definition (6) and (7) 
as in the case of a homogeneous plasma, but now it 
is a function of coordinates : A2 = A*(x’, x3). 

If the oscillations are axially symmetric, a/ax* = 0, 
then the right-hand sides of equations (8) go to zero. 
In this case equation (8a) describes a toroidal Alfven 
mode, while (8b) represents a magnetosound wave 
that is independent of it. In order to avoid mis- 
understanding, we wish to note the following. In the 
flat layer model with straight geomagnetic field-lines 
the right-hand side of (8b) disappears. Actually, it has 
terms which remain in this limit. But they are omitted 
in (8b) because-with a really existing curvature of 
the lines of force-they are small as compared with 
the term introduced. 

If the oscillations are not axially symmetric, then 
the Alfven wave and the magnetosound show a 
relationship specified by the right-hand sides of equa- 
tions (8). The Alfven wave influence upon magneto- 
sound will be examined in Section 9. It turns out that 
it is universal in character such that equations for 
magnetosound can be solved independently of the 
equation for an Alfven wave. For realistic models of 
the medium, the problem of magnetosound can only 
be solved numerically and should be the subject of a 
separate study. We shall consider the magnetosound 
wave field to be given. As a result, the problem for the 
Alfven wave is one of solving equation (8a) in which 
the field B, plays the role of a source. 

Equation (8a) should be supplemented with boun- 
dary conditions on the ionosphere. A large number 
of papers (see Southwood and Hughes, 1983 and 
references therein) are devoted to their derivation. 
Their results can be represented as 
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= 0. (9) 

Here the “ +” and “ - ” signs correspond to the con- 
jugate ionospheres, with 

s, = 
c2 cos x* 

47rZZp’A ’ f 

where x is the angle between the normal to the iono- 
sphere and the line of force, C, is the integral Pedersen 
conductivity of the ionosphere, and A, = A(x’,x!,) 

is the value of Alfven velocity on the conventional 
boundary between the ionosphere and the mag- 
netosphere. 

Despite the fact that condition (9) is a well-known 
one, it is necessary to make some comments on it. The 
point here is that above the layer of increased Hall 
and Pedersen conductivity there is the collisionless 
upper ionosphere where the Alfven velocity varies 
very rapidly with height, from a minimum value of 
30&500 km s-’ in the F2 layer to a maximum value 
of(1-3)x104kms~‘attheheightof(1.5-2)x103km. 
A question arises : Where must the boundary between 
the ionosphere and the magnetosphere be drawn and, 
accordingly, what values of A, must be involved in 
formulae (9) and (lo)? In papers dealing with the 
derivation of the boundary conditions it is assumed 
that the conducting ionospheric layer comes into con- 
tact with the homogeneous magnetosphere. It is clear 
that in such a model the question formulated is 
impossible to solve. There is still another factor which 
does not permit the derivation of the relationship (9) 
to be accepted directly. The point here is that the 
papers in question considered Alfven oscillations 
whose wavelength is much larger than the typical 
thickness of the ionospheric layer. In our case the 
situation is the opposite, namely the typical transverse 
length of a monochromatic Alfven wave near the 
ionosphere is much less than the thickness of this 
layer. The boundary condition for such transversely 
small-scale Alfven waves was considered in a paper 
of Hughes and Southwood (1976), but only for a 
perpendicular geomagnetic field. 

We have investigated the questions involved, and a 
detailed discussion will be published elsewhere. The 
results obtained may be summarized thus. The bound- 
ary condition for transversely small-scale Alfven 
waves and for an oblique geomagnetic field retains 
the form (9) despite the fact that concrete details of 
the calculations are altered substantially. The bound- 
ary between the ionosphere and the magnetosphere 
should be drawn at a height corresponding to the 

Alfven velocity maximum, i.e., formulae (9) and (10) 
must involve precisely this maximum velocity. The 
inference just made appears quite a natural one. 
Above (1.5-2) x lo3 km the magnetospheric par- 
ameters vary slowly and the magnetosphere can be 
considered-within the required accuracy-homo- 
geneous. On the other hand, k,,A << 1, where A - lo3 
km is the thickness of the upper ionosphere ; therefore 
its presence does not affect the form of the boundary 
conditions. 

The smallness of the dimensionless parameters 6, 
characterizes the weakness of dissipation in the iono- 
sphere. In the case of an ideally conducting ionosphere 
Z,, + cc and 6, + 0. A typical physical value (for 
daytime conditions) is 6, - 10b2. 

3. FIELD-ALIGNED EIGEN-MODES 

In what follows we shall base our discussion on the 
solution of an auxiliary problem for eigen-values 

aH 
(11) 

The coordinate x’ plays here the role of a parameter 

on which the eigen-values and the eigen-functions 

o = f&(x’), H = HN(x’,x3), (12) 

depend, where N = 1,2,. . . is the harmonic number. 
Because the problem is a Hermitian one, the fre- 
quencies R, are real. From general considerations 
follows the completeness of the system of functions 
HN (as functions of the variable x3) as well as the 
possibility of choosing them as orthonormalized with 
an appropriate weight : 

The sign of the curvilinear integral implies integrating 
over the line of force between the magneto-conjugate 
ionospheres “forward and back”. 

