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Abstract-Within the framework of a model of the near-terrestrial environment which represents 
adequately its vertical stratification, an analytical study is made of the structure of an electromagnetic field 
induced in the near-terrestrial layers by low-frequency Alfvbn oscillations of the magnetosphere (whose 
frequency is much lower than the ionospheric eigenfrequencies). We begin this study by solving the problem 
for monochromatic oscillations which have a given horizontal wave vector, with an arbitrary orientation 
with respect to the meridian (the geomagnetic field being oblique). On the basis of this solution, using an 
inverse Fourier transform we derive general formulae to express the el~~oma~etic oscillation field on 
the Earth’s surface in terms of the el~troma~etic field of an Alfv&n wave on the lower boundary of the 
ma~etosphere. A boundary condition for Alfven waves at the ionosph~ma~etosphere interface is 
obtained as an independent result. This condition carries all information on the ionosphere and on lower- 
lying layers, needed to solve problems of Alfvbn oscillations of the magnetosphere. 

1. INTRODUCTION 

Penetration of hydromagnetic oscillations of the mag- 
netosphere through the ionosphere and the atmos- 
phere to the Earth’s surface depends substantially on 
their frequency. In the hydroma~etic range (from 
milliHertz to several Hertz) the ionosphere features a 
set of eigenfrequencies which are due to its resonance 
properties. It is known that wavegnide propagation of 
fast magnetosonic waves is possible in the ionospheric 
F2-layer (Greifinger and Greifinger, 1968 ; Greifinger, 
1972), and waveguide propagation of a low-frequency 
whistler mode is possible in the E-layer (Sorokin and 
Fedorovich, 1982; Mazur, 1988), while a resonator 
exists for Alfv&~ oscillations in the topside ionosphere 
(Polyakov and Rapoport, 1981; Belyaev et al., 1987). 
The eigenfr~uen~ies of these (different in their physi- 
cal nature) waveguides and the resonator are remark- 
ably about the same, of order 1 Hz, i.e. coincide with 
the upper limit of the hydromagnetic range. Thus, two 
substantially different cases are possible: the fre- 
quency of the oscillations considered is either com- 
parable with ionospheric eigenfrequencies or is much 
smaller than they are. We shall limit ourselves to 
the second, simpler case when resonance oscillations 
are not excited in the ionosphere. Note that a very 
important class-standing Alfvkn waves in the 
ma~etospher~~longs to such low-frequency 
oscillations. 

Papers of Hughes (1974) and Hughes and South- 
wood (1976a,b) have made an important contribution 
to the theory of penetration of low-frequency hydro- 
magnetic oscillations to the Earth’s surface. Under the 
assumption of a horizontal homogeneity of ground 
layers they const~ct~ an analytic theory for simple 
particular cases, and the more general cases were 
investigated numerically. An analytical theory was 
developed for a vertical geomagnetic field as well as 
for an inclined field, but only for disturbances which 
do not depend on the azimuthal coordinate (in other 
words, the disturbance wave vector lies in the meridian 
plane). It was also assumed that the characteristic 
vertical wavelength is much larger than the iono- 
spheric thickness such that this latter can be viewed as 
a thin f%m characterized by integral Hall and Pedersen 
condu~tivities. Numerical studies were made of more 
complex cases of disturbances dependent on the azi- 
muthal coordinate. ,Those studies also addressed the 
penetration to the Earth of disturbances described in 
the magnetosphere by the theory of field line res- 
onances (Chen and Hasegawa, 1974; Southwood, 
1974). The magnetosphere is simulated by a flat layer 
of inhomogeneous plasma. The subsequent devel- 
opment of the theory was addressed in review papers 
by Southwood and Hughes (1983) and by Lyatsky 
and Maltsev (1983). A series of papers by Alperovich 
and Fedorov (1984a,b) should also be mentioned. The 
influence of the horizontal ionospheric inhomogeneity 
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(for a vertical geomagnetic field) was investigated 
theoretically by Ellis and Southwood (1983) and 
Glassmeier (1983, 1984). They showed that a 
sufficiently large gradient of integral ionospheric con- 
ductivities characteristic for high latitudes has a sub- 
stantial influence upon the character of penetration 
of an AlfvCn wave through the ionosphere. In particu- 
lar, the rotation angle of the ellipse of polarization of 
the wave can differ from 90” (Glassmeier, 1983, 1984) 
as is predicted by theory for a horizontally-homo- 
geneous ionosphere (see, for example, Hughes and 
Southwood, 1976a). 

In a number of our earlier papers (Leonovich and 
Mazur, 1989a,b, 1990) we have constructed an ana- 
lytical theory to describe the space-time structure of 
the standing Alfvtn wave field in an axisymmetrical 
model of the magnetosphere. Such a model provides 
a more adequate description of the real mag- 
netosphere as compared with the usually used model 
of a plane plasma layer and leads to a richer picture 
of the phenomenon. Thus, it makes it possible to study 
the influence of both the transverse and longitudinal 
plasma inhomogeneity and of curvature of geo- 
magnetic field lines. The theory developed in the papers 
cited above provides a full description of Alfven oscil- 
lations directly in the magnetosphere, i.e. above a 
certain conventional boundary between the iono- 
sphere and the magnetosphere. The question naturally 
arises as to the electromagnetic field induced by mag- 
netospheric oscillations below this boundary-in the 
ground layers and in the Earth. It appears that the 
analytic theories developed in the cited papers by 
Hughes and Southwood are inapplicable in this case. 
This is because the AlfvCn oscillations in the mag- 
netosphere are extremely small-scale transversally- 
their wavelength across the magnetic field is much less 
than the typical thickness of conducting ionospheric 
layers. For an inclined geomagnetic field, this means 
that the vertical wavelength of the disturbance also is 
small compared with the thickness of the ionosphere, 
and this latter cannot be regarded as a thin film. 

This paper develops an analytic theory to describe 
an electromagnetic field induced by low-frequency 
Alfven oscillations of the magnetosphere in the 
ground layers, namely in the ionosphere and the at- 
mosphere, and in the Earth. The theory is directed 
towards the solutions in the magnetosphere obtained 
in our previous papers or, in other words, extends 
them to the ground layers. A correct matching of 
the solutions in the axisymmetrical magnetosphere 
is made with those in the vertically-inhomogeneous 
ground medium ; specifically, the question of the pos- 
ition of the conventional boundary between the iono- 
sphere and the magnetosphere is ascertained. As an 
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FIG. 1. TYPICAL HEIGHT PROFILES OF THE MAIN PARAMETERS 

OF THE MODEL OF THE MEDIUM. 

Roman numerals denote the layers which have been 
described in detail in the text : I-Earth ; II-atmosphere ; 
III-lower ionosphere ; IV-topside ionosphere ; V-mag- 
netosphere. The dash-dotted line represents the model value 

of longitudinal conductivity CT,, = cc. 

intermediate result, formulae are obtained which 
govern the penetration into the ground layers of sep- 
arate disturbance Fourier-harmonics, i.e. mono- 
chromatic oscillations, having a given horizontal wave 
vector which is arbitrarily oriented with respect to the 
meridian. When developing the analytic theory, we 
are using a realistic model of the vertical stratification 
of the ground layers. A typical vertical behaviour of 
the model parameters is given in Fig. 1. The particular 
form of the functions presented in it can be taken 
from both the experiment and some standard models. 
It is also essential that an arbitrary inclination of the 
geomagnetic field to the Earth’s surface is allowed for 
in this case. 

The only important constraint which we impose on 
the model of ground layers is the assumption of their 
horizontal homogeneity. Incidentally, from simple 
physical considerations it is clear that such a homo- 
geneity is required only at a length of the order of a 
typical horizontal scale of the oscillation field (- 100 
km). Horizontal inhomogeneities with a much larger 
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scale can be readily introduced into the theory: for 
this purpose,_it is necessary to use, in the formulae, 
local values of parameters of the medium. This reason- 
ing allows us to consider in a selfconsistent way the 
oscillations on a global scale, covering a significant 
part of the magnetosphere, the ionosphere, the atmos- 
phere and of the Earth’s surface. Of course, however, 
results of the theory are inapplicable in regions with 
large horizontal gradients of ionospheric conductivity 
such as, for example, electrojets or intensive pre- 
cipitation regions. 

