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Abstract. A novel scenario for the nonlinear stellar dynamo is
presented. Differential rotation in solar-type stars is assumed
as due to the influence of the global rotation upon anisotropic
turbulence (“the A-effect’). The effect, however, is quenched by
the dynamo-induced large-scale magnetic fields. The resulting
reduction of the differential rotation feeds back on the dynamo
itself.

Both the derivation of the A-quenching expressions as well
as a (simplified) dynamo model are presented. The dynamo
equation is completed with the equation for the radial differen-
tial rotation. The phase relation between both the components
of the magnetic field and the slope in the rotation law is essential
for the temporal behaviour of the dynamo magnetism. Both the
observational phenomena of solar torsional oscillations as well
as the Maunder minimum are covered by the theory.

Key words: magnetohydrodynamics — turbulence — stars: rota-
tion — stars: magnetic fields — stars: interiors

1. Motivation

For several problems of stellar physics it proves to be impor-
tant to find the magnetic influence on the rotation law in outer
convection zones. It is directly observed in form of the solar
“torsional oscillations”, i.e. an equatorwards migrating pattern
of belts of slow and fast rotation (Howard & LaBonte 1980).
Old theoretical explanations are based on the calculations of
the dynamo-originated mean-field Lorentz force — also known
as the Malkus-Proctor effect (Malkus & Proctor 1975).

Since the pioneering paper by Noyes, Weiss & Vaughan
(1984) this effect is assumed to be responsible for the
Rossby number dependence of the frequency wey. of ob-
served stellar activity cycles. Nonlinear dynamo waves have
been considered which yield a sufficiently high exponent #i =
dlog weyc/dlog |Z| with & as the dynamo number only under
inclusion of the time-dependence of the rotation shear 0€2/0x.
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It is, however, not obvious that mainly the mean-field
Lorentz force rot B x B modifies the rotation law. There is
also the possibility that the A-effect is effectively influenced by
the magnetic field. The A-effect is the turbulent driver of the
differential rotation (Riidiger 1989). It results from the fact that
in an anisotropic turbulence field even a uniform rotation trans-
ports angular momentum. It can be determined by computing
the rotational influence on the off-diagonal elements of the total
Reynolds stress tensor.

If simultaneously the magnetic influence on the Reynolds
stress is considered one finds the effect of A-quenching. In con-
trasts to the Malkus-Proctor effect the A-quenching effectivity

runs with the magnetic energy density, B’ Asin af)-dynamos
the energy is dominated by toroidal fields, it has been argued
that A-quenching might be more effective in producing torsional
oscillations than the Malkus-Proctor effect (Kitchatinov 1990;
Riidiger & Kitchatinov 1990).

For the magnetic quenching of the differential rotation Jen-
nings & Weiss (1991) worked with a heuristic ansatz of the
induced magnetic field,

oo 9
0z~ 14xkB"

M

The related nonlinear solutions of 1D af2-dynamo models ex-
hibit a distinct spatial North-South-asymmetry.

Previously published studies of nonlinear dynamos yielded
stable solutions with dipole and quadrupole parity as well as
mixed-mode solutions (Brandenburg et al. 1989; Schmitt &
Schiissler 1989). Solar observations show indeed that the sur-
face magnetism has a (weak) N-S-asymmetry (Stenflo & Vogel
1986). After Ribes & Nesme-Ribes (1993) such an asymmetry
even dominated during the Maunder minimum. Already Sporer
(1889) reported that all but two sunspots recorded between 1671
and 1713 were in the southern hemisphere.

In the Maunder minimum we encounter a number of in-
teresting phenomena. Together with the basic low-energy state
there is a clear N-S-asymmetry of the magnetic activity and a
strikingly enhanced differential rotation (Ribes & Nesme-Ribes
1993). All facts together are forming the mystery of the Maun-
der minimum.
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Nonlinear 2D shell-dynamo models with magnetic feedback
on the large-scale flow are described by Brandenburg et al.
(1990). Parity mixing and long-term magnetic weakening in-
deed occur in af2-dynamos in outer convection zones but the
critical dynamo numbers for even and odd parity lie very close
together and the differences in the related magnetic cycle pe-
riods are very small. The period of the mixed solutions is then
very long compared to the period of the basic magnetic cycle.

The interpretation of the occurence of a second frequency
in terms of the Maunder minimum thus comes into trouble for
dynamos in relatively thin shells.

