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Abstract. The problem of high-energy charged particle propaga-
tion in a turbulent medium with a “frozen-in” statistically aniso-
tropic reflective non-invariant magnetic field attracts much at-
tention at the present time. We show that the existence of a large-
scale electric field, of which the value is determined by a magnetic
helicity, leads to the appearance of an effective mechanism of
particle acceleration. We derive the kinetic equation for the
particle distribution function and calculate its diffusion approxi-
mation. An analysis of the effectiveness of acceleration mech-
anisms in the observed spectrum of cosmic rays shows that the
newly considered mechanism dominates over the second-order
Fermi particle acceleration in the energy range of up to 1 GeV.
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1. Introduction

The problem of the propagation of high-energy charged particles
in stochastic magnetic fields (MF) in a turbulent conductive
medium has important meaning for the solution of various
astrophysical problems, as well as in plasma physics (Berezinskij
etal. 1984; Krommes 1984). The process of the multiple
scattering of particles in regularly transferred random MF in-
homogeneities was first rigorously considered by Dolginov &
Toptygin (1966). Following this, a detailed investigation of the
processes of diffusion, convective transport and acceleration of
charged particles in the cosmic plasma were conducted by many
authors (e.g. Jokipii & Parker 1970; Kulsrud & Pearce 1969;
Jokipii 1971; Galperin et al. 1971; Klimas & Sandri 1971; Skilling
1971, 1975; Jones et al. 1973; Volk 1975; Goldstein 1976; Webb &
Gleeson 1979; Vainstein & Kichatinov 1981; Gurevich et al. 1983;
Ptuskin 1984; Dorman & Shogenov 1985).

The concrete character of turbulence within media has essen-
tial meaning in describing the processes of cosmic ray (CR)
particle interaction with stochastic MF (Smith et al. 1990). The
kinetic coefficients, which describe the particle propagation, are
obviously derived under the supposition that the CR particles
propagate in the isotropic MF turbulence, as well as in the
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isotropic hydrodynamic (HD) velocity field (VF) (Toptygin 1973,
1985). The particle acceleration by random magnetohydro-
dynamic (MHD) waves, which are transversally or longitudinally
polarized with respect to the direction of the large-scale MF, has
been investigated by Tverskoy (1967a, b).

Past experimental data suggested that cosmic MF fluctu-
ations are statistically anisotropic and display the property of
reflective non-invariance (cf. Belcher & Davis 1971; Matthaeus
and co-workers 1981, 1982, 1984, 1990). Along with this fact, the
anisotropy of MHD turbulence has a tendency to change itself
(Carbone & Veltri 1990). It is well-known through the theory of
the turbulent dynamo (cf. Vainstein et al. 1980; Moffat 1978;
Krause & Radler 1980) that the large-scale electric field (EF) is
generated when gyrotropic turbulence is present in the medium.
This EF essentially influences the process of the charged particle
propagation. The process of CR particle transport in the statis-
tically anisotropic reflective non-invariant MF has been exam-
ined by Kichatinov & Matyukhin (1981), Bieber et al. (1987),
Dorman et al. (1988), Burger & Bieber (1990). These studies have
mainly analyzed the pitch angle and/or spatial diffusion of
particles. Kichatinov (1983) showed that the large-scale EF,
which is generated in the non-mirrorsymmetric turbulence, cre-
ates the possibility of appearance of an effective mechanism of
CR particle acceleration. This acceleration mechanism generates
the observed power-law spectrum of CR in spatially homogen-
eous case. Because of having a sufficiently high effectiveness for
energy transfer into particles, this mechanism (see also Kicha-
tinov 1983a; Dorman et al. 1984) may compete with the classical
Fermi acceleration mechanism (Fermi 1949; Tverskoy 1967a, b).
Recently, Earl et al. (1988) have rederived the equation of trans-
port for CR, including the energy changes of particles owing to
CR viscosity. The rederivation of the transport equation was
carried out by Webb (1985, 1989) for the regime of relativistic
flows. Dung & Schlickeiser (1990) discussed the influence of the
cross and magnetic helicities of the Alfvénic slab plasma turbu-
lence on the energy changes of CR. They show that the transport
coefficients, and thus the diffusion approximation of the kinetic
equation, are very sensitive to the turbulence model chosen.

In this paper, we develop the rigorous theory of high-energy
particle propagation in a randomly anisotropic reflective non-
invariant MF in turbulent conductive media. In Sect. 2, we derive
a kinetic equation which describes both the multiple scattering
and the acceleration of particles, applying the functional method
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of averaging in the stochastic ensemble of random fields. The
diffusion approximation is calculated in Sect. 3, in which are
given expressions for the particle flux concentration, as well as for
particle flux density in the momentum modulus space. Also in
Sect. 3, the kinetic coefficients driving the transport processes of
CR particles are calculated. Then, in Sects. 4 and 5, we dis-
tinguish between the propagation of particles in a strong regular
MF (Sect. 4) and the propagation when the stochastic component
of MF essentially exceeds the regular one (Sect. 5). Finally, the
analysis of the effectiveness of particle acceleration by the large-
scale EF is performed in Sect. 6, where it is shown that for a given
value of the MF, the mechanism considered is the most effective
for “magnetizing” particles into the MF, i.e. if the particle kinetic
energy is below 1 GeV.