In this paper it is believed that an Alfven wave, 
rather than magneto-sound, is incident from the mag- 
netosphere on the ground layers. At the same time, 
Kivelson and Southwood (1988) pointed out that, in 
the case of field line resonance, a magnetosonic wave, 
together with the Alfven wave, must also be incident 
from the magnetosphere, and this is of great sig- 
nificance for the field pattern on the Earth. Indeed, in 
the magnetosphere model in the form of a “rec- 
tangular box”, which was used by Kivelson and 
Southwood, the magnetosonic field, while pro- 
pagating along a homogeneous magnetic field and a 
homogeneous (along it) plasma, reaches freely the 
ends which simulate the conjugate ionospheres. The 
situation is, however, quite different in the axisym- 
metrical model. In such a model, magneto-sound of 
the frequency range considered virtually does not 
reach the ionosphere because the inner part of the 
magnetosphere is an opacity region for it. The mag- 
netosonic field amplitude there does not oscillate in 
space but decreases very rapidly in the earthward 
direction. This was briefly mentioned in a paper of 
Leonovich and Mazur (1989a) ; the Appendix to this 
paper gives a more detailed account of this issue. 

Owing to its large size, this work is divided into 
two articles. In the first article, we have obtained 
general formulae to describe the space-time structure 
of the electromagnetic field in the ground layers for 
an arbitrary Alfvtn wave in the magnetosphere. The 
derivation of the boundary condition for Alfven 
waves on the above-mentioned conventional bound- 
ary between the ionosphere and the magnetosphere is 
given as an independent important result, and the 
question of the position of this boundary is addressed 
exhaustively. In the second article the obtained for- 
mulae are used for describing the field on the Earth 
induced by different types of Alfven oscillations of the 
axisymmetric magnetosphere which were investigated 
in our earlier papers. 

2. INPUT EQUATIONS AND A MODEL OF THE MEDIUM 

Maxwell’s equations for monochromatic oscil- 

lations with frequency o will be written as 

curl E = ikoB, curl B = - ikoE + q j, (1) 

where k0 = o/c, E and B are the disturbed electric and 
magnetic fields, respectively, and j is the conduction 
current. For the VLF oscillations of our interest here, 
the latter one has the form 

BO 
i = qE,, +alEl +Q,., By . 

[ 1 (2) 
0 

Here B. is the geomagnetic field, El, and E, are the 
longitudinal (along B,) and transverse components 
of a disturbed electric field E = E,, +E,, respectively, 
and a*, cr+, and c,, are the components of the con- 
ductivity tensor. In gaseous media (atmosphere, iono- 
sphere and magnetosphere), for oscillations with a 
frequency much lower than the gyrofrequency of ions, 
the latter ones are given by the formulae (see G&burg 
and Rukhadze, 1975) 

(34 

(3b) 

enOc 1 
CII = F s,. (3c) 

Here e is the charge of a proton, no is plasma density, 
S, = ~,/a~, Si = vi/Wi, where V, and vi are collision 
frequencies of electrons and ions, respectively, with 
neutral particles, and w, and wi are their gyro- 
frequencies. The parameters S, and ,Si characterizing 
the collisional ability of the respective plasma com- 
ponent, vary over a very broad range from values of 
S, and Si >> 1 in the lower atmosphere to S, and Si << 1 
in the topside ionosphere and magnetosphere. Note 
that at comparable temperatures of electrons and ions 
we have v, << vi. 

When studying the electromagnetic field in the near- 
terrestrial region, the Earth’s surface may, to quite an 
acceptable accuracy, be considered flat. Let us intro- 
duce a Cartesian system of coordinates, whose z-axis 
is directed along the vertical, the x-axis runs along the 
meridian from the equator to the pole, and the y-axis 
is directed along the parallel. The geomagnetic field 
will be considered homogeneous and directed at an 
angle x to the z-axis (see Fig. 2). The main constraint 
which we impose on the model of the medium, i.e. 
the supposition about horizontal homogeneity, means 
that the conductivity tensor components depend only 
on the coordinate z. The spatial ground region is 
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FIG. 2. Tua MUTUAL POSITION OF THE THREE COORDINATE 

SYSTEMS USED IN THIS PAPER: (X,&Z), (t,b,Z), (fl,JJ,l). 

divided into several layers. Let us describe them briefly 
(see also Fig. 1). 

(I) The Earth (z < 0). The Earth has isotropic 
conductivity, which means c,, = CT,, = erg, crH = 0. A 
typical value of conductivity is rather large: 
~a = (lo’- 10”) SC’ such that most ofthe subsequent 
results remain unchanged when passing to the limit of 
an ideally conducting Earth : erg -+ co. The vertical 
dependence a,(z) has, as a consequence of the multi- 
layered structure of the Earth’s crust and mantle, a 
very complex character, but we shall confine ourselves 
to the simplest assumption CT* = const which permits 
us to take the non-ideal terrestrial conductivity 
crudely into account. 

(II) The atmosphere (0 < z < H). The con- 
ductivity of this layer (and of all the above-lying ones) 
is described by formulae (3). The atmosphere provides 
a strongly collisional medium where S, >> 1 and 
$ s 1. The relationships (3) in this case yield 

flil = trl = o,, (mu = a,/$, where a, = e2nofm,v,. We 
shall assume that a, = 0, i.e. we shall consider the 
atmosphere also to be an isotropic medium. Atmos- 
pheric conductivity grows upwards very rapidly, 
approximately exponentially with a typical scale of 
about S-10 km. In the lower part of the atmosphere, 
for the frequencies of our interest here, the inequality 
u, << 0/47c is satisfied with a large margin. The upper 
boundary of the atmosphere is defined by the con- 
dition S, N 1, which gives H = 80-100 km. Near this 
boundary cr, = IO’-lo6 s-’ and, hence, the inequality 
cr, D w/4a is fulfilled with a large margin. Note that 
the lowest ionosphe~c layer (D-layer) is included in 
the atmosphere here because the conducti~ty there 
is still isotropic. 

(III) The lower ionosphere (25 < z < H-i-6). The 
collisional parameters there run through values equal 
to unity, at first S, at 90-100 km altitude and then S, 
at 120-140 km altitude. In this layer we shall assume 
al = up, where up is the Pedersen conductivity, the 
expression for which is given by formula (3a), in which 
one should put o/wi = 0. A maximum of Pedersen 
conductivity lies in a region where S, N 1. Hall con- 
ductivity is concentrated in a layer where the inequalit- 
ies S, < I and S, > 1 are satisfied. It may be identified 
with the mo~holo~cally distinguished .&layer. Typi- 
cal maximum conductivity values of the dayside iono- 
sphere are a,, = 3 - lo6 s- ’ and err = IO6 SC’. The 
thickness of the lower ionosphere, i.e. of a layer in 
which the Hall and Pedersen conductivities are con- 
centrated, is A _ 50-100 km. The longitudinal con- 
ductivity o,, _ ap/Se is much larger than crp and uH, 
and we shall assume that cr,, = co. Thus, the iono- 
sphere is a medium with sharply anisotropic con- 
ductivity. 

(IV) The topside ionosphere (H+A < z < zA). In 
this case the plasma is nearly a collisionless one: 
S, CC 1 and S, << 1. The longitudinal conductivity is 
very large such that one is still more justified in 
assuming that Q,, = co. When vi << w, the decisive role 
in (3a) is played by the term with frequency. In this 
case 

.w c2 c k: 
gL;= -*-T= -i----, 

4n A 4n k, (4) 

where it is designated : A = ~ol~4~is the Alfven 
velocity, and k, = w/A. In this layer cr, c 1~~1 and 
it will be assumed that Q~ = 0. The Alfven velocity 
involved in (4) varies in the layer under consideration 
in a very wide range ; it has a minimum value of 200- 
300 km s- ’ in the F-layer and, while increasing rapidly, 
reaches a maximum of the order of lo4 km s-i at 
heightz,=(l-2)*103km. 