In the present paper we shall develop a dynamo theory with
magnetic quenching of differential rotation included. The theo-
retical background for the rotation-law theory can be found in
Kitchatinov & Riidiger (1993, Paper I).

2. Basic equations

The zonal momentum fluxes in rotating turbulent fluids are pro-
portional to the off-diagonal components of the turbulent stress
tensor T;;. Both Reynolds and Maxwell stresses must be in-
cluded to find the magnetic field influence on the angular mo-
mentum transport: Ty; = p(uju}) — (B{B;)/p. We kept the
Second-order Correlation Approximation (SOCA) to derive the
stresses. The equations for the fluctuating fields are used in their
linearised form. In particular, the equation for the velocity, u’,
reads

ou'/ot + p~'V (p'+(B - B')/u) — (B-V)B'/(up) +
+2Qxu -y Au = f'/p, )

where v; is the effective viscosity due to micro-turbulence, p’
the fluctuating pressure, and f’ is the random body force driv-
ing the turbulence. We prescribe the random force f’ as the
turbulence driver instead of addressing the rather complicated
problem of thermal convection. We assume further the fluid to
be incompressible,

divu’ = 0. 3)

It is advantageous to use Fourier-transformed equations. From
(2) we get

wik? —iwya —i(k-B)B/(up)+2(k° - ) k° x au =} /p, (4)
where the pressure has been eliminated by using (3), k° = k/k

is the unit vector, f° is the solenoidal part of the force and
Fourier-amplitudes are defined by hats:

w'(r,t) = / w(k,w)e'® 790 dk dw. (5)

We also need the expression for the fluctuating magnetic field,

B B ©

nek? — 1w

Substitution of (6) into (4) gives the equation for the velocity
amplitude,

L 2k Q) A
N o ¥ a=a? @
where
(k- V)?
N = .
b+ (vek? — iw)(nsk? — 1w) ®)

V = B/\/up is the Alfven velocity, & = }°/p(vek? — iw)
is the velocity amplitude for the ‘original turbulence’ which is
imagined to exist in a non-rotating non-magnetised fluid.
From Eq. (7) the usual linear relation
a; = Di;ad, ©)
can be found wherein the tensor
2(k°-92)
N(Sij + V(k: —iw €ijpkg

o= ko)
2
N2+ (Vi k?—iw)

(10)

accounts for the influence of the global rotation and the mean
magnetic field. For slow rotation Eq. (10) simplifies to

2(k° - €1)

” = N (5 m 1]'3]{23] . (11)

For the case of weak fields (but arbitrary rotation) it is
k-v) 1

D,L‘ ;= (o) ( _— Py — (O)

i =Dy (I/tk2 —iw)(mk? —iw) M (6” 2D ) (12)
with

4(k° - Q)2
M=1+—
Tk —wp (13)

and

o - 2(k° - €2) o
ng) = M! <5ij+1/tk22——w€ij8k8> (14)

as the tensor for a non-magnetised fluid.

It remains to define the original turbulence. We adopt the
‘quasi-isotropic’ spectral tensor which is identical to that used
in Paper I to derive the non-magnetic A-effect:

. A Ek,w, k)
©) O, 1y — LKW K) /
(U (z,w) 0" (2", W) = rk2 Sw+w)
010 1 ik
[(5ij - ( 4k2) k k) 21(22 (K?ik‘j — K)jk?) 4k2]:| (15)

where k and k are the wave-vectors for different scales as ex-
plained in Paper I.
The E is the Fourier transform of the local spectrum,

Ek,w,r) = / Ek,w,k) €™ dk, (16)
hence
o0
(u?) = / Ek,w,r) dk dw. a7
0

Egs. (6) and (9) can be applied to (15) to find the spectral tensors
for rotating and magnetised fluids.
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3. A-quenching

What we need is the total correlation tensor,

(BiB})/pe, (18)

under the influence of both rotation and large-scale magnetic
fields. More definitely, its non-diffusive part which does not
vanish for € = const. is essential for maintaining of the differ-
ential rotation. For simplicity we derive the tensor Q' for the
case of (small-scale) Prandtl number equal unity, v; = n;. It is
possible also to consider the general case of arbitrary rotation
rates and field strengths. We proceed with consideration of sim-
plifying cases. In the following the bar in the symbol for the
mean magnetic field is left.

tot

ij :(uu)

3.1. Slow rotation, arbitrary field strength

Application of (11) to the original turbulence (15) results in

- [

{KI Qm(eimp(sjs + 6_7‘Tn,p(5is) +

Q, B
+K> (fzmp(B Ons + B 6]3)

+6]mp(B1,6’n.8 + Bpdis)) +

OPE
0,0z,

vy dkdw
vkt + w?