2. Kinetic equation

Let us consider a collisionless plasma consisting of charged
particles moving in the magnetic field H(r, t), which has a regular
component H, and a random one H, (r, t):

H=H,+H,, (1)
{H)=H,. v}

The angle brackets denote averaging over the statistical ensemble
of fields. The random components vary irregularly in space and
time, and the scales of their changes are shorter than a correla-
tion length L or a correlation time . of the random fields. We
will suppose that the MF is “frozen-in” to the plasma, moving
with HD velocity u(r,t), which has also both regular u, and
random u, (r, t) components:

u=uy+u,, 3)
uy =uy. 4

Because of the frozen-in MF, there exists in the plasma an
induced EF

E(r,t)=[uH]/c, )
which consists of a regular component
Ey=—{[ugHo]+<[u, H,1>}/c, (6)

and a random component

e=—{[ugH 1+ [0, Ho]+ [u, H\]1—<[u H,]>}/c. (7

Therefore, the evolution of the distribution function fj(r, t) of
CR particles propagating in these fields will be determined by a
collision-free kinetic equation

(0,4 Vo) fp(r, t)+§; F(r,t) fp(r,)=0, (8)
where
F=F0+F1=eE+§[vH] ©)

is the force that acts on a particle with charge e velocity v and
momentum p;

F0=eEo+§[vH0] (10)

is the regular component of F, and

F1=es+§[le], (Fyy =0, (11)
the random component.

The exact distribution function f,(r, t) varies quickly because
of a fluctuating random field. Obviously, the most interesting
function is the averaged distribution function £p(r,t)
= {fp(r,t)>. Let us now derive the kinetic equation for the mean
distribution function %, starting from the collision-free kinetic
equation (8). By averaging Eq. (8) over the statistical ensemble of
random fields, we obtain

0
0, + Vv)g"p+a—pF097p=C019"p, (12)
where
ColF,(r,t)= —3<F1 (r,0)fp(r,0)> (13)
op

is the collision integral of the kinetic equation (12).

For computing the correlator in Eq. (13), we use the func-
tional method (see Appendix). If F,(r,t) is a Gaussian random
field with zero mean value, then we easily arrive at

<F11(ra t)f["(r’ t)> = jl dtl strlgal(r’ L ry, tl)
0

X ¥palr ey, 1)) (14)
The repeated Greek indices here and below indicate summation.

Doy (rtyry, 1) = F (1, ) Fyy(ry,t)) (15)

is the correlation tensor of random forces acting on the particles
and

Wpilr,tryt)=8fp(r,t)/8F ,(ry, 1) (16)

is the functional derivative of the distribution function over the
random field. We compute this derivative using Eq. (8):

0 0
<6,+vV+—‘3—pF>‘I’pl(r, tr,t)= —(5(r—r1)5(t—t1)5—fp(r, t).

17}
(17)
The general solution of Eq. (17) is

0
Wpilr t;ry, 1) = _Jdapl gppl(r’t;rl’tl)yfpl(rl’tl), (18)
12

where 4, (r,t; vy, t,) is Green function for Eq. (8). Substituting
Eq. (18) into Egs. (13) and (14) results in (cf. Dorman et al. 1977)

6 t
ColFy (r,t)=-—| dt; |d*ry |d®py s (r. 1571, 2y)
apu 0

0
X {Gpp, (r, t;rl,t1)$f,,, (rist1)). (19
14

Equation (12), together with the collision integral (19), is not
closed with respect to the mean distribution function %,,. If the
random field should be d-correlated in time, then the correlation
tensor

gal(ra t;rl’t1)=@ul(r>rl’t)5(t—'tl)
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and the integral (19) will take the standard Fokker—Planck form:

0 0
6—})“9“(;', t)a—p/1 Fp(r, ).
Note that the kinetic equation is exact in this case.
If, however, the correlation time of the random process is
non-zero, then a closed-form equation can still be obtained on
the basis of perturbation theory. For this purpose, we will follow
the method by Dorman et al. (1977) and Dorman & Katz (1977).
We will consider the situation involving a sufficiently high par-
ticle energy. If the correlation length L, of the random field F, is
about 10'°7!! cm and the MF H, ~ 51075 G in interplanetary
space, the inequality L,/R <1 holds (R=cp/e./{H?) is the
mean gyroradius in the random field H,). This condition means
that the particle is scattered through a small angle ¢ ~ L./R by
each MF inhomogeneity.
Let G be Green function for the operator on the left-hand side
of Eq. (12):

Col Z(r, 1) = (20)

0
<6.+Vv+a—pFo>G,,,,l(r, 1, t0) = 8(r—r,)3(p—py)o(—1,).
@y

Then 6% = % — G is the part of the function ¢ that includes the
fluctuating changes caused by the stochastic field F,, ie. 6%
describes a variable dp of the particle momentum at the correla-
tion length L. (during the time t < L /v). Similarly, éf=f— %
describes rapid changes of f, during < L./v. As is evident,
dfp=0%=0if F, =0, and the function &, would then describe
an ensemble of free moving particles in the regular field F,.
Substituting the expansions of ¢ and f, into Eq. (19), we arrive at

a t
Col Zy(r,t) = . L de, Jd3r1 Jd3p1 {Gppl (rntry,ty)

X Doy (1, 651y, 11) Fp, (r1, 1)+ Dosr, 5y, 1)

0
0p1a

0
X 5gpp1(",t§r1’t1)_5fpl("1,t1) . (22)
11

The equations for the Green functions ¢ and G yield
0
<6, +Vo+ 51'"0)5@”10, Lry,ty)

-
o

0
6pF1 (r,t)Gppl(r’ t;rhtl)—_Fl(r’ t)agppl(r’ t;rl’tl)'

ap

(23)
Taking into account the approximation following Eq. (21), we
neglect the second term on the right-hand side of Eq. (23) in our
perturbation theory, because the relative change of the particle

momentum over one scale length (on the order of the correlation
length L) is ép/p~ L./R < 1.

The inequality \/(H?)> < cp/eL, must hold. Consequently.

t
5{41?1?;(” Lryt)= —f dtzjdsrzjd3p2F1(r2,t2)
0
0

X Gpp, (1, t; 15, tz)ngz‘,l(rz, Ly rysty)

The second term of Eq. (22) is smaller than the first in the case of

50t

a weak random field. Other approaches (cf. Dolginov & Toptygin
1966; Dorman & Katz 1977) lead to the same result in this
approximation.