(V) The magnetosphere (z > zA). The region above 
the Alfven velocity maximum will be considered to be 
the ma~etosphere proper. It differs from the topside 
ionosphere only in as much as the Alfven velocity 
there varies slowly, i.e. a typical scale of its variation 
is of the order of the field line length. 

Let us make several remarks on the boundaries 
between the different layers. There actually exists only 
one sharp boundary, the Earth’s surface, where con- 
ductivity experiences a large jump. This is included in 
the model described here. Under real conditions there 
are no other sharp boundaries, and the layers insen- 
sibly shade into one another. In accordance with this, 
the parameters of the medium between the layers in 
our model change continuously ; but there is one 
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exception which we were unable to avoid. The model 
assumes that there is still another sharp boundary 
separating the atmosphere and the ionosphere, on 
which the longitudinal conductivity changes abruptly 
from a finite value to the value of o,, = co. We believe 
that this limitation of the model is not a large deviation 
from the reality. Indeed, the values of the functions 
Q,,(Z) and a,(z), starting from a certain height, differ 
in a very fast increasing manner and, aheady at 1% 
20 km from that, the value of cr,, exceeds Q,, by several 
orders of magnitude. Moreover, it appears that the 
crucial formulae to be obtained below do not include 
explicitly the position of this boundary. 

A condition for matching the solutions on sharp 
boundaries is provided by the requirement of con- 
tinuity for the tangential components of the electric 
and magnetic oscillation fields. Matching on smooth 
transitions between the layers is accomplished 
through a join of solutions in the overlapping region, 
where solutions from the two neighbouring layers are 
applicable. 

Components of disturbed electric and_ magnetic 
fields, the &component, say, are functions of coor- 
dinates and time : B, = B,.(.x, y, z, f). In virtue of sta- 
tionarity of the medium, assumed here, the equations 
are simplified ~onside~bly after making a Fourier- 
transform in time 

Equations (1) are written for separate Four-i&- 
harmonics. In view of the horizontal homogeneity of 
the medium, it is also useful to carry out a Fourier- 
transform in coordinates x and y : 

xiJ (k X k z o)e*xX+ik*y. XV y* 9 

We shall be using such Fourier-harmonics throughout 
most of the present paper and, for brevity, we shall 
generally not write out the dependence on the argu- 
ments k,, k, and o. From the results reported in 
our previous papers (Leonovich and Mazur, 1989a,b, 
1990) it follows that a typical transverse scale of mag- 
netospheric solutions projected onto the ionosphere 
is about I-100 km. This means that a typical value 
of the horizontal wave vector is k, = dm 
N (l-lo- *) km- ‘. 

When considering a single spatial Fourier- 
harmonic, it is convenient to use a new coordinate 
system (t, 6,~) rotated with respect to the first one 
around the z-axis (see Fig. 2). Let us introduce a two- 

~mensional wave vector kt = (k,,k,) and let the r- 
axis be directed along it and the b-axis be directed in 
the horizontal plane perpendicularly to it. We have 
the relationships 

and similarly for any other vector. 
In the ionosphere and magnetosphere we shall be 

using the third coordinate system (n, y, I) rotated with 
respect to the first one in the meridional plane. They 
have a common y-axis, and the I-axis is directed along 
the geomagnetic field, while the n-axis is ~~ndi~~ar 
to both of them. In this coordinate system 

B,=BXwsx+BZsinx, B,, = -B,sinX+B,cosX. 

Here B, denotes vector B projected onto the f-axis (the 
longitudinal component of the vector). 

To conclude this section, we shall write out, com- 
ponent-wise for a separate Fourier-harmonic, equa- 
tions (1) in isotropic media, where or = o, = o, 
or, = 0 and, consequently, j = crE. These equations 
have the simplest form in the coordinate system 
(t, b, z). Let us introduce the designation 

K = 4rRr/&. 

This quantity has the dimensions of a wave vector. 
From (1) follow the relationships 

which express in terms of Bb and Eb the other com- 
ponents of fields and the equations for the first ones 

2 - (kf -ik,lc)&, = 0, (61 

a’& K’ a&, 
- -__ --(kz-ik,%)& = 0. 

az2 K-iko az 
(7) 

3. THE EIXCI’ROMAGMTIC FIELD IN THE FARTH 

Let us introduce the designation rep = 4nu.&. By 
taking account of the terrestrial homogeneity pro- 
posed here, we reduce equations (6) and (7) to the 
form 

&k;& = 0, &k,2&, = 0, 

where it is designated 

kg = dkx 
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and the radical sign is chosen such that Re kg > 0. In 
limiting cases we have 

kg = 
I 

k,, kf >> korcg, 

j(k,rc,) I”, k: << korcg, 

where j= e-'n14 = (1 -i)/,/?. Bearing in mind the 
typical limits of variations of the parameters k, = 
1-10-2km-i, o = 10-2-10-‘s- ‘, and Gg = 108-10’o 
s- r, it is easy to see that both limiting cases are real- 
izable. The typical range of possible values of jk,] = 
l-10-2km-‘. 

The solutions of equations (6) and (7), which are 
bounded when z c 0, have the form 

$(z) = &(O) ekg”, &(z) = Z&,(O) ek8”. (ga) 

From this and from the equalities (5), we have 

B,(z) = &(O) eks’, $(z) = $(O) e+, (gb) 

with 

B;(O) = i$&(O), &(O) = -2&(O). (9) 
0 

These last relationships will be used as the boundary 
conditions for the solution in the atmosphere. 

Thus, the oscillation field decreases exponentially 
deep into the Earth with a typical scale Zp = (Rek,)- ‘. 
If k,rc, is larger than or comparable with k:, this 
decrease is attributable to spatial oscillations as is the 
case in the classical problem of the skin layer. 

Using the WKB approximation it is easy to obtain 
a solution for the case of a weakly inhomogeneous 
Earth, whose inhomogeneity scale is much larger than 
I,. In this case the results remain almost unaltered 
because the solution is concentrated near the ter- 
restrial surface on a scale Z8 where conductivity is 
assumed to change little. 

In the case of a very high conductivity of the Earth, 
when kotcg >> k:, from (9) follows 

and in the limit JC~ -+ co, as should be the case, 
&(O) = $(O) = 0. 

4. THE ELECTROMAGNETIC FIELD IN THE 

ATMOSPHERE 

Atmospheric conductivity is much smaller than the 
Earth’s conductivity and the inequality k: >> koic, is 
valid throughout the atmosphe~c height. Therefore, 
the term ik,lc, in equation (6) can be regarded as a 
disturbance. In the main approximation we have 

This equation, together with the equality (5) and 
the boundary condition (9), leads to the following 
solution : 

&(z) = B,(O) 
( 

cash k,z+ 5 sinh k,z 
) 

, 
g 

$(z) = &(O) 
( 

cash k,z+ 5 sinh kg), (10) 
t 

with 

&i,(O) = -i(k,/k,)&(O). 

From this, in particular, follows 

B,(O) = B,(N) 
( 

cash k,H+ 2 sinh k,H 
-1 

> 
(11) 

8 

and 

B,(H) = i?&(H), (12) 
0 

where it is designated 

n _ 1 + (k&l tanh k,H 

tanh k,H+k,/k, * 

The equality (12) will be used subsequently as the 
boundary condition for a solution in the ionosphere. 

In the next order of perturbation theory one may 
take account of the term ik,tc in equation (6) and 
obtain corrections for the solution (10) and the 
relations~p (12). Small corrections to the functions 
B, and $ are of no practical concern. The correction 
to the relationship (12) will, ultimately, transform into 
a corresponding correction to the boundary condition 
for an Alfven wave at the upper boundary of the 
ionosphere and will define that part of the damping 
decrement, which is connected with dissipation in the 
atmosphere. This part consists of only a negligible 
portion of the total decrement, which is determined 
mainly by the dissipation in the ionospheric Pedersen 
layer. Therefore, in equation (6) one can totally 
neglect the atmospheric conductivity effect. 