The problem for eigen-values (11) can be regarded 
as the limit of the problem (8a) and (9) for A2 = 0, 
S, = 0 and a/ax’ = 0. In other words, equations (11) 
describe the longitudinal structure of toroidal eigen- 
modes. Their full (two-dimensionally inhomo- 
geneous) spatial structure is determined by the 
relation 

B2(x’,x3) = CS(x’-Z’)HN(x’,x3), (13) 

where C is an arbitrary constant, and X’ is a resonance 
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magnetic surface, on which the mode is concentrated. 
The frequency of this mode o = &,(J?‘). 

For fundamental harmonics (N - l), the problem 
(11) can only be solved numerically (Radoski, 1967 ; 
Cummings et al., 1969). But for higher harmonics 
(N >> l), the WKB approximation is applicable. In 
this case we have 

Q,(x’) = NO(x’), n(x’) = 27+*(X’), 

HN(xI,x3) = ($J2 (g4 

Xcos[*Je]> (14) 

where 

tA(x’) = P ,.I% dx3 
7’ 

is the transit time with Alfven velocity along the line 
of force forward and back. Note that these formulae 
describe qualitatively the solution even for N - 1. 

Dissipation in the ionosphere can be taken into 
account by using the same (one-dimensional with 
respect to the coordinate x3) approach. For this pur- 
pose we utilize the perturbation theory in small par- 

ameters S, . Formulae (12) give a zeroth approxi- 
mation. In the next order we put H = i?,,, = H,+hN, 
where h, = h,(x’, x3) is a first-order correction. Line- 
arization of the boundary condition (9) yields 

ah,_. J- 0 93 
7 ax +16, __ 

A HN 

We linearize equation (11) bearing in mind that the 
difference (w*-@?.,) is a value of the first order of 
smallness. By multiplying the relation by (,/g/g,)H, 

and integrating along the line of force, we get 

co* -Cl; = - H,&l,)h, dx3. 

On calculating the last integral with the help of the 
boundary condition (15), we have 

H,&SZ,)h, dx3 = 2iwy,, (16) 

where 

Hence we have o = fRN--iyN, i.e., the quantity yN is 
the damping decrement of the toroidal mode. For 
N >> 1, when formulae (14) are applicable, we have 

YN = y(x’) = ~-‘[s+(x’)+&(x’)]n(x’). 

In this approximation the damping decrement does 
not depend on number N. 

The explicit expression for the correction h, will 
then not be needed, so we shall drop the procedure of 
calculating it. 

4. TWO-DIMENSIONAL SPATIAL STRUCTURE OF 

A MONOCHROMATIC STANDING ALFVEN WAVE 

We shall solve equation @a) with the boundary 
condition (9) by further developing the perturbation 
theory in the small parameters A* and 6,. A par- 
ticularly important role is played in the subsequent 
discussion by the smallness of A*. Or more exactly, if 
we introduce a typical scale I along the coordinate x’ 
and a scale L along the coordinate x3 (this latter being 
simply the length of the line of force) and make, using 
them, the coordinates x’ and x3 dimensionless, then 
the ratio of the coefficients with second-order 
derivatives 

COAL A 
e=p-Gk,,L&<< I 

A 1 1 (17) 

should be considered to be the small parameter. For 
fundamental harmonics (N - l), we have k,, - l/L 
and, hence, E - A/l. A simple physical meaning can 
be imparted to the parameter E. Let tA be the transit 
time along the line of force with the Alfven velocity, 
and t, be the displacement time of the Alfven wave 
perpendicularly to the magnetic shells (due to the 
presence of a small transverse group velocity) at typi- 
cal distances 1. Then E = tA/tg and the inequality E << 1 
means that a typical time of displacement of the wave 
perpendicularly to the magnetic shells is much larger 

than its bounce-period. 
In the zeroth order in the small parameters E and 

6, we have an equation and a boundary condition 
which describe the excitation of an Alfven wave in the 
ideal MHD approximation 

&,,)jj, 

In virtue of completeness of the system HN any func- 
tion satisfying the boundary condition (18) can be 
represented as a series 
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&(x’,x2,x3,w) = ~~~‘(X’,X2,W)HN(X’,X3), 
N 

(19) 

whose coefficients depend on the coordinates x’, x2 
and on frequency w (index “0” denotes the zeroth 
order). We substitute this expression into equation 
(18), multiply by (&/g,)H, and integrate over x3. 
As a result, we obtain 

where 

Assuming that the magnetosound amplitude on the 
ionosphere is negligibly small (in virtue of opaqueness 
of the magnetosphere for it, this appears quite 
natural), we reduce (20) to the form 

Note that the function eN(x’,x3) is, to within the term 
that depends only on x’, proportional to a perturbed 
electric field of the toroidal mode. 