Let us now choose the convenient Green function G. If the
gyroradius R, =cp/eH, in the regular MF also exceeds the
correlation length L, L, < R,, then the influence of H, on the
particle movement can also be neglected. It can readily be seen
that the influence of the EF may also be neglected. In fact, the
ratio of electric force to magnetic force is Fo/Fp,, ~u/c < 1.
Even if hydromagnetic waves exist in the solar wind plasma, the
EF is vyH/c SuH/c (v, is the Alfvén velocity). Therefore, the
Green function

Gpp, (P, )=0(1)0(p—vT)S(p—p1) (24)

(t=t—ty,p=r—r,,and 0(r) is the Heaviside function) describes
the free movement of particles inside the range of field correla-
tion. On the spatial and time scales considered, the mean func-
tion #, depends weakly on r and t. Therefore, Eq. (23) may now
be written as

0 0 0
0 —F, | %,=— —Z,
< ,+Vv+ap 0)./,, o 2,,) a Fp (25)
where
D (p) = J dt 9, (v7;7) (26)
0

(cf. Toptygin 1985; Dorman & Katz 1977) is the diffusion coeffi-
cient of particles in momentum space. We have supposed in
Egs. (25) and (26) that the random field is homogeneous in space
and stationary in time.

3. Diffusion approximation

Let us rewrite the kinetic equation (25) in the form of a particle
conservation law in phase space,

8
0, Fp+ Vjt—j,=0,

» @7)

where

Ja=0aFp, (28)

Joa= (F 0a = Das i) Zp- (29)
op;,

By integrating Eq. (27) over the angle variables in momentum
space (Gleeson & Webb 1978; Dorman et al. 1978, 1980; Top-
tygin, 1985), we obtain the transport equation for particles at a
given value of the momentum:

10

(’),N+V.I+p2 6pp2J"=O' (30)
Here
N(r,p,t)= dep ?p(r, t) (31)

is the number density at a given value of the momentum modu-
lus,

J(r,p,t) = j dQ,v F,(r,1) (32)
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is the vector of particle flux density at a given value of the
momentum modulus, and

— 0
JP=J\de<yF0—ga@a15p—).g"p
A

is the flux density in the space of momentum modulus; d€,, is an
infinitesimal solid angle in momentum space; g = p/p.

The first term in Eq. (33) is proportional to the scalar product
E, - J [cf. Eq. (10)], and expresses a particle energy change in the
regular EF E,. The second term describes a fluctuating change of
particle energy caused by the stochastic EF &(r, t). The expression
(33) follows directly from the definition of particle flux in the
space of momentum modulus, i.e. the number of particles in the
unit volume passing over a given momentum modulus during the
unit time:

(33)

J,,=Jde<j—fj;,(r, t)>. (34)
Using the equation of motion

. (35)
we have

j—l; =egE=eg(Ey,+e¢). (36)
Therefore,

JP=SEOJ+eJ WICCOIAE )Y (37)

Using Egs. (14) and (15) from Eq. (37), we arrive at Eq. (33).
Because we want to calculate the fluxes, we need first to define the
shape of the tensor 9,,. This tensor given by Eq. (15) consists of
the sum of the MF correlation tensor

ga).(nt;rl,tl):<H1a(r9t)H11(r1’t1)>’ (38)
the tensor of HD velocity fields
D, iy, t) = ug,(r, Quga(re, ty)), (39)
the cross-correlation tensor
Ll tiry )= CHyg(r, ug(ry, £)D, (40)
and the correlation tensors of the third and fourth rank:
1
Lo, tr,ty) =C Eauy CH (R ) H oy, (ry, t) uy (5 81), (41)
1
Ha).(r’ t9 res tl) = E gulv <ula(v’ t)ulu(rla tl) Hlv(rl s t1)>, (42)

1
‘g-a}.(ra t;rbt[):E?eaﬂysluv {<ulﬁ(r’ t)H”(l‘, t)ulu(rl’ tl)

XHlv(r13t1)>_yyﬂ(rat;rat)yvu("l’tl;rl’tl)}’
(43)

where &,, is the unit antisymmetric Levi-Civita tensor.

We now perform the diffusion approximation in Eq. (27),
assuming that the particle distribution in the momentum space is
close to isotropic. For that purpose, the distribution function %,
should be expanded into a series of spherical functions (cf.
Dolginov & Toptygin 1966; Earl 1974a; Dorman & Katz 1977),

and we neglect all but the first two terms of the expansion:

Fpr, t)=(l/4n){N(r, D, t)+%gJ(r,p, t)}, 44)
where N and J are defined by expressions (31) and (32), respect-
ively.

After multiplying the kinetic equation by the vector g and
integrating the resulting equation over the angle variables, we
obtain the equation for the vector of particle density flux in the
form

1 0

fusls == ORVN + {Cln By 1) KHD +b) 5, 49)
pﬁ

I=J+u 4oy £ (46)

R
a}.y hy s (47)
O

3ev
Tor =gy E1y | 42 939, B, (0) —
A 4thp /—<Hf> By luJ‘ BIuZy

3ev

a

YA (v) Sluvh yyu (v)}

c
Sayp Jde 989 {W

h=H,/H,.

4ncp

(48)

The line above a tensor has the same meaning as in Eq. (26).
Substituting the expansion (44) into Eq. (33), we arrive at the
expression

Jp=§(u0V)N_%{<["1H1]>+b}I

e? ON H? .
_H—a;J‘dega 9 {_cgga/}y Eluv hy hv ’Qﬂy(v)

Y < -
+ T aa(0) == h T (0) } (49)

For the determination of the particle density flux, we need to find
the inverse yz' of the tensor x,; in (47), which is determined by
the form of the correlation tensor of the random MF. In accord-
ance with the experimental analysis by Belcher & Davis (1971),
Matthaeus et al. (1981, 1980) and other authors, MF fluctuations
are axially symmetric with regard to the direction of A. The most
general form of the second-rank correlation tensor, which is
characterized by one preferred direction A, can be defined by
eight correlation functions (cf. Matthaeus & Goldstein 1982).