Quite a different situation applies to equation (7). 
The term iko& in the last bracket of this equation can 
also be neglected, but the factor rc:/(rc.-ik,), caused 
by the inhomogeneity of atmospheric conductivity, 
plays the decisive role. Let us designate 

S=i-& 
B 0 

and let us rewrite equation (7) as 

&-2Spb-k2& = 0. t 
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A typical scale of variation of the function S(z) is of 
the order of the atmospheric height H. Assuming that 
the scale of variation of the solution is much smaller, 
we shall seek it using the WKB method. Setting 
B b = exp Y(z), we get 

Y’2+1”-2SY’-k~ = 0. 

We seek the function Y by the successive approxi- 
mation method: Y = Y,,+Y, ++. . . In the main 
order 

‘rb’ -2SY0 - k: = 0. 

This quadratic equation has two roots : 

Y; = q,,* = s&d=. 

In the next order, for each of them, we obtain the 
equation 

2(q-S)Yy; +(I’ = 0, 

from which it follows that 

I, = - ;In(q’+k:). 

On the basis of these results it is easy to write a 
general solution for&(z). It depends on two arbitrary 
constants. Using relationship (5), this solution can 
yield the expression for j?,(z). After that, the boundary 
condition (9) makes it possible to interconnect the 
arbitrary constants and to express them in terms of a 
single one. The result can be represented as 

(134 

UW 

When deriving expressions (13), we have neglected 
the extremely small value of k,k,/k,rc, as compared 
with unity. 

In the lower part of the atmosphere, where IC, << ko, 
the value of S is very small and q 1,2 = + k,. From (13) 
it then follows 

$(z) = C sinh k,z, I&,(z) = i(k,/k,)C cash k,z. 

(14) 

In the upper part of the a~osphere the inequality 
rc, >> k. is satisfied (with a very large margin). There- 
fore S = 1/2h, where 

h(z) = ~~tz)~~~tz) = cr,tzwm 
is a typical scale of variation of conductivity. As has 
already been stated, when describing the model of the 
medium, if it is sufliciently small, h = 5-10 km (and 
we shall assume that k,h << 1) then 

q1 = ;+kfh, qZ = -k:h. 

Note also that 

where it is designated 

Since Re Q % 1, near the upper boundary of the atmos- 
phere, only the first terms can be retained in (13). 
Then 

E&r) =&(H)exp(-k?%hdz’), (Isa) 

~(4 h(z) B,(z) = B,(H) - ~ 
WV h(H) 

exp( -k:rh dz’), 

and 

i?;(H) = C[k,I2x,(H)] ‘/’ eQ-11114, 

&(H) = -C[~,K,(H)/~]*‘~~(H)~Q-‘“~~. (16) 

From relationships (16) it follows that 

B,(H) = - x,(H)h(H)$(H). 

The coefficient ~=(~h(~) involved here is of the same 
order of magnitude as the atmospheric conductivity- 
induced correction to the coefficient i&/k, in equality 
(12). For the same reason, as in the case of neglecting 
this correction, we must also neglect the coefficient 
rcah. Thus, in the approximation we have adopted 

B,(H) = 0. (17) 

In order to avoid a misunderstanding, we wish to 
note that the numerical value of the coefficient 

IE,(H)htH) N lo3 seems to be large; but, as follows 
from (12), the representative value of the coefficient of 
pro~~ona~ty between the electric and magnetic 
field k,/k, N 105-lo’, i.e. by several orders of mag- 
nitude larger. 
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The equality (17) will be used subsequently as the 
second boundary condition for the solution in the 
ionosphere. As far as the atmospheric solution is con- 
cerned, from this it follows that&(z) = 0 throughout 
the atmosphere. The electric field is given by formula 
(13a) from which the limiting cases (14) and (Isa) 
follow. In the order of magnitude $(H) N C. 

5. EQUATIONS FOR THE ELE~ROMAGNRTIC FIELD 
IN THE IONOSPHERE 

In the ionosphere and magnetosphere equations 
(1) have the simplest form in the coordinate system 
(n, y, I). In view of the ideal longitudinal plasma con- 
ductivity, u,, = co, from them we obtain the relation- 
ships 

E,, = 0, B,, = 

08) 

Let the other components of disturbed fields be 
reduced to a four-dimensional column vector 

and let the equations for them be represented in matrix 
form 

a& 
-i- = &E+@. 

aZ 

Matrices $ and 4 have the form 

ko 
0 - 

cos x 

k,tanx 0 

k, tan % 

kk _ x2 k,’ 

ko 
~ -k,,sinX -k, 
k, cos x 

1 0 0 0 0 0 0 0 0 \ 

(j= KL 

i 

uff -- -__ 0 0 * (20) 
cos x cos x 

--u,eos~ -U,COS~ 0 0 
i 

Here it is designated ICY = 4ncrJc and lcII = 4~cr,jc. 
In the lower ionosphere c1 = ep and it will be assumed 

that fcI = or = 47&c. In the topside ionosphere and 
the magnetosphere IC* = 0 and, according to (4), 

KA = - iki/ko. (21) 

The system of equations (19) is simplified sub- 
stantially if we use in the space of four vectors a 
basis of vectors which are solutions of the auxiliary 
equation 

a& 
-i- = &E. 
aZ 

Since matrix Q does not depend on z, solutions of these 
equations can be sought in the form 

E(Z) = + e’+. 

For vector $ we obtain the eigenvalue problem 

& = k&. 

It has the following solutions 

kit) = kz2) = k, tan x, kz3) = ik,, kz4) = -ik,. 

They correspond to the Alfven and magnetosonic 
waves in the limit w = 0. Indeed, for the first pair 
we have k,, = -k, sin x+ k, cos x = 0, and for the 
second pair we get k2 = k: + k,’ + k,’ = 0. 

The given eigenvectors II/’ and $“ correspond to the 
roots ki3) and ki4). Only one eigenvector rl/’ cor- 
responds to a doubly-degenerate root kz’) = ki2). The 
second linearly independent solution, corresponding 
to the roots ki’**), should be sought in the form 

s(z) = (az+B) exp(ik’,‘)z). 

On substituting into (22) we obtain for vectors GI and 

B: 

ou = ki’)cI, &/I = ki’)j?-ix. 

Hence it is evident that one may put CI = iS$’ where 
S is some constant (arbitrary, in principle), whose 
value will be chosen later. Let us designate further 
p = rlf’. Thus we have 

&’ -_ ki’f$‘, &’ = k~l)~*+~~‘, 

&II/’ = k(3)$3 
z > 

&J/4 = ,@4’$4 
I . (23) 

These relationships can be written thus : 

Qtp = l&p, (24) 

which implies the summation over the recurring index. 
Numbers A; compose a certain matrix i% Let us also 
introduce matrix 5, whose columns are column vec- 
tors J/‘, tff’, $J~ and $“. The relationship (24) can then 
be represented as 

&$ = l&X. 
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Since vectors +” are linearly independent, matrix $ is 
a non-degenerate one, and from the last equality it 
follows that 

Column vectors $” form in the 4-space a complete 
system and any vector c(z) that depends on z, can be 
expanded with respect to them, with the expansion 
coefficients being functions of z : 

E(Z) = lpF,(z) = $F(z). (25) 

Here F(z) denotes a column vector composed of F,,(z)- 
elements. We substitute this expansion into equation 
(19) and multiply it on the left by matrix $- ‘. As a 
result we obtain 

aF 
-iaz = ib+pF, 

where it is designated P’ = ko 

P = $-‘@J. k,, cosx 

Thus, from the problem for vector E(Z) we have passed 
to the problem for vector F(z). This has the advantage 
that matrix fi has the maximum possible simplest 
form. 