B;
+K3 Ez(éimp(Qij + QmB])
+€imp (8l B + 4 By)) +

B B

+K4(B - Q)= (Bj€imp + B; e]mp)} (19)
The kernels K, are complicated functions. However, with the
simple ‘mixing-length’ representation for the spectral function,
E = 2 (w)é(k — IL)6(w),

Vg = l(%on'/TCOIT’ (20)

(Kitchatinov 1991, l.or and 7eor as mixing-length and convec-
tive turnover time) the K -functions simplify to

1 B2 +1 203%
K] = @ (Tarctanﬂ—l—m> s
1 ) 435
K2 = fem (5+ 3P T30y
52
arctan ﬂ) ,
_ 1 p* 28'B* -1
K = Tem <5+?+ 31+ 52
4 _9p2 _
+ 62—55_ arctan ﬂ) ,
1 22 , ABYIB%+3)
K4 = —1—6'1'6—4‘ <'—35+?ﬂ +W
3184+ 178 35+ 106% - 3p6*
- 30+ ) + 7 arctan ﬂ) . 2D

With the spectrum (20) the parameter 3 equals the field strength
normalized with the energy equipartition field, i.e.

|B|

22

The dominating component of the large-scale solar magnetic
field is the toroidal one. For a purely azimuthal field and (u'?)
only radius-dependent the following representation in spherical
geometry is convenient:

o = vrQsing V, Qpp = vrficosd H, (23)
with
V =VO4sin20 VO +sin*g v,
H = HO 4+5in?0 H® +sin*0 H? .., (24)

— apart from viscosity terms (Riidiger 1989).

The V and H are proportional to the functions (21) of the
magnetic field. This results in complicated latitudinal depen-
dences of the V and H. We reserve the notations V™ and H™
for the parts of V' and H which explicitly include the 2n-power
of sin 6. In the series (24), V@ and H© are different from zero:

V(O) = corrKl(ﬂ) <la<67‘ )> ¥
12
2 ) (B ),
12 /2
HO = 72 Ky(8) ( > mKs(m <“ > (25)

In a further approximation we assume a “short-wave approxi-
mation” for (u'?) in (25) (r8/dr > 1) hence

VO =K\ & HO = K,8) %, (26)
with

82 72
g = Tcorr 3<2> @D

K3 does not longer contribute. The appearance of a horizontal
component (finite H) of the angular momentum flux in the slow-
rotation limit results from the magnetic fields. It is

8[32
105

1 452
1= 25~ The 2= -

30" 105 for 0 < 1.

(28)
The appearance of the new horizontal component of the angular
momentum flux shows that the magnetic field does not simply
quench the A-effect. The H@-value increases with the magnetic
field at small 3. In the strong-field limit, however, the A-effect
is actually suppressed:

Kp ~ _ 3T for

e B> 1.

K~ (29)

T
32083’
In Fig. 1 the magnetic field-dependences of the quenching func-
tions for all values of § are shown.
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3.2. Weak field, arbitrary rotation rate Iy = 32; (8 40 — 245072 — 30*4 _
The non-magnetic A-effect for the same turbulence model was o o
derived in Paper I. Here we consider the B2-corrections of the _ 1602 + 37682 _
resulting Reynolds stresses. Application of (12) to (9) and (15) 1+ 3(1+0?)
results in 30%6 — 500* +35Q0*2 + 840
— arctan Q*) 3D

tot _ Utﬂz dkdw O*
iJ 2k4 + w?

where Q* = 27.,:£2 is the Coriolis number.