1
ga).(ri t)=§<H%>{\P(f, t)aal'_\Pl(r, t)nan}.

+\P2(l’, t)hahl + \P3 (r’ t)(nahl + nlha)+\ll4(r’ t)
X ([nh) n, + [nh];n,) +¥s(r, ) ([nh] h,
+ [”h]lha) + q)(r9 t)ealy Y + (D (l‘ t)sai.y 7}

n=r/r. (50)

Here ¥, ¥,, ¥,, ¥, and ® are functions of even powers of r, and
(nh). ¥5, W5 and @, are odd functions of (nh) and contain the
even powers of r. These correlation functions are not indepen-
dent, due to the solenoidal property of MF.

Using the general form (50) of MF, the correlation tensor
will be

R
Xal_q15a1+q2h h}. R ulyhy7
0

(€1
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where

1
1—2—f J dy{(1+y)¥(x, y)+ 1 —y*) ¥ (x, 9},

1 Lo}
qz=—2§J de dy{(1=3y)¥(x,») —(1 = y)¥,(x, )},
0 0

x=v1, y=gh (52)
The inverse tensor to y,; is
X.:_al =¢, 5§a+§2h§ha+é38§ayhy, (53)
RZ -1
f1=‘11<q%+1‘{g> s L=+ ¢
R R?
4
&= Ro <‘11 R0> (54)

For the final definition of the particle flux density vector, it is
necessary to determine the quantity ([u; H,]) in Eq. (45). The
presence of the random fields, together with the random mixing
of media, is the primary feature characterizing the cosmic plasma.
The stochastic MF requires special attention, because the hy-
dromagnetic turbulence is reflective non-invariant. The appear-
ance of both the large-scale MF and EF in this turbulence follows
from turbulent dynamo theory (Vainstein et al. 1980; Moffat
1978; Krause & Radler 1980). The only vector available to
construct the driven large-scale EF is H,, so a possible linear
representation is

{[uH])=0oH,— (55

where o is determined by the antisymmetric part of the tensor
(50).

For a preliminary estimate of the value of both o and f in the
high-conductivity limit, we have

B=5t<ut),

BrotH,,

x=—4eh,
where
h,=<u,"rotu, )

is the well-known helicity density. If we denote
Ry~Ho/|rotHol,  r,~<ui)/Ih,),

then aRy,/f=~Ry/r,>1 in interplanetary space; i.e. we neglect
spatial inhomogeneity of the field H,. This means the neglect of
eddy viscosity. In fact, RH 1AU, B<10'2cm? s consequen-
tly, the value «>0.1 cm s~ ! is sufficient for our approximation.
(Even if frot H, #0, the vector rot H,, is radial, and it can weakly
modify the direction of quantity U, but the primary effect remains
the same.)

Consequently, the large-scale EF is
E,= —% H,. (56)
The expression for the particle flux density vector follows from
Eqgs. (45)—(48) and (53) —(55):

p ON

Ja=_KalVl.N_(u0a U W)__ (57)
where
Kal=?1’; vAazj.y (58)

503
Aal=A||hahA+AlAal(h)+A2 ady V) Aa}.(h)zéal_hahl’
(59)
R 1 1
Av=3 Ay (W' =RE, Ay=Resh, o' =RE, (60)
A”;——Rhah}hxa_ll:R(él-’—él)
© 1 -1
=R2[ j dx f dy(l =y ¥(x, y)] - (61)
0 0

The quantity A denotes the particle transport path along the
regular MF direction k. One can find the concrete expressions for
the diffusion tensor components calculated in various approxi-
mations in many papers: for example, Jokipii & Coleman (1968);
Klimas & Sandri (1973); Earl (1974a); Dorman & Katz (1977),
Kichatinov & Matyukhin (1981); Toptygin (1985); Bieber et al.
(1987).

The quantities U and W in (57) possess the dimension of
velocity and are directed along h. Using Egs. (56) and (61) we find:

A
U=a—tp, (62)
W= Wh, (63)
3 evA, (@ B
=i ?“ L dr Jdg,,{ Rg Y eupy 20 hahy S, (07)
e
_; Eaﬂy (3 yv(vr)}gﬂgv (64)
The particle flux in the momentum modulus space is
P 0
J,,=§(u0+U—W)VN—Dpa—pN, (65)
where
D =—pz—(U2—W2)+D(p) (66)
P 3UA|| ?
1 © p2
D(p)’:_ degag). 2 aﬂy ygluvh ﬂﬁu(”r)
T Jo R
2ep h,T1 2T, 67
- Ro aﬂy v M(vr)+e ‘/al(vt) . ( )

The random field is characterized by one preferred direction .
Therefore, the correlation tensors (39)—(43) acquire tensor struc-
ture, which is the same as the structure of the MF correlation
tensor (50). Then, the quantity W in (64) is determined by

uiy(B+PyHo//<H}Y), (68)
B @ 1
8 }=ﬂoj de dy(1—y?)
1 0 =1
Yi(x, )+ y¥P5(x, )+ O (x, y),
{W(x, ) ©)
<o} 1 -1
ﬂo=[ J dxj dy(l—yzw(x,y)} : (70)
4] -1

The upper index denotes the tensor to which the considered
correlation function belongs.
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The coefficient D(p) in Eq. (67) will be

D(p=-E ( Mo, t ><u2> 1)
p 3UA” <H%> <H2> 3 1/
where
0(1 [ 1
o, =B0J dxj dy

0 -1
a3

W7 (x, )= x, )+ 2k, 1)+ 29 WA, ),

x{ [PH(x, »)+y¥Ix, »)+OT(x, y)](1—y?),
(1—-y) ¥ (x, y).
(72)