Now we give the particular expressions for all the 
matrices and vectors introduced. To begin with, we 
describe some designations. We put 

kzA = ki’,‘) E k, tan x, krF = kj3) = ik,, 

k$ = kc4) E Z -ik t’ 

Symbols A and F associate these quantities, respec- 
tively, with an Alfven wave and a fast magnetosonic 
wave. If these values of k, are substituted into the 
formulae k, = k, cos x + k, sin x and k, = Jm, 
then we obtain 

In order to complete the formulation of the problem 
for vector F(z), it is necessary to impose the boundary 
conditions for it. On the lower boundary of the iono- 
sphere the role of them is played by the equalities (12) 
and (17). Instead of components &, & and’ & in 
them, we shall use components &,, E,,, i$,, and 8. [for 
which it is necessary to employ the equalities (18)] 
and after that, with the help of relationship (25) we 
shall use the quantities F,,(z). As a result, we obtain 
two boundary conditions 

k 
knA = 2 k 

cosx’ IA 
= 

knF = k, cos x + ik, sin x, k,, = k, cos x + ik, sin x, 

and from two possible values of kl we have chosen 
those, for which Re kL > 0. 

Matrix $ can be chosen in the form 

5= 

k nA 

k IA 

k 
Y 

k IA r 0 

0 

(kk - k,Z) tan x - 
k:A 

2k,k,, tan X - 
k:, 

k II* - 

ko 

k -2 
k, 

k _Y 
k IF 

k “F 
k IF 

k -i2 
ko 

k -i-T!!? 
k, 

k _Y 
k% 

k% 

kf, 

-I 

k i-l: . 
ko 

k& i- 
k, 

(27) 

This yields the expression for matrix A : 

The constant S has received the value S = klA/cos x. 
Through a straightforward calculation one can make 
sure that all the relationships (23) are satisfied. In 
the subsequent treatment we shall need only the first 
column of matrix p. It has the form 

F,(H) = 0, (29) 

(n+l)F,(H)+(L- l)F4(H) = 0. (30) 

One more boundary condition will be imposed on the 
upper boundary of the ionosphere. From equation 
(26) it follows that in the topside ionosphere, where 
matrix B virtually goes to zero, 

F,(z) =f3 exp [ikrF(z-EZ)] =f, e-kl(Z-H), 

F4(z) = f4 exp [ik$(z-_H)] = f4 ek@-“). 

Heref3 andf, are some constants. We shall require 
the absence in the topside ionosphere of the upward 
growing solution F4(z). Physically, this means that 
the magnetosonic wave penetrating from the mag- 
netosphere is absent, while the magnetosound field 
which is represented by the functions F3 and F4, is 
induced by an AlfvCn wave incident from the mag- 
netosphere during its interaction with the Hall and 
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Pedersen ionospheric Iayers. The field of such a mag- 
netosound must decrease upwards. On the upper 
boundary we put 

F,$(z*) = 0. (31) 

Thus, for the system of four homogeneous equations 
(26) with four unknown functions F,,(z) there exist 
three homogeneous boundary conditions (29)-(31). 
Consequently, the solution is determined up to a fac- 
tor common for all functions F,,. Its value is then 
determined, when matching with the magnetosphere 
solution, by the Alfvbn wave amplitude. 

6. SOLUTION FOR THE ELECTROMAGNETIC FIELD IN 

THE IONOSPHERE 

We shall solve the problem for vector F(z), by using 
a modification of perturbation theory based on the 
smallness of matrix 3. The physical meaning of this 
smallness has been pointed out in the Introduction, 
namely that the frequency of the oscillations con- 
sidered must be much less than ionospheric eigen- 
frequencies. Mathematically corresponding con- 
straints will be formulated below. 

When solving the system (26), it is convenient to 
introduce the new functionsf,(z) defined by the equal- 
ities 

F,(z) = f”(z) exp [ik(“)(z-H)]. I (32) 

Let us try, at first, to apply a standard perturbation 
theory. In its zero order, by assuming $ = 0, we have 
the problem 

f; = -i(klA/cos x)f2, f; =f; =Sh = 0, 

f*(H) = 0, (n+l)f~(H)+(1-l)f,(HT) = 0, 

.f4(%> = 0. 

It has the solution fi = f = const, f2 = f:, = f4 = 0. 
By calculating, then, a first-order correction to this 
solution, it is easy to see that the correction to the 
function f, turns out to be not small compared with 
f, itself. The point here is that in the Pedersen layer 
of the lower ionosphere the function ft , while chang- 
ing little in magnitude, alters significantly its deriva- 
tive, and in the topside ionosphere, while obeying the 
equationf’; = 0, it changes linearly with coordinate z 
and, owing to the high altitude of the ionosphere zA 
alters its value significantly. Thus, a standard per- 
turbation theory is inapplicable; but on the basis of 
the same formulae one can draw the conclusion that 
the inequalities 

Ifill I&L Ifal << Lfil 

hold throughout the entire ionosphere. It is this 

assumption that will form the basis for our varient of 
perturbation theory. It allows us to simplify con- 
siderably system (26), by retaining in the small term 
PF only the main component P’F, = P ‘f, exp 
[ik_,(z- H)]. After that, the first pair of equations 
of the system splits out, and we begin our treatment 
by considering it. 

We have the following equations 

W) 

y2 = - k. 
ka ~0s x Jclfi, Wb) 

and the boundary condition 

five = 0. (34) 

We introduce the constant f = f, (H) which will play 
the role of a common factor for the entire solution. 
Besides, we denote 

s W+A 

KP," = X,&Y-i-A) 5 KP,H(Z) d.z. 
x 

Note that Kp., = 4nC,n/c, where 

s H-eA 

&V, = ~P,H (~1 dz 
H 

are the integral Pedersen and Hall ionospheric con- 
ductivities. 

The right-hand side of equation (33b) contains the 
term rcI(z) f, (z). In the lower ionosphere ICY z IC,, and 
the functionf, (z), as will be shown in the following, 
changes little : f, (z) fi: f. In the topside ionosphere the 
value of (21) for ICY is small and, by neglecting for the 
time being its difference from zero, one can see that 
in the entire ionosphere it is possible to put 
Kl(z) f, (z) z Ice(z) f. From (33b) and (34) it then fol- 
lows that 

fit.4 = -f 
ko 

k,, ~0s x 
X,(z). 

In the topside ionosphere, when z > H+ A, this equal- 
ity yields 

fi(4 = -f 
kof& 

kiA cos 71. 

Here the function fz(z) is a constant. From the 
obtained expressions it is apparent that for the 



inequality If21 c If,] to be valid, it is necessary that 
the condition 

k&/k,, << 1 (37) 

be satisfied. One can make sure that this same con- 
dition permits the second term on the right-hand side 
of equation (33a) to be omitted. After that, we get 

f,(z) =f[l-i& (38) 

It has been assumed above that in the lower iono- 
sphere the function f,(z) changes little. From 
expression (38) it is evident that this is indeed the case 
if 

koKPA << 1. (39) 

The conditions (37) and (39) can be rewritten as 
inequalities 

(40) 

which mean that the frequency of the oscillation con- 
sidered is much lower than eigenmode frequencies 
of a low-frequency whistler in the lower ionosphere 
(Mazur, 1988). For the standing Alfven waves of 
interest here these inequalities are satisfied. In the 
topside ionosphere, from (38), it follows to within an 
accuracy suf5cient for us, that 

f,(z) =fll-ik0z$,8)]. (41) 

Note that for real values of the parameters, the value 
of koKPz, is of the order of, or higher than, unity, 
i.e. the variation of the functionf,(z) in the topside 
ionosphere is not a small one. If we are interested in 
the functionf,(z) itself rather than in the derivative, 
then the expression (41) can be used throughout the 
entire ionosphere, including the lower ionosphere 
because the difference between the expressions (38) 
and (41) is small. 

In the preceding discussion we have ignored the fact 
that in the topside ionosphere the function rcI(z) does 
not go to zero but is equal to its collisio~ess value 
(21). If this is now taken into account, then using the 
iteration method, for z > H+A we obtain from (33b) 

f*(z) = -f 
k, 

ku ~0s x k:(f) 

From this expression it is evident that terms which 
appear additionally, will be small compared with that 
already taken into account in (36) if 

IS ZA 

k&)(z-H) dz cc 1. 
H-&4. 