+ J1(Qp + Z%Bm)(qmpéjs + €jmplis) + For an azimuthal magnetic field and only radial inhomo-
geneities we find for the functions V' and H in (24)
JZQ (Q - B)
+ (Q Q B2 (B]Qm + BmQj))eimp 510
VO = g2 (J1( Q)+ Q) 7 o),
(- B) Teon "or r “or
+(QiQm + 2—2(3sz + Bmﬂi))fjmp
- z b B () — @) % iiCial
+ J3B—;((Q]Bm + QmBj)Eimp + @ 5
HQBum + U Bi)ejmp) VO = T Q) ( >
Q B 20,12 2
+ s g (Bicimp + Bicjmp) + HO = g72, (Jm*)ﬁé—ﬁ%—) - JZ(Q*)%%’?) ,
Q- B)B;Qyy,
+ JS(—"—Q‘Z_)BS’Z_(Qjﬁimp + Qi€jmp) + HD = vy, 32)
. 2 . . .
+ JG%(QW@S + Ejmplis) + The short-wave approximation now yields
2 2 © _ g2 * * I _ _p2 *
+ J; (QB;;;Z?QS (Qj€imp + Qifjmp)}‘é‘a—g—- (30) Ve =6 (Jl @)+ L@ )) , V0 =—f"F 5@
Tp0%Ts HO = g 2J,QY, HD = —g2 £ 5Q%. (33)
For the single-scale spectrum (20) the kernels are simple enough
to give their complete expressions, Only three functions of the Coriolis number form the magnetic
I corrections to the angular momentum fluxes. The limits of these
J = 1 <10 _ EQ*Z _ 20 + functions for slow rotation (2* < 1) reproduce the expressions
80*¢ 3 1+Q*? (26) and (28):
O +30*2 — 10 . R
t g actan( ), Jy = —4/105, Jy=-8/105, Jp=0(Q*). (34)
*6
J, = 52%2_6 ( 280 + 235 Q2 —210** + 124% S+ For the opposite case of rapid rotation we find
* + *
30%6 — 300** + 15Q0*% + 280 . Jy =30 /(649%), Jo= —2Jy, Jp = O@Q* 7). (35)
+ O arctan Q* |,
{ 02 9 _ 30 10 It can be shown that for rapid rotation the contributions of the
J3 = z (10 - + ——————arctan Q*) , density gradient (neglected above) and the turbulence intensity
4Q* 3 Q gradient always combine into common gradients. Eq. (27) can
Ju = 1 ( 0— _Q*z 30+ _ thus be replaced by
160+
*6 x4 *2 - 82 ( < /2>)
30 IOQQ*+ 307440 o Q) , @ = ;02 —ar (36)
Jo = 1 —70+ %éQ*z _ 60 _ to get the result for rapid rotation including the effect of the
ST 3 1+ Q2 density stratification,
30 — 150*2 — 70 .
- o arctan § ), VO _ Ty (1 3 Eﬂz) HO ~ _ﬁ237r?
| 55, 202 162+ 4 320
Jo = — | —70+=Q"" - ——— + v = gO = _y©O (37)
80*¢ 3 (1+Q*%)2
2402 30** 4+ 150*% — 70 o where the non-magnetic contributions are also included. Note
* 1+ Q* arctan ’ the negativity of the product of the fluxes H(0) and H(1).
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4. Dynamo model

A simple 1D nonlinear dynamo model is considered for the
consequences of the nonlinear A-effect for stellar dynamos. The
model is similar to that by Schmitt & Schiissler (1989) and
shall be understood as a simplified version of the overshoot
layer dynamo. The very new ingredient of our approach is the
inclusion of the equation of motion.

We neglect the radial dimension to get the (normalized) field
equations,

0A 0 1 0 .

—a—t = cosf q)a(B)B + 55 <m% sin 9A> ,

0B ~ O(sinfA) 0 1 0 .

% = 7 Qw)T*%(M%S‘”B)’ (38)

where & is the dynamo number, A is the poloidal field poten-
tial, B is the normalized toroidal field, ®,(B) is the a-effect
quenching function, and (6) = Qg ' 90/ 0z is the normalized
radial shear, which is both latitude- and time-dependent. In the
sense of an a§2-dynamo we kept the a-effect only in the poloidal
field equation. The a-effect is supposed to vary as cos 6 with
latitude.