The effective velocity U depends only on the coefficient «
characterizing the large-scale EF E,, which changes the particle
energy. The coefficient o is usually written in terms of the
antisymmetric part of the velocity field tensor 4,, (cf. Krause &
Radler 1980). For the investigation of particle acceleration effects,
it is convenient to write the coefficient a using the correlator of
the random MF, usually observed by experiment. The relation
between o and the spectral characteristics of MF is conveniently
established in the frame of the linearized MHD equations. Then

(73)

1 )
=m Eapyhy J; dr Jd%(kh)%;y(k, 1),

where p is the plasma density, k the wave vector, and %;,(k, 1)
the MF spectral tensor. The MF correlation tensor is defined by
Eq. (50); thus, after Matthaeus & Smith (1981), the spectral tensor
is

1
Bk, T)=§<Hf>{3(k, 1)A;(k)+ By (k, 7) (h,h,

+x2

k,k k
k A-xo—aulv uk /k)+BZ(k T) aulvhu[kh]

+XB2(ka T)Gaulvku[kh]v/kz + 1B3(k, T)sa}.y y/k}

(74)
where

k,k,

kz ’ oaulv

x=kh/k, Aa}.(k)=6al_ =5au51v+5avélu‘

The functions B, B, and Bj are even under k— —k. Only B, is
odd. Substituting (74) into Eq. (73), we find that the non-zero
contribution is given by only antisymmetric part of 4,, (because

of the existence of ¢,5, in Eq. (73)). Therefore,

(H?>
d3k hk)? B, (k 75
48npf f()();(r) (75)
Note that in the case of statistical isotropic fluctuations,
H2> 3
o= dk k® B4 (k, 1), (76)
T 36m° p

because of [dQy(hk)*=(4n/3)k* and B,(k)=B,(k). The coeffi-
cient a can be expressed in terms of the magnetic helicity density
H,={H,*A,) (H,=rotA,, A, — the vector potential), which is
measurable experimentally (Matthaeus & Goldstein 1982). If L,
and 7, are the length and time of MF correlation, respectively,
then (Vainstein 1980)

oA HArc
T 12npL2”

(77)

An estimation of the dimensionless quantity d=a/,/{u?) is
1 S Wu Ha
C3T W LCHY

(78)

Here S=1../<u?) /L, is the Strouhal number; ¥}, and #, are
the magnetic and kinetic fluctuating energies, respectively.

Equation (78) creates the possibility of estimating the quan-
tity 6 from experimental data. Measurements of the magnetic
helicity by Matthaeus & Goldstein (1982), from Voyager-1 and 2
provide us with the following values for J: 0.085 S, 0.272 S and
0.0013 S at heliocentric distances 1.0, 2.8 and 5 AU, respectively.
Assuming that the value of S is of order unity in the solar wind
plasma, we arrive at the conclusion that a~(1071-1072)./{u?)
at moderate heliocentric distances (1 AU, 2.8 AU). Note that the
measurements at a distance of about 2.8 AU, give a value of «
three times larger than at 1 AU. This is probably because the
measurements at 2.8 AU were made in the interaction region of
plasma streams, which have different velocities. In the region of
the streaming interaction, both the relative level of MF disturb-
ance and magnetic helicity density are large, leading to a rela-
tively large value of the large-scale EF E,. The observations at
5 AU show a relatively low level of MF fluctuations, as well as
low magnetic helicity density.

4. Particle transport in a strong regular magnetic field

At this time, information about the correlation of tensors I'y;,
I1,, and J,, introduced in Eqs. (41)—(43), is insufficient. There-
fore, it is difficult to estimate the diffusion coefficient D(¢) in
momentum space by Eq. (71) and/or the effective velocity W by
Eq. (68) in the general case. In this section, we establish the case
where the inequality (H?» < H32 holds, i.e. when MF disturb-
ances are weak. Thus, Eqgs. (68) and (71) may be simplified:

W=p,/<ui>/<H})> Hy, (79
D(p)= 3rA Ueff’ (80)
Ulr=a3<U ) H3/<H?). (81)

Here f, and oy are determined by Eqgs. (69) and (72). The
coefficient o5 represents the approximate ratio of the VF correla-
tion length to the MF correlation length. Due to Matthaeus &
Goldstein (1982), we can estimate the value of a3 ~ 1. Consequen-
tly, Eq. (80) for the coefficient D(p) can be rewritten to the form

2 2
<H2> 30A,

This value exceeds that estimated by Fermi (1949), Tverskoy
(1967) and Toptygin (1985) for the classical mechanism of the

D(p)~ Cut).

(82)
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Fermi acceleration by MF inhomogeneities moving randomly in
space by the factor (H3/{H?)). The estimation of W gives

CuyHy). (83)

~H 2>
By using the experimental data, Matthaeus & Goldstein
(1982) concluded that velocity fluctuations were relatively weakly
correlated with MF fluctuations in the solar wind (the value of
{u,H, ) is about one order smaller than its maximal real value).
Consequently, the velocity W contribution to both the CR ani-
sotropy and the particle energy change is negligible.
The substitution of Egs. (82) and (83) into (66) gives

p® .. H
= U 1
A, RNT7E5)

{uy Hy >2
G2 (H? >>3DA” ).

This expression shows that the existence of a cross-correlation of
VF and MF causes a decrease in the rate of the Fermi acceler-
ation. We can determine the value of <u, H; > with a knowledge
of the VF statistics of media. The calculation in the frame of
linear MHD yields

(84)

<u1H1>Eyaa(r t. Fi, tl)

(2 )3J drf dr’ '[d3kxkku.@w,u(k; —-1,7), (85)

where &, is the trace of the cross-correlator and 2,, .(k; —1,7')
the Fourier transform of the third-rank correlation tensor of two-
point VF moments (see Monin & Yaglom 1975). Note that, in
addition, a linear theory gives (u,*H;»=0 in the case of an
isotropic random field.