This same inequality permits us to neglect analogous 
additional terms in the expression forf, (z) as well. By 
the order of magnitude, it is equivalent to 

From the physical point of view, condition (42) means 
that the frequency of the oscillations considered is 
much smaller than eigenfrequencies of the ionospheric 
Alfvbn resonator (Polyakov and Rapoport, 1981). It 
is also satisfied for standing Alfven waves. 

Let us now consider the second pair of equations 
of the system (26) and the corresponding boundary 
conditions (30) and (31). We rewrite them for the 
functions f., by using explicit expressions for vector 
P’. We have the equations 

S; = i 

x exp [(k, + ik, tan x)(z - H)], (43a) 

xexp[(-k,+ik, tanX)(z-H)], (43b) 

and the boundary conditions 

(A+ l)f,(H) + (A- l)&(H) = 0, (44a) 

s4(z)l,+, = 0. (44b) 

In the last relationship we have transferred the upper 
boundary to infinity, bearing in mind that the iono- 
spheric height z, is much larger than a typical scale 
of variation of the functionf,(z) which is determined 
by the parameters A and k; ’ . As done above, it will 
be assumed here that rcu(z)f, (z) x ICKY and 
rcp(z)fi (z) E r+(z)S. In other words, in equations (43) 
we putfr(z) =$ 

Integration of equation (43b), in view of the bound- 
ary condition (44b), yields 

h(z) = if 
k sinx 

rcu(z’)-i k y QZ(z’) t 1 
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xexp[(-k,+ik, tanx)(z’--H)]dz’. 

This, in particular, gives 
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fd(H) = if 2k,AkEosX Kn-ik$!%& , (45) 
t 1 

where it is designated 

I 

a, 
%,n = tcp,n(z) exp [(-k, +ik, tan x)(2-H)] dz. 

H 

(46) 

From the equality (44a), by using an explicit ex- 
pression for the quantity /2, we obtain 

f3(H) = - 

Finally, integration of equation (43a) yields 

r&z’) 1 
x exp [(k, +ik, tan x)(z’--H)] dz’. 

In summarizing the result of this section, we write 
out the expressions for all functions F,,(z) = fn(z) exp 
[ik$)(z--H)] : 

F,(z) =f l-i 
ko&(z-HI 

co2 x 1 
x exp [ik,(z--H) tan x], (48a) 

F,(z) = -f 
k,&(z) 

ku ~0s x 
exp ]ik,(z- H) tan x], (48b) 

F3(z) =: f,(H)e-'~('~)+i~-~~s~ 
IA 

f 
X 
S[ 

IcH(z’)+i 
k sin x 
k- ?+(z’) 

H k, 1 
x exp [(k, + ik, tan x) (z’ - H)] dz’, (48~) 

Fe(z) =if 
ko ek,(--ff) 

2k,, cos x 

X nn(z’)-i 
k sin x 
y ?ce(z’) 

k, 1 
x exp [(-k, + ik, tan x)(z’ - H)] dz’. (48d) 

7. MATCHING OF SOLUTIONS IN THE IONOSPHERE 

AND MAGNETOSPHERE AND THE BOUNDARY 

CONDITION FOR ALFVEN WAVES 

From the formulae of the preceding section it fol- 
lows that in the topside ionosphere 

F,(z) = f 
[ 

1 -i k”zo$yH) 1 
elk,(z-w)ta” x , 

Fz(z) = -fEok e “,(2-H) tan x 
, (4% 

IA 

F,(z) -+ 0, Fd(Z) + 0. (50) 

These relationships are also equally applicable in the 
lower magnetosphere, merely because the boundary 
between these layers is a sufficiently arbitrary one. 
From relationship (SO) it follows that a four-vector of 
el~troma~etic field is given by the expression 

a(z) = $‘;c,(z)+@Fz(z). (51) 

Using explicit expressions for vectors I//’ and lfi2 we 
then have 

Here we have designated 

B, = -fK&os x. 

The quantity BA is the oscillation amplitude of a dis- 
turbed magnetic field of an Alfvtn wave in the topside 
ionosphere and in the lower magnetosphere. As one 
can see, in these layers it is a constant. The last equality 
can also be written as : 

f = -BAcosx/&., (53) 

by expressing the constant f in terms of the Alfven 
wave amplitude. The electric field of the Alfven wave 
is given by the same expression (51). In view of 
relationship (53) and the inequalitity lE;l CC IF, 1, we 
have 

$(z) = iBA $ 
IA 

X 

E,,(z) = iBA$ 
IA 
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In our previous papers (~novich and Mazur, 
1989a,b, 1990) we have used the boundary condition 
for Alfvkn waves on the ionosphere, without giving 
its derivation. We shall do this in the present paper 
because all formulae required for this have been 
obtained. The desired boundary condition is a 
relationship between the derivative of a disturbed field 
and itself on the upper boundary of the ionosphere. 
This condition has the most suitable form if the 
derivative is taken along a field line 

a a 
z=cos~.,+ik,sin~. 

For calculating this derivative, the accuracy, to within 
which the expressions (52) are obtained, is insufficient. 
From them it follows that in the topside ionosphere 
and in the lower ma~etosphere, and also when 
z = z,, we have 

aBn,y= 
a1 O* 

This equality can be considered to be a zero approxi- 
mation for the desired boundary condition. It means 
that the magnetic field of the wave has an antinode 
on the ionosphere. 

In order to obtain it to a desired accuracy, it is 
easiest to proceed from equations (33) which in the 
topside ionosphere and in the lower magnetosphere 
have the form 

From the equality (51) we have B,, = (k,,/k,)F,, 
$ = (-k,,/k,)F,. By differentiating these equalities 
with respect to i and using the second equation of 
(56), we obtain 

aB,_k,kiF a&z k,kiF --- _ --- 
al k,, k. I’ ar-- koko ” 

(57) 

We substitute here the expression (48a). Using also 
relationships (52) and (53) we obtain 

a& _ 
al 

and this is, in fact, the desired boundary condition for 
matching the solutions in the topside ionosphere and 
in the lower magnetosphere. Only the question as to 
where the boundary between these layers should be 
drawn, remains unclear, especially as the function ki 
(z) changes very rapidly in the topside ionosphere. In 
principle the answer is clear, namely that the boundary 
can be established at any height in the layers involved. 
The strong dependence of ki on z must not affect the 

results of appli~tion of the boundary condition. 
In order to prove the last statement, we obtain 

the equation for Bny. To accomplish this, we divide 
equations (57) by ki, differentiate them with respect 
to I and use the first equation of (56). As a result, we 

get 

This equation coincides with equations for Alfv& 
waves in the magnetosphere given in our previous 
papers if the dispersion effects are neglected in them 
and if attention is confined to considering such a 
region in which the geomagnetic field can be con- 
sidered homogeneous. Let us integrate equation (59) 
along a field line from point I0 to point !, by assuming 
that both of them lie in the topside ionosphere or in the 
lower magnetosphere. This means that the distance 
between them is much less than the wavelength such 
that the functions &,? can be considered constants. 
We obtain 

This equality totally agrees with (58) if it is taken into 
consideration that during the motion along the field 
line 1 -lo = (z - zo)/cos x. It permits us to transfer the 
boundary condition imposed at point lo, to any other 
point 1 on a given field line. It is clear that the solution 
must not change due to such a transfer. 

Thus, the position of the boundary z = z, is deter- 
mined by considerations of convenience. It is appro- 
priate to choose it as low as possible but such that 
above it the function A(z) changes slowly. This 
approximately corresponds to the height of the 
maximum of the function A(z) (see Fig. 1). Otherwise, 
the ma~etosphe~c part of the field line would include 
portions with sharply different scales of variation of 
A, which would considerably complicate the solution 
of the equation for Alfvkn waves in the mag- 
netosphere. 