The relations (19), (20) and (21) solve, in the 
approximation of ideal magnetic hydrodynamics, the 
problem of Alfven resonance in a two-dimensionally 
inhomogeneous system. Field singularity, charac- 
teristic for this approximation, occurs on resonance 
magnetic surfaces x’ = x;(w) defined by the equation 
C&!,,(x~) = w2. The function j& characterizing the 
effectiveness of resonance represents some kind of Nth 
Fourier harmonic of the function aB3/ax2. 

In the next (first) order, in the parameters E and 6, 
we represent the solution as a series 

B2(x’,x2,x3,w) = ~~~(X’,X2,W)~~(X’,X3) 

= %i,(xl,x’,-,r~~(x’.x’) 

+h&‘,X3)1, (22) 

which ensures satisfying the boundary condition (9). 
The above result of the zeroth approximation allows 
us to state that the functions FN are concentrated near 
resonance surface x’ = x;(w), although, as will be 

shown later, it is dispersion and dissipation that elim- 
inate singularity. Two consequences follow from this 
consideration. Firstly, near the surface xfy, only one, 
the Nth term, is important in the sum (22). Secondly, 
the dependence of the function F,v on x’ is much 
stronger as compared with HN and it is sufficient, 
when calculating the derivative with respect to x’, to 
differentiate only the term FN:,. Thus, near the surface 
x’ = x,& and from (8a) we obtain 

We multiply this relation by (Jg/g2)HN, integrate 

over x3 and take account of equation (16). As a result, 
we obtain the equation for FN : 

a2FN 
g&‘)- 

ax 
,I + (w+h(x’))2 _l 

[ %xX’) 1 

p 

N 

= L(xY, 4, (23) 

where 

cs,,,(x’) = 4 A2$H;dx3. 

For N >> 1, this expression is reduced to the form 

In this limit the quantity a(~‘) is a mean along the 
field-line from the dispersion parameter AZ/g,. The 
function e,,(x’) is, generally speaking, a complex one, 
with Im gN < 0. We put Q~(x’) = p,$(x’) eeLaN@‘). The 
quantity pN has a dimensionality of length, and the 
phase CL~ lies within the interval (0,x). In a similar 
manner, we put 0(x’) = p’(x’) exp (-ix(x’)). 

Equation (23) defines the transverse structure of the 
Alfven wave. It is one-dimensional (the coordinate x2 
enters in it as a parameter). This equation is totally 
identical to that of a one-dimensional model. In this 
sense one can believe that it forms the basis for using 
the flat layer model and imparts a specific physical 
meaning to the coefficients involved in equations of 
this model. 

From equation (23) one can obtain all of the par- 
ticular cases considered earlier. For crN = 0 and 
yN = 0, we obtain the ideal MHD relationship (20). 
If, besides, aB”,/ax’ = 0, i.e., p.,, = 0, then the toroidal 
mode (13) for which 2’ = x;(w) will be a solution 
of equation (23). If for the same axially symmetric 
oscillations it is assumed that oN # 0, then we obtain 



1102 A. S. LEONOVICH and V. A. MAZUR 

the equation given in a paper of Leonovich and Mazur 
(1987) which permits the transverse structure of 
toroidal modes to be investigated. In a subsequent 
discussion such eigen-modes unassociated with mag- 
netosound will not be discussed. Both the dispersion 

(c,,, # 0) and damping at the ends (yN # 0) eliminate 
the property inherent in the solution (20). Which of 
the effects is more important depends on the relation- 
ship of appropriate parameters. 

It is necessary to supplement equation (23) with 
boundary conditions with respect to the coordinate 
x’. The particular formulation of these conditions 
depends on the asymptotic behaviour of solutions as 
one moves away from a resonance surface. In the 
opacity region the requirement of boundedness is a 
natural one, which leads to the condition for falling- 
down of the solution. In the non-opacity region one 
should specify the condition for energy escape from 
the resonance surface. This means that a source of 
Alfven waves is provided by magnetosound and there 
are no Alfven waves approaching the resonance 
surface from an asymptotically distant region. 

An obvious feature of the solutions of equation 
(23), which is attributable to the smallness of the 
parameters E and 6,, is their small-scale character, 
i.e., a typical scale of the solutions is much smaller 
than the inhomogeneity scale of the medium and, as 
we shall be assuming, than the typical scale of vari- 
ation of the function jIN in coordinate x’. This allows 
us to write the solution as 

FN(x’, x2, CD) = j&(x’, x2, C&,0’, w), (24) 

where 0(x’, w) is a function obeying the equation 

2” 

%(x’)~ + 

[ 

(~+iy.&‘))* 

Qw) 

- 1 QN = 1, (25) 1 
and the same boundary conditions with respect to the 
variable x’ as does FN. The function &(x ,, o) does 
not depend on magnetosound field s3 and is totally 
determined by the behaviour of magnetospheric par- 
ameters. It may be shown that it is an analytic function 
of a complex variable o, whose singularities all lie 
in the half-plane Im w < 0. Besides, it satisfies the 
relation 

&f(X’? -w) = &(x’,o). (26) 

These properties are the easiest to establish by express- 
ing QN in terms of Green’s function equation (25) and 
using the known properties of it. The property of (26) 
enables us to restrict ourselves to defining the function 
QN for positive values of w only. 