The equation for the shear, @), must be derived from the
angular momentum equation (cf. Riidiger 1989),

<I/Tp7'3 [rg—? — QOV]> +

vr 0 .2 . o0
+ mgé (sm 0 [sm 0% —QoHcosbl| |, (39

o _ 1o
ot préor

where V and H are defined by (24). Note that under the approx-
imations leading to (39) the mean-field Lorentz force does not
contribute. We assume further a simple power-law dependence
on the fractional radius, = = r/R, for the viscosity and the H-
function: vy = vz? and H = Hz. Under these assumptions the
1D equation for the shear Qis

GQ Pm 5’ ) . 3Q ~
= = _ )ag
5 3990 [sm 9<sm0 20 cos )] ,

where t is again normalized with the diffusion time, Pm is the
magnetic Prandtl number, Pm = /77, and the radial dimension
is neglected as in (38). We modify the representation (24) for
the function H,

(40)

H = HD(0) (®¢(B) +sin> 6 &1(B)) . 1)
®; is thus normalized to ®;(0) = 1 and can be understood
as a quenching function for H®. Accordingly it is ®o(B) =
HO(B)/HM(0). If the shear  is measured in units of the
(positive) H1(0), Eq. (40) becomes

8_(2. . fm o sin” @ sinGQ9 +
ot sin’9 00 00

— (cos @ ®o(B) + cosfsin’ 8 CI>1(B))>]. (42)

129

Then the dynamo number, &, is defined as

_QOFI“)(O) aR?

o9 =
%

(43)

Eq. (42) satisfies the shear-conservation law, i.e. the integral
shear,
u ~
S = / @) sin® 0 d, (44)
0
does not change with time.

Egs. (38) and (42) provide a closed system for both the
magnetic field and the shear. The usual boundary conditions
imposed on this system are
A=B=001/00=0 ford=0,r. (45)
With these conditions the shear is free of an arbitrary constant.

It can be fixed to zero with the additional condition for rigid
rotation,

lim =0,

B—o0

(46)

or — which is the same — by equating the integral (44) to zero:

S = 0. (47)
With any other choice, the Q) tends to a latitude-independent
constant for a very strong field.
It remains to fix the quenching functions. For the o-
quenching the relation
432 1 - 32

15 |
32ﬂ4( 31+ B

is used from Riidiger & Kitchatinov (1993).

Section 3 supplies the complete quenching functions for
only H® and V@, For H the quenching function is not well-
known. We adopt K for the latter as it is in agreement with

the results in Eq. (37). The functions are then rescaled to satisfy
o, 0)=1:

Po(B) = 30K2(8), 1(B) =30K:(P).

Q,(8) = arctan ﬁ) (48)

' (49)

The (3-dependences of the functions (48) and (49) are shown in
Fig. 1.

The quenching function K is adopted in (49) for the hori-
zontal A-effect. This is not a final procedure. We have, however,
actually derived quenching functions for all the effects involved
in our dynamo model for the case of weak magnetic field (the
B2-corrections, Eq. (37)). For the rapid-rotation case, to which
the solar-type stars belong, they read
o =1-382/2, ®o=-308%/2, & =1-305%/4 (50)
The nonlinear simulations below are made with the quench-
ing (50) also to find that within its validity region it produces
essentially the same results as obtained with (48) and (49).
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Fig. 1. The quenching functions (48) and (49) for the a-effect (dashed)
and the A-effect (solid). The negative value of ®((0) is plotted.
A-quenching is stronger

4.1. Linear properties

We consider first the linear properties of the model. The shear
profile,
Q) = %(5 sin® 6 — 4) (51)
is the steady solution of the (non-magnetic) Eq. (42) satisfy-
ing the conditions (45) and (47). The profile (51) describes a
weak positive shear (super-rotation) at the equator and more
pronounced sub-rotation at high latitudes similar to the findings
of helioseismology for the base of the solar convection zone.
As usual (cf. Schmitt & Schiissler 1989) the linear problem
was treated as an eigenvalue problem, A, B ~ ei®ort (Weye 18
now complex). The §-dependences are described by the series
expansions in Legendre polynomials,

A = Wt Z an Pl(cosb),
giweret z bn, Pl(cos ).

The dependence of the growth rate, —S(weyc), of both dipole
parity (odd a,, and even b,) and quadrupole parity (even a,
and odd b,,) modes on the (negative) dynamo number, &7 is
computed with the truncation level n = 30 in the expansions
(52). The threshold dynamo numbers for the dipole parity (~
—5630) and the quadrupole parity (~ —5650) are very close
together. Both modes are oscillatory, R(weyc) # 0.

For positive dynamo numbers, on the contrary, the first
modes becoming growing are the steady quadrupole (P =~
170) and the steady dipole (P ~ 247).