The two terms in brackets on the right-hand side of 
the equality (58) play a substantially different role. 
Both of them are, in a sense, small. Since the functions 
BRy describe an Alfvkn wave, a typical value of the 
derivative a&,/al N k,$,y. The two terms concerned 
are small compared with this value, which agrees quite 
well with the zeroth-order approximation (55). The 
second term is, in absolute value, of the order of or 
even greater than the tint one, but since. it is real, its 
role is unimportant. Taking it into account in the 
boundary condition leads to a small change of the 
standing wave frequency which is of no practical con- 
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tern. The first term, however, plays a fundamen~iy 
important role by determining the standing wave 
damping decrement due to the dissipation in the iono- 
sphere; therefore only it will be retained. As a result, 
the boundary condition can be written as 

Note that in the equality it is easy to perform an 
inverse Fourier transform in k, and kY and to pass to 
the functions &,, the boundary condition for which 
has exactly the same form. 

It should be pointed out that the boundary con- 
dition of the form (60) for the case of a vertical geo- 
magnetic field (x = 0) was obtained earlier for a sim- 
pler model of the medium in many papers (see reviews 
by Lyatsky and Maltsev, 1983 ; Southwood and 
Hughes, 1983). Our result means that the boundary 
condition virtually retains its form, despite the sig- 
nificant complication of the model (s~cifically, 71 + 0 
and taking into account the presence of the topside 
ionosphere) and the treatment of waves with arbitrary 
k, and k,. 

8. THE RELA~ONSHIP BETWEEN 

ELECTROMAGNETIC FIELDS ON THE LOWER 

BOUNDARY OF THE MAGNETOSPHERE AND ON THE 

EARTH’S SURFACE 

First of all, we shall obtain the relationships relating 
values of fields on the upper and lower boundaries 
of the ionosphere. Formulae for fields on the upper 
boundary have been obtained in the preceding section. 
From the equalities (34), (38) (45) and (47) as well 
as from the relationship (53) it follows that on the 
lower boundary 

F,(H) = - FBA, 
P 

F,(H) = 0, 

ko k -k 
F,(H) = i--s---e 

2k,, kg + k, 

On substituting these values into formula (25) one 
can obtain expressions for the components $(H), 
E?(H), &,(H), and &(H) and using them, in view of 
the equalities (18), horizontal components of fields are 
obtainable. Simple, though cumbersome, calculations 
give 

k, 
B,(H) = jy 

cash k,H+ (k~/k~) sinh k,H e_k,H 

IA 1 +W, 

BA, 

k0 
&(H) = -ic 

sinh k,H+ (k,/k,) cash k,H e_k,n 

IA 1+ k/k, 

B,(H) = 0. (61) 

It is easy to see that these expressions satisfy the 
boundary conditions (12) and ( 17). Finally, from for- 
mulae (61) and from the results of Section 4 it follows 
that on the Earth’s surface 

-k,H 

- - 
B 

A, W’) 

Et(O) = 0, B,(O) = 0. (624 

The results obtained, in total, solve the problem of 
the electromagnetic field induced in ground layers by 
an Alfven wave incident from the magnetosphere, 
provided that the wave is a separate Fourier-harmonic 
in time and in horizontal coordinates -exp (ik,x + 
ik,,y -iwt). Indeed, formulae (48) and (25), together 
with the equality (53), define the electromagnetic field 
in the ionosphere and in the lower ma~etosphere, 
formulae (lo), (ll), (13) and (16) together with (61) 
or (62), define the field in the atmosphere, and for- 
mulae (8) and (62) define the field in the Earth. By 
~rfo~ng an inverse Fouler-tmnsfo~ in k,, k, and 
w, one can obtain the electromagnetic field dis- 
tribution in ground layers for an Alfven wave with an 
arbitrary space-time structure. We have accomplished 
this procedure for the field on the Earth’s surface, i.e. 
the most important case for practical purposes. 

Let us limit our attention to the case of a highly 
conducting Earth, k,/k, -+ 0. From the relationships 
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(62) and (52) it follows that 

&(k,, k,, 0, o) = cos x. 

- Rkx, k,) - $tk,, k,, zA1d, Wa) 

Bl,(k&k’d = -B(k,,k,)‘B,(k,,k,,zA,w), 

(63b) 

&(kx, k,, 0, co) = i ~ “k’ ky) [k,&(k,, k,,, z,, co) 
8 

Here 

-kx ~0s x&k,, k,, ZA, @)I- (63~) 

&k,, k,) = (‘ k sin x & 
2 -i+ - 

P t 4 

xexp[-k,H-ik,(z,-Ei)tanX] 

k,, sin x 
a&z) -i- 

k, 
@P(Z) 1 

xexp[-k,z+ik,(z-z,,)tan~]dz. (64) 

Bearing in mind that the functions (~~(2) and (~~(2) 
are subs~ntially different from zero only in the lower 
ionosphere, integration over z formafly extends to the 
entire interval (0, co). As a result, it becomes apparent 
that these formulae lack the dependence on height H: 
i.e. an artificial boundary between the atmosphere and 
ionosphere. 

Results of an earlier work devoted to an analytic 
investigation of the passage of the Alfven wave field 
to the earth through a ho~zon~lIy-homo~neous 
ionosphere, are particular cases of formulae (63) and 
(64). In one ofthem it is assumed that the geomagnetic 
field is a vertical one, x = 0, and the horizontal wave- 
length of the disturbance is much larger than the typi- 
cal thickness of the ionospheric conducting layer, 
k,A CC 1 (Hughes and Southwood, 1976a). Then 

R(k,, k,,) = 2 e-V’. 
P 

In another particular case the geomagnetic field is 
assumed inclined, x. # 0 but inde~ndent of the coor- 
dinate y (i.e. it is assumed that k, = 0) and also the 
condition k,A CC 1 is supposed (Hughes, 1974). In this 
case 

R(k,,O) = $exp[- jk,iN---ik,x,l, (65b) 
P 

where it is designated JC, = (2*-H) tan x. Inci- 
dentally, formula (65a) can be considered the par- 
ticular case of formula (Mb) because when x = 0 the 
horizontal wave vector kt can, without loss of gener- 
ality, be directed along axis X. 

The conditions adopted when deriving the relation- 
ships (65) place considerable constraints on the possi- 
bilities of applying them to the real oscillations. 
The requirement k, = 0 forces one to consider only 
toroidal (or close to them) oscillations of the mag- 
netosphere. The condition k,A << 1 is extremely bur- 
densome. In connection with this, we want to note 
that the presence of the factor exp (- k,H) in formulae 
(65), which represents the field attenuation on 
the Earth for short-wavelength oscillations with 
kt & Ii- ‘, is, in fact, an excess of accuracy. The point 
here is that the parameters A and H are the values of 
the same order of magnitude ; therefore, the condition 
k,A << 1 simultaneously means also k,H << I. Thus, 
formulae (65) should be written in a still simpler form 

g = $exp(-ikXx& 
P 

but this expression is inapplicable for transversally- 
small-scale oscillations. 

The general expression (64) we have obtained is free 
from these limitations. When k,A 3 1, the value of the 
function R(k,, k,,) is not determined only by integral 
conduotivities but depends substantially on the profile 
of the functions oH(z) and ~~(2). Besides, for waves 
with k,, # 0 (and when x # 0), in the expression for 
the function J?(k,, k,) there appears a fundamentally 
new term which shows that the penetration of an 
Alfvkn wave to the Earth can be due not only to Hall 
conductivity but also to Pedersen conductivity. 

Let us perform in formulae (63) an inverse Fourier- 
transform in k,, k,, and o. We denote 

Then 

x fF(k,, k,) e*xc+*ytl. (66) 

&(x, y, 0, t) = cos x. dy’ 

x R(x-x’,y-y’)B&‘,y’,zA,t), (674 

co 

B&c, y.0, t) = - 
s s 

m 

dx’ dy’ 
-03 --m 

xR(X--x’,y-Y’)B,(~‘,y’,zA,t), Wb) 
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We shall not give here the more unwieldy expression 
for B,(x, y, 0, t). By taking integrals over k, and k, in 
(66), we obtain a relatively simple expression for the 
nucleus of integral transformations : 

R(& ‘11 = & 
P 

s cc 
z(7H (z) + qcp (z) sin x 

X ___. ~- 

o [z2+(5+(z-zA)tanx)2+q213’2 
dz. (68) 

It is easy to see that exactly the same formulae also 
occur for Fourier-transforms in time &,(x, y, z, 0). 
Basically, formulae (67) and (68) solve the problem 
of the space-time structure of the oscillation field on 
the terrestrial surface if it is known on the lower 
boundary of the magnetosphere. They also yield 
simple particular cases as obtained in the above- 
cited references. These particular cases are to the same 
extent limited compared with the general relationship 
(68) as are the expressions (65) compared with (64). 