The solution of equation (23) and the zeroth 
approximation expression (19) which are understood 

FIG.~.PLOTSOFTHEFUNCTIONSQ(~')(SOLIDLIN!Z)ANDY(X') 
(BROKEN urn). 

As the coordinate x’, the McIllwain parameter L is chosen. 
The transition region, which is also called in the text the 
dissipative layer, is shaded; in this layer the Alfven wave 

energy is absorbed by magnetospheric plasma electrons. 

as generalized functions are close to each other. How- 
ever, when considered to be ordinary functions of the 
coordinate x’, they can differ greatly (at point XL, for 
example). As far as the functions HN and fiN are 
concerned, however, their difference h, is small as 
compared with each of them in the usual sense. There- 
fore one may believe that the total spatial structure of 
a monochromatic Alfven wave in the main approxi- 
mation is defined by the relation 

B2(x’,x2,x3,w) = ~~~(X’,X~,W)HN(X’,X3) 
N 

= ~~N(x’,x2,0)e”~(x’,w)HN(x’,x3). (27) 
N 

The properties of the functions &(x’, w) are deter- 
mined by the behaviour of the coefficients of equation 
(25). Figures 2 and 3 show schematic plots of the 
functions 0(x’), y(x’)/a(x’), p(x’) and a(~‘) for the 
dayside sector of the magnetosphere. They are con- 
structed on the basis of empirical data for certain 
average conditions (Sergeev and Tsyganenko, 1980 ; 
Kamide and Matsushita, 1979). For a qualitative rep- 
resentation of the variation of the functions C&(x’), 
Q~(x’) and yN(x’), one can use the WKB relationships 
!& = NR, (TV = c’, and yN = y. The plot of the function 
a(~‘) has two typical features, namely a maximum 
on the shell L z I,3 and a steep knee on L = 4-6 due 
to the plasmapause. The magnitude of a(x’) = p*(x’) 
e@@‘) varies from real negative values in the inner 
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cold part of the magnetosphere to real positive values 
in the outer hot magnetosphere. In the dissipative 
region between them the values of c are complex. The 
thickness of this region does not seem to be very large, 
AL N 1-3, and the position coincides roughly with 
the plasmapause. 

That the solutions of equation (25) are small-scale 
ones and are localized near the resonance surface per- 
mits these solutions to be determined explicitly. For 
that purpose, the expression in square brackets (25) 
should be expanded near the resonance surface. Two 
substantially different cases of the position of this 
surface are possible, namely in the region of mono- 
tonic variation of the function Q(x’) and near its 
extrema. 

5. EXCITATION OF ALFVEN WAVES IN 

THE REGION OF MONOTONIC VARIATION OF 

THE FUNCTION a(~‘) 

Let X’ = 2’ be a certain fixed magnetic shell which 
is located sufficiently far from the extrema of the func- 
tion 0,(x’). Near it, one can put 

R,(x’) = ii,(l _X/[N), x = x’ --xl. (28) 

Here it is assumed that the function f&(x’) decreases 
with increasing x’, as is the case in most of the 
magnetosphere. We assume first that the phase 
c(~ = 0, i.e., the quantity crN = pg is real and positive. 

The solution of equation (25) is essentially different 
from zero in the vicinity of the shell f ’ only if w2 x @,, 
i.e., if the resonance surface does not lie far from the 
shell X’. In this case equation (25) may be reduced to 
the form 

FIG. 4. PLOTS OF THE REAL AND IMAGINARY PARTS OF THE 

FUNCTION #(Z) DESCRIBING THE SPATIAL STRUCTURE OF A 

STANDING ALFWN WAVE PERPENDICULAR TO THE MAGNETIC 

SIIELLSNEARARESONANCESHELL. 

pi a*& 
[ 

2x (w+iy,)* 
----+ r+ 
axI N Q,: 

-1 &=l. 1 
Its solution, when w > 0 (i.e., actually when o x Q,), 
can be respresented as 

)]. (2% 

Here 4(z) is a solution of the inhomogeneous Airy 
equation 

@‘+zC#J = 1, 

satisfying the condition of boundedness for z --f - co 
and the runaway condition for z + + co. The prop- 
erties of the function 4(z) are described in the Appen- 
dix and the Re 4(z) and Im 4(z) plots for real values 
of z are presented in Fig. 4. It is possible, through 
simple transformations, to reduce the expression (29) 
to the form in which the dependence on an arbitrarily 
chosen surface 2’ vanishes : 

Here the quantity IN should be understood thus 

IN = Mx’) = /dln~(xl)/-‘. (31) 

The expression (30) is especially convenient to use 
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when it is necessary to regard & as a function of 
frequency 0. 