5. Particle transport in a weak regular magnetic field

Let us now consider the opposite limiting case of HZ <{H?),
where the velocity W is defined by the tensor I',; in Eq. (41).
From the MHD equations, it follows that

1 ©
Fal(r)z —Zsluv j dr{gﬂv(r’ —'T)Vﬂ’@au(r> _T)
0

_Qﬂp(r, _T)Vﬂgzav(r,
_yvﬂ(—

— 1)+ pulr,
r, I)Vﬂyau(r’ —T)}

=)V L (=1, 7)

(86)

If the fluctuations of both VF and MF are statistically anisotro-
pic, (Eq. (50), for example), then by using Eq. (86) we obtain the
complicated expression for W. A simple estimation provides the
value of W, which is smaller than the Alfvén velocity. Thus, in the
case of a weak regular MF, we can also neglect the contribution
of W in processes of particle transport. The principal contribu-
tion to the diffusion coefficient D(p), Eq. (71), is given by the
correlation tensor 7,,. Using the Millionschikov hypothesis (cf.
Monin & Yaglom 1975), the estimation of the fourth moment in
Eq. (43) yields.

1
2 Saﬂysluv {’@Bu(r)'@yv(r) + yvﬂ(— r)yyu (r)}

T )= (87)
In the result,
D(p)=p*u/3vA; (88)
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ugff =a,{ui>=

2 e 1
B, J dx J dy{2(x, )2 (x, )
0 -1

+(1=y) ¥, (x, 1) T+(1—y*)W2(x, ) (x, y) — 21— y?)?
X W2(x, y)¥s(x, y)+2[02(x, ) +y @ Lx, ) 1[D(x, y)
+y @, (x, )]-¥ (x, =) [2%¥7 (x, y) + (1 —y*) ¥ (x, y)]
—(1=y)¥T(x, =P (x, y)—2(1—y2)*¥L(x, —y)

x W{{x, y)—2[@7 (x,— y) — y BY(x, — y)]

x [0 (x, y)+y®{(x, »)1}. (89)

In a situation where the turbulence is isotropic, the estimation of
the effective velocity in Eq. (89) is determined by the coefficient

a1=” dx(\lﬂlf@—\PS’W+cbd>-@—q>5’cpy)}/j
0

0

dx¥(x).

(90)

If we suppose that the correlation functions of both VF and MF
(¥Z and P) have the same form, and both the cross-correlation
tensor <,; and antisymmetric part of MF tensor vanish, then
according to Jokipii & Coleman (1968), Fisk et al. (1974) and
Matthaeus & Goldstein (1982), the MF fluctuation spectrum is
power law in the high-frequency range and depends weakly on
the frequency in the low-frequency range. Thus we can use the
correlation function W(r) in the form

23-W12 r \G-D2 r
W’zm{(z) sen(7)

2

1 r (v+1)/2 r
I\ L Ki-v2 )

where K, (x) is the McDonald function and I'(x) is the Gamma
function. Then

3 v 1 v v—1
w3 =) () e

If the spectral index v=>5/3 (the Kolmogorov spectrum), then
oy ~0.53.

Let the correlation length of VF sufficiently exceed the cor-
relation length of MF, then the expression (90) results in o, ~ 1,
and D(p) acquires the well-known form (cf. Fermi 1949; Toptygin
1985):

©n

©2)

p?
~—(y?
D(p)~ 7+ <uids

which defines the acceleration effectiveness of the Fermi

mechanism.

6. Discussion

The diffusion coefficient D, of particles in Eq. (66) can be re-
written in the form

p’ H, H3
Dp=3v/\n 3UA“<u1><y1+vzm+y3<H2>> 93)
where
n=oy =P y=0, =2 yi=as—pi. (%4)
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The quantities a,, a,, a3, f and B, are defined by Egs. (69), (70),
(72) and (90). However, as we have mentioned in Sect. 4, the
detailed information about all of the cited correlators is presently
insufficient. Therefore, we restrict ourselves to estimations.

The first term in Eq. (93) defines the particle acceleration
effect under the action of the large-scale EF, introduced in Eq.
(56). The second term is connected with the effect of the stochastic
EF. The presence of effective velocity W [Egs. (68) and (94)] leads
to a decrease in the stochastic particle acceleration rate, which is
connected with the cross-correlation of VF and MF [see Eq.
(84)]. According to Matthaeus & Goldstein (1982), the cross-
correlation coefficient of VF and MF has a typical value of 0.1,
but it can also achieve a large value (Burlaga & Turner 1976;
Leorat et al. 1981). Let us consider a simplified case where we
may neglect the spectral functions ®2 in Eq. (90) and in which
the triple correlators vanish. Then the quantities B, «, and y,
have values much less than 1, y;=a;— 8%, and y, =q,.

Now we distinguish two situations: low and high cross-
correlations of VF and MF. If the cross-correlation is low, then
B <1 and the values of y, and 7y, are probably in the range 0.5-1
[Eq. (92)], and Eq. (93) yields

p2

D, ~x——
P 3UA||

2 Py (14000 0.5-1
U +3”A|| <u1>< +<H%>>a, ax0.5-1.
The value of the second term depends on the value of H2/{H?).
Smith (1974) mentions a measured value H3/{(H?)»~3-10 and
Grappin et al. (1982) choose a value H3/{H?) =4, in agreement
with the HELIOS 1 and 2 observations. Matthaeus et al. (1986)
analyzed ISEE-3 magnetic field data at 1 AU. They found that
(H3/<(H?»)'? may achieve a value 1.05-0.2. Consequently, the
value of a(1+ H32/{H?)) is approximately 1-5.