Positive and negative critical dynamo numbers differ in their
absolute values by more than one order of magnitude. This is
rather unusual. Usually one finds ‘parity symmetry’: the modes
with dipole and quadrupole parities exchange their eigenvalues
when the sign of the dynamo number is changed. This rule is
here strongly violated. The reason is that the symmetry holds
only for latitude-independent shear which is not realized with
the present model.

B = (52)

L.L. Kitchatinov et al.: A-quenching as the nonlinearity in stellar dynamos

LATITUDE

TIME

LATITUDE

TIME

Fig. 2. Butterfly diagrams for the dipole parity (top) and quadrupole
parity (bottom) solutions of the model without A-quenching

4.2. a-quenching

Negative dynamo numbers are preferred because this sign is ex-
pected for the Sun and positive dynamo numbers lead to steady
solutions.

The computations are for 2 approaches — with full non-
linearity and without A-quenching. Only oscillatory solutions
are found for the a-quenching model (Fig. 3). Just beyond the
threshold dynamo number (&7 ~ —5630) the oscillating dipole-
parity solution appears. It survives until 2| ~ 12800. For
|Z7| > 13700 the parity changes to an oscillating quadrupole.
It is present until | 27| = 120 000 beyond which we did not fol-
low the model. The transition region 12800 < |&| < 13700
produces mixed-parity oscillations.

4.3. Full nonlinearity

The fully nonlinear model has a wider variety of solutions. For
small dynamo numbers, i.e. | 27| < 6050 we find surprisingly
mixed-parity two-torus oscillations.

Fig. 3 shows the time-dependences of the maximum of B?
and the parity index

_Eq—Ed

p==2_—¢
Eq+Ed

(53)
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PARITY INDEX
MAXIMUM B2

20 22 24 26 28
TIME

Fig. 3. The parity index (left) and the maximal B?-value for
% = —6000 in the fully nonlinear model (Pm = 1)

(Brandenburg etal.1989), where E, and E; are the ‘total ener-
gies’,

Eqq = / B} ,(0)sin6 db, (54)
0

for the quadrupole, B,(0) = (B(6)—B(n—6))/2, and the dipole,
B4(8) = (B(8) + B(m — 6))/2, components of the total toroidal
field, B = B, + Bg. The short-term oscillations (tosc ~ 0.2)
are modulated with a long (¢t ~ 2) period with dipolar and
quadrupolar parities alternatively prevailing. The butterfly dia-
gram for the two-torus solution is given in Fig. 4. Fig. 5 shows
the temporal variations of the equatorial shear, Q(r /2). Short-
term ‘torsional oscillations’ with amplitude of about 1% are
present together with the stronger (~ 5%) long-term modula-
tion. After the Figs. 3 and 5 the long-term oscillations of the
maximum B? and the shear are in anti-phase.

A long-term beat phenomenon was also found by Bran-
denburg et al. (1989) in a 2D fully-convective sphere with a-
quenching. The result is interpreted as due the fact that the crit-
ical dynamo numbers for the quadrupole and dipole symmetry
are close together. The beat phenomenon of the present model,
however, has quite a different origin. It does not exist without
the A-quenching effect. The long-term beats result from phase
interactions between magnetic field and the differential rotation.
For too high dynamo numbers, i.e. too strong magnetic fields,
the magnetic feedback to the rotational shear is so strong that
the rotation law changes its character (in particular at the poles)
and, consequently, the dynamo switches to another regime.

In the region 6050 < |¥| < 6350 an oscillatory
quadrupole-parity solution very similar to that of the a-
quenching model (Fig. 2) is found. This solution is replaced
at |Z| ~ 6350 by steady quadrupole which survives until a
rather large dynamo number of about —73 000.

4.4. Magnetic Prandtl number

The above results concern turbulences with Pm=1. Smaller val-
ues, however, are more realistic. As indicated in Eq. (40) the
magnetic Prandtl number directs the phase relation between
field and flow. For large Pm field and flow tend to be in phase
while for small Pm the rule is to be out of phase.
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Fig. 4. The butterfly diagram for the mixed-parity two-torus solution
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Fig. 5. Time-dependence of the equatorial shear, Q(W/Z), of the
two-torus solution. After (56) also the evolution of the equatorial an-
gular velocity is yielded

The effect for the dynamo system is strong. The phenomena
described above for Pm = 1 are also existing for Pm = 0.1 but
with higher amplitudes. Tab. 1 reveals the trends.