The properties of the solution &(x’,w) depend 
substantially on the relation between the growth rate 
YN and the value of rN = (1,,,/2pJ2”a, ’ which will be 
referred to as the dispersion time. If YN << r, ‘, then 
the form of the functions (29) and (30) is determined 
mainly by the dispersion effect, i.e., by the presence 
of a term with the second-order derivative in the equa- 
tion for &. The argument of the function 4 in this 
case is nearly real. Typical scales of the solution in the 
variables x’ and w are, respectively, Ax, = px32j3 
and AoN = r,’ = (pN/ZN)2i3ClN and the value of the 
solution at the maximum ON - (IN/p,J2j3. As one 
moves from the resonance surface away into the trans- 
parence region, where the solution has the form of a 
runaway wave, the damping on the ionosphere comes 
into play. It leads to a weak exponential decrease of 
the amplitude. When x >> Ax,, we have 

x exp [-2yINzN(x/AxN)i’2]. (32) 

If YN >> r; ‘, then the decisive role is played by dis- 
sipation. The form of the solution in this limit is most 
readily obtained by dropping in (25) the differential 
term. Then 

1 x 
&(x’,w)=p -+ 

( 

w-Q+iy, _I 

2 IN QV > 

1 %(x’) 
= 2 w-R,(x’)+iy,(x’)’ 

The typical scales of this solution are Ax, = (Y,/R,)I, 
and Ao, = yN and the value at the maximum is 

f& - QvlY‘?J. 
The inequality yN >> r, ’ will be satisfied for all N if 

yzd ‘K l, (33) 

with rd = (I/P)~/%- ‘. Bearing in mind the definitions 
of (10) and (17) we see that the condition (33) is 
equivalent to the inequality 6 << e2j3. Estimates show 
that for typical conditions throughout most of the 
magnetosphere yr, - 6e2j3 - 0.1-1, i.e., it is more 
likely that the inequality (33) rather than an inverse 
inequality, is satisfied. It is quite clear that for Yrd - 1 
the role of dispersion and dissipation is equally import- 
ant and none of the effects can be ignored. 

Let, now, the resonance surface be located in the 
transition region which occupies in the magnetosphere 
the magnetic shells on which the thermal velocity of 
electrons V~ coincides, on the order of magnitude, with 
Alfven velocity A. In this region an effective 

Cherenkov damping of Alfven waves due to electrons 
is taking place ; therefore, it will be referred to here as 
the dissipative layer. In this layer the quantity A2 and, 
therefore, cr,,, have a negative imaginary part. The 
function G,,,(x’), during the transition from the inner 
to the outer magnetosphere, varies in a complex plane 
from negative real values to positive values, without 
going to zero anywhere. 

It is easy to to see that instead of (30) we have in 
this case 

&,(x’,w) = g 

213 

( > eia,/3 

N 

The presence of the terms exp (icIJ3) alters sub- 
stantially the asymptotic of the function &. Thus, 
for yNrN << 1 we have 

If cIN = 0, then we obtain the previous expression (32). 
But when Q >> (y,,,zJ3, the decrease of the amplitude 
is determined by the parameter aN, i.e., from the physi- 
cal standpoint, by the Landau damping due to elec- 

trons. Deep in the dissipative layer the value CL~ N 1 
and, hence, a typical length of the decrease is Ax,, 
i.e., equals the wavelength. Thus, in the dissipative 
layer the Landau damping leads to a rapid absorption 
of the wave energy and virtually does not permit the 
wave to propagate from the resonance surface. 

Alfven wave absorption in the dissipative layer 
bears, we believe, a direct relation to the phenomenon 
of red arcs (Slater et al., 1987). According to Cornwall 
et al’s (1971) theory, the heating of suprathermal 
electrons which are responsible for red airglow of 
atmospheric oxygen, is produced by the Cherenkov 
absorption of Alfven waves ; hence, it can occur in the 
dissipative layer only. 

6. ALFVEN WAVE EXCITATION NEAR 

EXTREMA OF THE FUNCTION l&,(x’) 

The formulae given in previous sections are in- 
applicable when the resonance surface lies in the 
immediate vicinity of the extremum point of the func- 
tion Q,(x’). Although the appropriate regions occupy 
a small part of the magnetosphere, the study of Alfven 
waves in them is of interest from a fundamental stand- 
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point, especially when the combination of the form of 
an extremum (maximum or minimum) and the sign 
of dispersion produces the possibility that the wave is 
locked in the transverse direction. In this case the 
Alfven wave field is bounded in the longitudinal direc- 
tion by the ionospheric ends and in the transverse 
direction, in coordinate x’, by wave reflection points. 
Such a phenomenon is natural for calling the Alfvenic 
resonator. A possibility of its existence was first 
pointed out by Gul’elmi and Polyakov (1983). The 
maximum of the function Q,(x’) on the shell L c I, 3 
gives an example of such a resonator. For the sake of 
definiteness we shall restrict our attention just to this 
case. 