If the cross-correlation of VF and MF is high, then 8, ~ 1 and
y3=03—pB3<1, because a3~ 1. In a situation where the cross-
correlation function of both VF and MF (¥2 and W) have the
same form,

oy z0.53—<J0o dx[‘l‘y(x)]z)/Jco dx¥(x)<1,
0 0

and y; =, < 1. Then the second term in brackets in Eq. (93) has
value much less than 1, and the Fermi acceleration seems to be
damped. However, in more realistic situations where the correla-
tion length of VF sufficiently exceeds the correlation length of
MF, y, =0, ~ 1.

Note that both non-zero triple correlators (see § and «,) and
the functions @' (see «,) lead to similar estimations.

Thus, the mean value of the coefficient in brackets in Eq. (93),
is approximately 1, and the relative effectiveness of the particle
acceleration is determined by the parameter

2
r=vad= (4 ) o=

o

NI

For estimating the value of #, it is necessary to know the
longitudinal (with respect to H,) transport path dependence on
the particle energy. Observations of solar CR propagation (cf.
Urch & Gleeson 1972; Zwickl & Webber 1977a, b); Miroshni-
chenko 1980) show weak A dependence on the particle energy in
the range of about ten to a few hundred MeV for protons, and
A, ~10'2 cm. The transport path increases with the growth of
particle energy, but the dependence A} (p)~p® (cf. Dorman &
Katz 1977; Toptygin 1985) holds only for sufficiently high ener-

93)

gies up to 10 GeV. Consequently, the above longitudinal trans-
port path A} can considerably exceed the gyroradius R in H,, if
the particle energy is small. We choose the following simple A,
dependence on particle momentum:

Aj(p)=Ao(1+p/po+p?/p}). (96)

Here Ay=10'2 cm, and the momentum p, and p, correspond to
the proton kinetic energy E,;,~1 and 10 GeV, respectively. This
simple dependence describes a relatively constant Ay in the low-
energy range and a quadratic dependence in the high-energy
range. Thus, we can approximate the character of A;; dependence
on the momentum (energy) of particles.

The dependence of the quantity # on the energy, see Eq. (95),
is shown in Fig. 1 for various values of the parameter 8. The
curve (a) shows the ratio (A/R) dependence on the energy, when

the gyroradius is computed for ./ {H?> =510 G. We see that
A >R in the given energy interval, and that A, exceeds the
gyroradius by at least two orders in the proton energy range of
up to 10 MeV. The curve (b) (for §=0.1) shows that #>1 in all
energy intervals. Therefore, in this case the particle acceleration
by the large-scale EF, Eq. (56), prevails for protons of all energies.
Namely, the parameter #>10 in the low-energy range (up to
10 MeV), and the relative effectiveness of particle acceleration by
the large-scale EF exceeds the effectiveness of the Fermi acceler-
ation mechanism (1> 100) by two orders. The curve (c) corres-
ponds to 6 =0.05. In this case, the parameter n< 1 for energies of
800 MeV up to 90 GeV, i.e. the Fermi mechanism predominates
for these particles. In the low-energy interval of a few tens up to
hundreds of MeV, the acceleration by the large-scale EF is more
effective. If 6=0.01 (curve d), then the acceleration by the large-
scale EF is essential only in the very low-energy range up to
10 MeV. The acceleration effectiveness of these particles exceeds
the statistical acceleration by the Fermi mechanism by
approximately one order.

The above estimations show that the particle acceleration by
the large-scale EF, which is caused by the existence of the non-
mirrorsymmetric stochastic MF in a moving conductive fluid, is
most effective for low-energy particles. If the quantity « in Eq.
(56) has sufficient value (6~ 10~ '—10"2), as occurs in a cosmic
plasma, then the acceleration of the charged CR particles by the
large-scale EF prevails in the energy gain over Fermi’s mech-
anism in a wide energy interval up to 1 GeV.

In addition, it follows from Eq. (57) for the vector of particle
flux density J, that the large-scale EF contributes changes in CR

’P T T T T

10°

Ey[MeV]

Fig. 1. Plot of the relative effectiveness n [Eq. (95)], vs E,;, for different
values of the parameter 6 [Eq. (78)]
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anisotropy, because the convective component of particle flux
density depends on the effective velocity U and on «. Substituting
Eqgs. (57) and (65) into (30), we obtain the explicit form of the
particle transport equation:

N
6,N=VQ,KMV,1N—(S-V)N+V(u0—U—W)ga—
P
2 N 10 N
—Zpov) 42 L pep
POV G D, o)
where
1o,
—ug—Wt— PP U.
S=u, +3p2 6pp (98)

As noted above, the velocity W does not exceed the Alfvén
velocity. The effective velocity U is also small in comparison with
the HD velocity u,. Thus Eq. (97) takes the form

N
N =Y., V,N — (g V)N + (V- 1g) PO
30p
2 ON 1 0 oN
Py Copep OV 99
3( )6p+p7-6pp P ap 99)

which differs from the well-known transport equation (Dolginov
& Toptygin 1966, Gleeson & Axford 1967; Dorman & Katz
1977), by the presence of the mixed derivative component, and
also by the expression for the diffusion coefficient D, in
momentum space [defined in Eq. (93)], which includes the par-
ticle acceleration by the large-scale electric field.

7. Conclusion

Our result shows that the transport of high-energy charged
particles up to 1 GeV in the medium of a reflective non-invariant
magnetic field is accompanied by an additional particle acceler-
ation. This acceleration is caused by the appearance of the large-
scale electric field in the “magnetized” fluid, along with the
classical effect of energy gain by multiple scattering in randomly
moving magnetic field inhomogeneities.