Models of the first two lines have weak magnetic fields.
The rotation law keeps its original shape. The weak-field case
(& = — 6000) exhibits 3 frequencies with mixed parity. For
higher fields (Z = — 8000) only 1 frequency survives with
constant (quadrupole) parity.

If the dynamo number is further increased the polar shear
changes its sign. The sub-rotation (0€2/0r < 0) in the polar
region becomes a super-rotation (0§2/0r > 0) — as it exists
in the equatorial region, too. At the same time, the magnetic
activity looses its simple cyclic character. Its power spectrum
exhibits a great sample of frequencies (Fig. 6), close to a chaotic
behaviour.

For even stronger fields the rotation law totally changes its
character. The equatorial super-rotation becomes an equatorial
sub-rotation, and the polar sub-rotation becomes a polar super-
rotation. Apparently the dynamo number itself changes its sign
and the final result is a steady quadrupole.
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Table 1. Summary of characteristics of models for increasing magnetic
field strength (Pm = 0.1). See the text for details

— 2 [Bmax  cyCles parity Qpole §leq
6000 0.3 3 —1.+1 ~-034 ~ 0.09
8000 0.4 1 1 ~ —0.20 ~ 0.07
18000 0.6 chaos? —1..+1 O0..1 ~ 0.05
24000 3 0 1 ~1 ~ —0.02

4x10

2x10

POWER

0 5

10 15
FREQUENCY
Fig. 6. Power spectrum of the magnetic field variations for intermediate

dynamo numbers (& = —18000). The dashed line gives the power
spectrum with A-quenching ignored

20

5. Discussion

Dynamo theory considers flow fields in plasma inducing large-
scale magnetic fields. The magnetic feedback on the flow defines
the nonlinear dynamo with basically new features compared
with the linear, kinematic theory.

So far, we are familiar with 3 feedback mechanisms: a-
quenching, A-quenching and the Malkus-Proctor effect. All of
them seem to produce long-term modulations of the basic ac-
tivity cycle which are observed in form of the Maunder mini-
mum and the long-term monitoring of chromospheric activity.
15% of the observed stars exhibit a uniform Ca Il emission on a
rather low level (Saar & Baliunas 1993). Whether the Malkus-
Proctor effect really provides a temporal modulation is still un-
der debate (Hollerbach 1991). Both Malkus-Proctor effect and
A-quenching are producing a cyclic variation of the rotation law
such as observed as the solar torsional oscillations.

The solution illustrated by the Figs. 3 to 5 closely resem-
bles the basic solar observations. The short-term variations of
the differential rotation (Fig. 5) can be identified with the solar
torsional oscillations (Howard & LaBonte 1980). The rotation
law at the surface is simply

Qure(8) = (1+HD(0) () Q. (55)

L.L. Kitchatinov et al.: A-quenching as the nonlinearity in stellar dynamos

In Fig. 5 the equatorial angular velocity is given. Comparison
with Fig. 3 shows that the cycle level and equatorial rotation are
in anti-phase: maximum cycles are related to minimum equato-
rial rotation and v.v. Only the minimum cycles have a distinct
dipolar parity. The “resting cycles” with the smallest ampli-
tudes of the short-term oscillations and minimal peak-values of
B? show a clear dominance of quadrupolar parity.

Verma (1993) reported long-term (~ 110 yrs) variations
in the N-S-asymmetry of the solar activity similar to Fig. 4.
Yoshimura & Kambry (1993 a,b) found the 100 yr modulation
of the solar cycle indeed correlated with long-term variations
of the differential rotation. Maximum magnetism is correlated
with maximum equatorial rotation and minimum differential
rotation (“fast and rigid”). For the Maunder minimum Ribes
& Nesme-Ribes (1993) found correspondingly slow equatorial
rotation and strong differential rotation (“slow and steep”). The
global minima may be identified with the “resting cycles” of
the present model. The equatorial rotation (Fig. 5) is on the
descending branch of its long-term variations at these epochs.
The fastest rotation coincides with the beginning of the resting-
cycles periods.

It would be too optimistic, however, to explain the Maunder
minimum by the A-quenching formulation after the presented
simple 1D model. More work in this direction is suggested.
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