Near the maximum we put 

C&(x’) = C&(1 -X2/24), x = x’ -aA, 

where nh is a coordinate of the maximum of the func- 
tion C&(x’) [not to be confused with the resonance 
surface coordinate xf(o)J, and a,,, is the inhom- 
ogeneity scale. Assuming uN = -pi and introducing 
the designations 

i = x/w, %? = (aNpN)“*, 

i = (adp,)U - (0 fiy )*/ii* I N N, 

we reduce equation (25) to the form 

Let us introduce in our treatment the eigen-values 
and normalized eigen-functions of the appropriate 
homogeneous equation 

1, = 2nf1, 

Y?z(i) = n- ‘i42-“‘*(nl)~ i/* e-S*/‘H”([), 

where n = 0, I, 2, . are integer non-negative 
numbers, and Hn([) are Hermitian polynomials. 
Using Green’s function 

we find the solution for the inhomogeneous equation 

where 

s 

m 
c, = _m vu(i) di. 

Returning to the variables x’ and w, we rewrite this 
result as 

where 51, = !&( 1 - l,p,/2a,) are eigen-frequencies 
of the Alfvenic resonator. 

Let us consider monochromatic oscillations with 
frequency w = oO. Let there be yN << AC&,,, where 
An, = ( pN/aN)& is splitting of the Alfvenic resonator 
frequencies. Then, if frequency o0 is close to one of 
the eigen-frequencies, so that loo-C&~1 << AC&,, we 
have 

c n; 
&,(x’, wg) = ” 

X 
w+2‘&y” G ’ 0 

i.e., the external source excites one eigen-mode of the 
resonator. The inequality yN < AR, will be satisfied 
for all N, provided that the condition 

yf* << 1 (36) 

is satisfied, where td = (aNIp&; ’ is a typical dis- 
persion time of the resonator. It is equivalent to the 
inequality 6 << E if under a typical length I in the defi- 
nition of (17) we understand now the scale a,,,. The 
condition (36) is more stringent than (33). For typical 
parameters of the resonator on L z 1,3, we have 
yzd = l~lO*, i.e., an inverse inequality yzd >> 1 is 
satisfied. This is also valid for other extremum points 
of the function Q(x’). In other words, in a real mag- 
netosphere the resonator’s properties of extrema 
n(x’) cannot manifest themselves. 

7. INFLUENCE OF AN ALFVEN WAVE 

UPON MAGNETOSOUND 

Let us return to equation (8b) for a magnetosound 
wave. Its right-hand side is different from zero only in 
narrow layers near resonance surfaces. Let us consider 
one such surface and let us restrict ourselves to the 
case where it lies in the region of monotonic variation 
of Q(x’), outside the dissipative layer. Simple esti- 
mations show that the influence of the right-hand side 
of (8b) implies a jump of the derivative aB,/ax’ during 
a transition through the resonance layer, while the 
function fi3 itself varies quite a little inside it. In order 
to calculate the jump of the derivative, we integrate 

(8b) over the coordinate x’ in the interval 
(XL-,A/2,xjy+A/2). We choose the length of the 
interval of integration A to be much larger than a 
typical scale of variation of the function &,(x’,w) 
but much smaller than the scale of variation of the 
equilibrium parameters as well as the function B,. 
Then, by factoring, on the right-hand side of (8b), 
slowly varying terms at point xl, outside the integral 
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sign, the integral of the function &. can be extended 
to the interval (-co, co). On the other hand, on the 
left-hand side of (8b) one can put A + 0. As a result, 
we obtain 

xPiv(xI:,xz,~) s m &(x’,w)dx’. (37) 
--m 

Here we have introduced the notation 

{f(x’,x’))1; = f(xi:+0,x3)--f(X~-0,x3). 

The integral on the right-hand side of (37) will be 
calculated in the Appendix. Taking also the definition 
of (3 1) into account we have 

aB,(X;, x2, x?, w) 
X 

3X2 
dx3’. (38) 

Let us stress once more that this condition does not 
have any analogue in the flat layer model with straight 
field-lines. 

As a result, the problem for a magnetosound wave 
may be formulated thus. It is necessary to find the 
solution of equation (Sb), with its right-hand side 
equal to zero, which satisfies : 

(i) certain inhomogeneous boundary conditions on 
a certain outer boundary (the magnetopause, say) 
which plays the role of a wave source ; 

(ii) homogeneous boundary conditions on the iono- 

sphere ; and 
(iii) the matching condition (38) on resonance mag- 

netic surfaces. 