The characteristic peculiarity of the considered acceleration
mechanism consists of the fact that the mean electric field, which
is connected with the gyrotropic turbulence, is directed along the
large-scale magnetic field. This means that the electric field,
simultaneously with the particle acceleration, leads to convective
transport with effective velocity U [Eq. (62)] along the direction
of the regular MF. This U determines the contribution of the
large-scale electric field to the CR anisotropy of particles. The
estimations show that the considered acceleration mechanism is
especially effective for strongly “magnetized” particles, for which
the inequality (A;;/R)> 1 holds. This condition is well satisfied by
the CR particles of energy up to 1 GeV.

Appendix

In this appendix, we briefly describe the functional method for
computing correlators that figure in this discussion (cf. Rytov
et al. 1978; Stehlik et al. 1983).

Let us consider a cross-correlation function (or a tensor)
{R[x]£[x]), where x is a 3n-dimensional vector {H,,u,, ... };
fi[x] is a functional of stochastic fields and depends para-
metrically on the time ¢, and the functional R[x] depends on the
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quantities , explicitly. For example, in <H,,(r;, t;)f(r, p, ) is
R[xk]=H,(ry,t,), and f,[k]=f[r, p, t; k] is the functional of the
fields H,, u,, . . . In this work, the distribution function satisfies
the kinetic equation (8) and thus depends on the form of the
random function, k=F, for example.

From the principle of causality, it is evident that f(r, p, t)
depends on k(r,, t,) only for ¢, <t.The kinetic equation is a first-
order differential equation with initial conditions at t,=0. Sub-
sequently, the functional f[r, p, t; k] depends on k(r,, t,) only for
t,€€0, t):

Of [k]/oK,(ri,t,)=0 for t,;¢<0,¢t).

Let x(r, t) be an arbitrary, but determined, vector function in
3n-dimensional space, defined on the interval <0, t>. The func-
tional f,[x+#] may be expanded in series around the function
y(r, t), ie.

' )
filk+1] =exp{f dz Jd% K (P, 7) <%> }ﬂ['/l
0 5’1a(p, T)

If the functional Q, is defined as

(o [ ornc])
(nf o]

a simple calculation leads to an expression for the considered
correlation tensor of the form

Q[f]= (A1)

CROKY L+ =, [%]mmn] > (A2
where the relation f,[#]={f,[#]) has been used. The relation
(A2) was obtained first by Klyatskin & Tatarski (1973). It is
evident from the expression (A1) that the functional Q, depends
on both the character of the random field x and the concrete form
of the functional R[k].

Let us consider in the following a random field x having a
gaussian probability distribution, and specify its characteristic
functional in the interval <0, t>. Note that, by the characteristic
functional of the random field (cf. Monin & Yaglom 1975), we
mean the functional

O, [n(r,t)]= <exp{i Jdt Jd3r a(r, 1), (1, t)}>.

From the theory of random functions, it follows that
Cexpik,y=exp{—3<{k; )} (A3)

and the integral A= [{dt [d®pn,x, has a Gaussian distribution
with mean (4> =0, if (k) =0. In this case

t t
<A2>=J dr, stp1 f dr, stpz Dag (P15 715 P25 )
0 0

X Ca(pl’ TI)Cﬂ(pZ’ TZ)'

Now %, is the correlation tensor of the random field x. The
characteristic functional of the field x equals, by (A3),

I t
(Dt’"[gze)(p{_if drt, JdSpIJ dz, Jdpz
0 0

X@aﬂ(ﬂh11;172’Tz)ca(l’l’fx)c;z(ﬂz,fz)} (A4)
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Let us now take a fairly general form of the functional

RIK]= R[] =exp {i r dr j Epr(p . r)}

and assume that {(r,, t;)=0 for t,¢<0, t>. We obtain successively

Q,[C]=<exp{if dt jd3pkaca+fw dr Idﬂma( 0 )}>
0 — 5']0:
x <exp{i J‘ dr Jd3p xaca}>_l
0
X exp<i wdjd"’ ﬁaa}> - i
< { j—oo T P el §=0 Dy c+18]]
x® 1 [E]0 ! E]®é[q+x]”=0.
From relations (A4) and (A5), we obtain
0,[01= <exp Hw dr dep &, r)[xa(p, 9
+ijod1'1 Jd3p1 @aﬂ(p’ T;pl’tl)Cﬂ(p19T1)i|}>'

Finally expression sought for the correlation tensor is

(R [E1f[x+7]>

t
=<R§|:K(p,‘5)+J‘ drl Jda‘pleagaﬁ(p’ 7 P1 tl)
0

y I}
6’7,9(/’1, 7,)

(A5)

]><ﬁ[l€+r/] 2 (A6)

where e, is the unit vector on the a-axis in 3n-dimensional space.
Because R[a+b]=R[a] - R[b], the relation (A6) can also be
written in a form more convenient for use:

(R [E1£[x]) = <CXP {ijw dtfd:‘PKa(lh IV 1)}>

x <exp{i de J d’p é.,(p,r)f dr, fd% Dag
- 0

)
X (p,T;p1, t1)xm}f:['f+'l]>

n=0

(A7)
The latter correlator on the right-hand side of Eq. (A7) may be
expressed as

<f;|:x(p9 T)+l‘[ dtl fdspl éu(pb Tl)@aﬁ(p7 T;pl ’ tl)ea]>'

Let us now calculate the simplest correlation function. From
Eq. (A7), it follows that

Cia(r, S, 1))

d
N < e,y LTtk >’c=o

ALS I

3 LGPy T) s
led P19aﬁ(", P1 Tl)anﬂ(p“tl)

&f[r. t; x] >
8";14(P1 »T1) .

n=0

=f!d

0

=fd (A8)
0

T Jd3pl Do, 8 P15 t1)<

This relation is known as the Furutsu—Noviskov formula (cf.
Furutsu 1963; Novikov 1964). Equation (A8) is Eq. (14) in the
text.
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