The nucleus of integral transfo~ation R(x--n’, 
y-y’) in formulae (67) can be treated as a dis- 
turbance on the ground produced by a source 
concentrated in the magnetosphere on one field line 
passing through point x’, y’ at the ionospher~mag- 
netosphere interface, i.e. at height z = z,,. A quali- 
tative idea of this function may be obtained, by 
assuming that the thickness of the layer in which the 
Hall and Pedersen conductivities of the ionosphere 
are concentrated, is much smaller than the height of 
an isotropic atmosphere : A << H. From (68) it follows 
that 

R(&q) =& H$+qsinx 
P 

x[~z+(~-(z~-~)~nx)2+~2]-3’z. (69) 

This expression can be applied in formulae (67) if a 
typical scale of the functions B,,u in coordinate x is 
much larger than A tan x (which is far from being 
always satisfied). A typical scale of the function 
R(& q) in both variables is of the order of the atmos- 
pheric height, and this is particularly obvious for 
expression (69). This means that small-scale details in 
the oscillation field distribution at the lower edge of 
the magnetosphere are smoothed out when trans- 
ported to the Earth, i.e. a typical scale of such details 
on the earth’s surface cannot be smaller than H. 

We wish to note in conclusion one particular case 
of formulae (67) and (68) which is important for 
applications. If a typical scale of the magnetospheric 

field B&x, y, z,, r) in the variable y is much larger 
than H, then 

B,(x,y, 0, t) = cos x 
s 

‘XI 
dX’P(x--X’)B,,(.~‘,L’,I?n, t), 

--r*i 

(70a) 

B&(x, y, 038) = - 
s 

Xi 
dx’P(x-x’)B,(x’,y,~A,t), 

--cc 

(7Ob) 

where 

s 
= P(S) = R(& rl) drl 

- K 

1 cc 

s 

ZGi+ (z) dz 
=- 

GZp 0 zZ+[5+(z--zdtanx12’ 
(71) 

9. CONCLUSIONS 

Let us summarize the main results of this study. 

(1) Within the framework of a horizontally-homo- 
geneous model of ground layers adopted here, which 
realistically represents its vertical stratification, we 
have determined the spatial structure of the electro- 
magnetic field induced in the ionosphere, the atmos- 
phere and on the ground by low-frequency AlfvCn 
oscillations of the magnetosphere. The problem has 
been fully solved for separate Fourier-harmonics, that 
is oscillations which are monochromatic waves with 
a given frequency o and have definite values of the 
component of the horizontal vector (k,,k,.) in the 
coordinates x and y. 

(2) Based on this result, using the inverse Fourier- 
transform in w, k, and k, it is possible to determine 
the space-time structure of the field in the ground 
layers for an arbitrary Alfven wave in the mag- 
netosphere. Such a problem has been solved virtually 
for the most important case of the field on the ter- 
restrial surface. Formulae have been obtained which 
represent a disturbed magnetic field on the ground in 
terms of the Alfven wave field on the lower edge of 
the magnetosphere. These formulae generalize sub- 
stantially the results of previous work, enabling the 
transve~ally-small-scale oscillations to be considered 
with the most general dependence on the coordinates 
x and y. From them it follows that, for such oscil- 
lations, the ionosphere cannot be regarded as a thin 
film whose properties are determined by its integral 
conductivity, but an important role is played by the 
height distribution of conductivities. From simple 
physical considerations it is clear that the horizontal 
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inhomogeneity of the medium is needed on a scale 
comparable with the horizontal scale of the oscillation 
field (i.e. of order H). A horizontal inhomogeneity 
with a scale much larger than H can be readily intro- 
duced into theory ; in order to do this, it is necessary 
to use local values of the parameters in formulae. 

(3) Within the framework of the same model of the 
medium, we have obtained a boundary condition for 
Alfven waves on the ionosphere-magnetosphere 
boundary. It includes all information on the iono- 
sphere and on lower-lying layers needed for solving 
the problem of low-frequency Alfven oscillations of 
the magnetosphere, and permits this problem to be 
solved, without recourse to considering oscillations in 
the ground layers. The obtained condition is also a 
generalization of previous results for the case of trans- 
versally-small-scale oscillations with an arbitrary 
dependence on transverse coordinates. 
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APPENDIX 

The equation governing the magnetosonic wave field in the 
axisymmetrical magnetosphere was obtained in our previous 
paper (Leonovich and Mazur, 1989a). It is not possible to 
find its analytical solution, unlike the equation for an Alfvbn 
wave. In order to get a qualitative idea of the solution, we 
now examine a simplified equation and a simplified model 
of the medium. For small-scale magnetosonic waves, which 
have a spatial scale much less than the magnetospheric 
inhomogeneity scale, the equation takes the form 

On the limit of applicability it also qualitatively correctly 
describes the large-scale magnetosound. It will be assumed 
that the Alfven velocity depends only on the radial coor- 
dinate r measured from the terrestrial center : A = A(r). Such 
a model makes it possible to describe the main property of 
the Alfvtn velocity, namely its manyfold increase from the 
magnetospheric periphery to the Earth. 

The solution of equation (Al) can be sought in the form 

& = R(r) Y,,,,(f), cp) e”“‘, 

where cp is the azimuthal angle, 6 the polar angle measured 
from the equator, and Y,.,(& cp) is a spherical function that 
obeys the equation 

la aY 
--sin@-+ 

1 a2y 
sin e ae 

---,+I(I+l)Y=o, 
ae sin’ e arp 

and the radial function R(r) is defined by the equation 

$+F-v]rR=O. (A2) 

Actually observed magnetosonic oscillations, which cause 
a resonance excitation of standing Alfven waves in the mag- 
netosphere, are dominated by modes with azimuthal wave- 
number m = 3-7 (Takahashi and McPherron, 1984). At a 
given m the wavenumber I satisfies the inequality I > Irnl, 
and the solution with I = lml decreases the most slowly to 
the centre. The corresponding spherical function at minimum 
values of m = k3 and I = 3 has the form 

Y 3,*3 = +i 
c 

&cOsJ(e)e*ls~. 

The position of the spherical surface r = i, which is the 
separation boundary between the transparency (r > f) and 
opacity (r < f) regions, is defined by the equation 

m2 I(I+ 1) 
A2(r) 

-7=o. 

Simple estimations indicate that this surface lies farther from 
the Earth as compared with the resonance surface r = r. 
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FIG. Al. A CONCEPTUAL REPRESENTATION OF THE MAGNETOSONIC FIELD IN THE MERIDIONAL CROSS-SECTION 
OF THE MAGNETOSPHERE. 

In the outer magnetosphere (transparency region) the field has an oscillatory character and in the inner 
region (opacity region) it decreases rapidly in the earthward direction. The dashed lines represent the 

geomagnetic field lines lying in the cross-section plane. 

defined by the condition w = R,(r,). In other words, the 
resonance surface is located in the opacity region for mag- R(R,) - + R(f), 

netosound. Taking for the resonance surface r0 = (3-7)R, C-1’ E 

we obtain for I= 3 an estimate off = (5-10)RE. The radial that is, the magnetosound amplitude decreases at least by 
function in the opacity region decreases inward the mag- S3 - 100 times. In other words, the magnetosonic wave 
netosphere as R - I-'. For the field on the lower mag- virtually does not reach the ionosphere. Qualitatively, the 
netospheric edge, we have an estimate magnetosound wave field is portrayed in Fig. Al. 