The particular formulation of the boundary con- 
ditions on the external boundary and on the iono- 
sphere as well as, generally, the solution of the prob- 
lem of a magnetosound wave, must be the subject of 
a separate study. The purpose of this section has been 
to show that the problem for magnetosound is for- 
mulated independently of the problem for an Alfven 
wave. 

8. CONCLUSIONS 

Let us formulate the main results of this paper. 

(1) Equations have been derived, which describe 

monochromatic MHD oscillations of an axisym- 
metric magnetosphere. The equations take account of 
the relationship between magnetosound and Alfven 
wave as well as the transverse dispersion of the latter 
one and its dissipation in the ionosphere. The Alfven 
wave dispersion is caused by the combined action of 
the effects of electron inertia and finite Larmor radius 
of the ions. 

(2) Formulae have been obtained, which define the 
spatial structure of an Alfven wave excited by a mono- 
chromatic magnetosound. They solve the problem of 
Alfvenic resonance in an axially symmetric system. 
The formulae have been derived in terms of per- 
turbation theory based on the presence of two dimen- 
sionless small parameters E << 1 and 6 << 1 [see the 
definitions of (10) and (17)]. The parameter E char- 
acterizes the transverse dispersion of an Alfven wave, 
and 6 describes its dissipation in the ionosphere. 

(3) According to the formulae obtained, the longi- 
tudinal structure of an Alfven wave is determined by 
the solution of a one-dimensional (in coordinate x3) 
problem for eigen-values (11). The transverse co- 
ordinate x’ is involved in it as a parameter on which 
the eigen-frequencies C&.,(x’) and the eigen-functions 
HN(x’,x3) depend. These latter are standing waves 
with N-nodes on the line of force. By specifying a 
model of the geomagnetic field geometry and plasma 
density, the problem (11) is easily solved numerically, 
while for the harmonics with N >> 1 the solution is 
given by the formulae of WKB approximation (14). 

(4) The transverse structure of an Alfven wave is 
determined by the solution of the one-dimensional 
equation (23), whose coefficients are integral charac- 
teristics of lines of force. From it we find that the 
Alfven wave is concentrated near resonance magnetic 
surfaces which are defined by the condition 
C&(x’) = o, where w is the magnetosound frequency. 
In the ideal MHD approximation the Alfven wave 
field has a peculiarity on the resonance surface. It is 
eliminated by effects of transverse dispersion of Alfven 
waves and of their dissipation on the ionospheric ends. 

(5) These results explain why previous works were 
successful ; their authors restricted attention to con- 
sidering toroidal eigen-modes or utilized a simple 
model of a flat plasma layer. It is apparent that the 
longitudinal structure and the frequency of an Alfven 
wave excited by a magnetosound, coincide with those 
of a toroidal mode 1Jcalized on a resonance surface. 
On the other hand, the transverse structure of the 
wave in an axially symmetric system, as in the flat- 
layer model, is described by the one-dimensional 
equation (23). Despite the intuitively clear character, 
these conclusions are not obvious ones and represent 
one of the main results of this paper. It is funda- 
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mentally important that, unlike the flat-layer 
model, the coefficients of equation (23) have a phys- 
ically clear meaning and can be determined numeri- 
cally. 

(6) The transverse equation (23) has been solved 
for two different cases of the position of a resonance 
surface, namely in the region of monotonic variation 
of the function 0,(x’) and near its extrema. The form 
of the solution depends substantially on the relative 
role of the dispersion and dissipation effects. 

In the region of monotonic variation of the function 
R,(x ‘) when 6 << E *I3 the transverse dispersion effect 
is dominant. The Alfven wave has a maximum on the 
resonance surface and propagates from it per- 
pendicularly to the magnetic shells, carrying along the 
energy which is drawn from the magnetosound. The 
wave amplitude decreases slowly with distance from 
the resonance surface as a consequence of the damp- 
ing on ionospheric ends. If 6 >> a2’3, then the prop- 
erties of the solution are totally determined by the 
dissipation in the ionsophere. The wave field also has 
a maximum on the resonance surface, but the wave 
does not propagate and decreases monotonically on 
both sides of it. When 6 N E *I3 both effects are equally 
important for the field structure. In the Earth’s mag- 
netosphere typical values of be- 2/3 = 0. l-l. 

Near the extrema of the function zZ,(x’) the exis- 
tence of an Alfvenic resonator is possible, in which 
the wave field is locked in the longitudinal direction 
by ionospheric ends and, in the transverse direction, by 
wave reflection points. Such a possibility is produced 
when at the minimum 0,(x’) the dispersion is positive 
(A* > 0) or at the maximum is negative (A2 < 0). The 
latter possibility occurs in the magnetosphere on the 
shell L z 1,3. Resonator properties of the extrema 
may manifest themselves if 6 << E. Then the dissipation 
effect is weaker than the dispersion effect and the 
magnetosound can excite separate eigen-modes of the 
resonator. However, in the Earth’s magnetosphere 
this phenomenon does not seem to be realized because 
typical values of BE- ’ = 10-100. 

(7) Attention has been paid to the existence in the 
magnetosphere of a dissipative layer which separates 
the inner magnetosphere with “cold” transverse dis- 
persion of Alfven waves from the outer mag- 
netosphere with “hot” dispersion. In this layer v, N A 

and Alfven waves undergo a strong Landau damping 
due to electrons. If the resonance surface lies in the 
dissipative layer, then the driven Alfven wave is 
absorbed in its immediate vicinity on a scale of the 
order of the transverse wavelength. 

(8) An analysis has been made of the back influence 
of an Alfven wave to magnetosound. It has been 
shown that it implies a jump of the derivative of the 

magnetosound wave field during the transition 
through the resonance surface. It has been found that, 
with the actually existing curvature of geomagnetic 
field-lines, the matching conditions on the resonance 
surface have a fundamentally different character from 
those in the flat-layer model. It has been shown that 
these conditions can be formulated in terms of the 
magnetosound field, which permits the problem of its 
propagation to be solved, irrespective of the problem 
of an Alfven wave. 
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APPENDIX 

One of the solutions of the inhomogeneous Airy equation 

y”+zy = 1 (At) 

is the function 

Y(s)=$exp(-!$-nsjdU. (A2) 

Its asymptotics on Stokes lines z = l ei2rm’3 (where b > 0) of 
the appropriate homogeneous equation have the form 

Y(5) = 115, 

The function Y(z) is such a particular solution of the 
inhomogeneous equation which does not involve any run- 
ning waves on Stokes line z = 5. Consequently, in the sectors 
0 < argz <~2n/3 and -2s/3 < argz i 0 adjacent to it a 
falling exponent which is lost against the background of the 
term l/z is able to appear in the asymptotic. This means that 
the asymptotic Y(z) = l/z is valid inside the entire sector 
large] < 2x/3. On the other two Stokes lines the falling 
exponents become running functions, in which case on the 
lower line the wave runs away into infinity and on the upper 
line the wave runs from infinity. During a transition through 
these lines there appears a growmg exponent. For example, 
along the ray -7 = -l we have 

~(-~)=n”Z~~‘14exp(~~3’2). 

We also want to note the value in zero: Y(0) = 3”jF(1/3). 
It is easy to see that, in addition to Y(z), the functions 
vY (vz), if vJ = 1, are also solutions of equation (Al). Apart 
from the initial case Y = 1, there are also two different possi- 
bilities that v = exp (+ i2rt/3). We are interested in the func- 
tion 

Its properties immediately follow from the properties of 
Y(z), In particular, the asymptotics on the real axis are 

It is evident from them that the function 4(C) satisfies the 
condition for run-away of the wave. For tp(z), one can obtain 
its own integral representation. To do so, we must note that 
integration in (A2) can be performed along any ray in the 
plane of complex u lying in the sector 1 arg u ( < n/6 because 

the term emu’i3 guarantees convergence of the integral in this 
sector. On making substitutions z -+ z e-‘2n/3 and u + u e’n’b, 
we obtain 

f-m / ..3 \ 

4(Z) = -iJ0 exp t-i+ tiaz) da. (A3) 

Note that the integral here can be taken along any ray in the 
sector (n/3) < arg u < 0. 

Next, we calculate two integrals which are needed. The 
first of them is 

T~(cz,E,~?) = 1 -- $[eisi3 (r+is)] eel@< dc. (A4) 
J-m 

The parameters a, E and fi are assumed real and 0 < a < x. 
Using the representation (A3) and using in it integration 
along the ray u = 1 e-ia’3 we have 

9, = --i~~~dC$dlexp[-ie-“I;--ri 

1. 
On changing the order of integration, we easily obtain 

9,(a,c,8) = -i2nB(/?)exp 
( 

8’ .a 
-_ES-ie-‘d!j_t3 

> 
(A5) 

For a = 0 and B = 0, a separate calculation yields 

4,(0,E,O) = -ia. (‘46) 

The second integral is 

m 

#*(ti,E) = 
f 

1 Cp(e’““(< + is)) I * d& (A7) 

From (A3), we have 

&=j.Tmdtj;..ajrl:’ 

I v’ v’3 xexp iT -y _i(ve-io/3_v’&3)< 

-E(U e 
-k,3 + a, e’z,3) 

1 

Next, let us integrate over rays v = t elaj3 and v’ = I’ e-I”‘). 
On taking, first, the integral over 4 and, then, over t’, we 

obtain 

m 
4*(a, e) = 2n 

s ( 
dtexp -5 t’ Sin U--Et 

0 

2n. 2s 
=--\y ~ (A8) 

(sin u) “’ ( > (sin a) ‘I3 


