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1. INTRODUCTION

Among the vast variety of Alfvén waves in the
Earth’s magnetosphere, there are two limiting cases:
toroidally and poloidally polarized waves. In the first
case, the magnetic field lines oscillate in the azimuthal
direction (along the binormal to them), whereas in the
second case, they oscillate in the radial direction
(across the magnetic shells). Accordingly, the electric
field oscillates in the radial direction in the first case
and in the azimuthal direction in the second. The ques-
tion arises of what are the sources of such waves. It is
suggested that toroidally polarized Alfvén waves are
generated resonantly by fast magnetosonic waves com-
ing from the outer regions of the magnetosphere [1]. As
for the poloidally polarized Alfvén waves, they are
thought to be excited by the particles injected into the
magnetosphere during magnetic substorms. There is
some experimental evidence in support of this hypoth-
esis [2, 3]. It is widely believed that the waves are
excited by unstable populations of 10- to 150-keV pro-
tons via the bounce-drift resonance mechanism (the
bounce-drift instability) [4, 5].

In terms of this mechanism, however, it is impossi-
ble to explain a number of important features of the
waves under discussion. First, the observed waves have
quite definite azimuthal wavenumbers 

 

m

 

. For the most
commonly observed unstable high-energy proton dis-
tributions, however, the instability growth rate weakly
depends on the azimuthal wavenumber [6]. Therefore,
the instability cannot select a narrow range of azi-
muthal wavenumbers. Second, the direction of the

phase velocity of the observed poloidal Alfvén waves
usually coincides with that of proton drift in a nonuni-
form magnetic field. However, the instability can
equally well generate waves propagating in the oppo-
site direction [6]. Finally, as was shown in [7, 8], the
poloidal waves are rapidly converted into toroidal ones,
so the instability amplifies toroidal, rather than poloi-
dal, waves.

It is therefore necessary to consider not only reso-
nant but also nonresonant mechanisms for generating
poloidal Alfvén waves. The excitation of MHD waves
by an external alternating current was studied in [9, 10].
For magnetospheric conditions, this mechanism was
considered in [11], where Alfvén waves were assumed
to be generated by the current of particles injected into
the magnetosphere. In the nonuniform magnetic field of
the Earth, such particles drift azimuthally, producing an
alternating current, because they are injected in the
form of a cloud that has a finite size in the azimuthal
direction. This alternating current generates an Alfvén
wave. The clouds can also be regarded as nonuniformi-
ties of the magnetospheric ring current. The excitation
of Alfvén waves by an unsteady external current was
considered in [12], where additional arguments in sup-
port of this mechanism were presented.

In [9–12], the plasma was assumed to be homoge-
neous (although, in [11], it was additionally assumed to
be bounded along the magnetic field lines). However,
the magnetospheric conditions are inherently nonuni-
form: in particular, the plasma density and magnetic
field strength vary both along the magnetic field lines
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and across the magnetic shells; moreover, the field lines
are curved substantially. In the present paper, we inves-
tigate the excitation of Alfvén waves in an axisymmet-
ric magnetosphere model in which these factors are
taken into account. The problem is treated in the fol-
lowing formulation. At time 

 

t

 

 = 0, a cloud of high-
energy particles is injected into an axisymmetric zero-
pressure magnetospheric plasma. The particles then
drift in the azimuthal direction. The aim is to analyze
the spatiotemporal structure and polarization of the
excited waves and to obtain the expressions for their
amplitudes.

In studying the generation mechanism proposed
here, we use the general approach of [9, 10] and utilize
as a basis the theory of Alfvén eigenmodes in an axi-
symmetric magnetosphere that was constructed in [13,
14], as well as the method for solving the Alfvén wave
equation developed there. In our analysis, the right-
hand side of the Alfvén wave equation is a source term
describing the generation of the wave field by an azi-
muthally moving nonuniformity—a cloud of drifting
protons that were injected into the magnetosphere. In
order to consider the generated Alfvén waves in the lin-
ear approximation, the particle density within the non-
uniformity is assumed to be low in comparison with the
density of the background plasma. The external current
is assumed to be prescribed; i.e., the inverse effect of
the waves on the current is ignored. This approach can
well be applied to study the initial stage of the wave
field evolution (see, e.g., [15]).

2. WAVE EQUATION

We will use an axisymmetric magnetosphere model
in which the background plasma is inhomogeneous
along the magnetic field lines and across the magnetic
shells and the lines themselves are curved. We intro-
duce a curvilinear coordinate system {

 

x

 

1

 

, 

 

x

 

2

 

, 

 

x

 

3

 

} (see
Fig. 1) in which the coordinate surfaces 

 

x

 

1

 

 = const coin-

cide with the magnetic shells, the coordinate 

 

x

 

2

 

 labels
the magnetic field lines on a magnetic surface, and the
coordinate 

 

x

 

3

 

 gives the position of a point on the line.
The field lines are coordinate lines such that 

 

x

 

1

 

 = const
and 

 

x

 

2

 

 = const. The coordinate 

 

x

 

1

 

 corresponds to the
radial coordinate and the coordinate 

 

x

 

2

 

 is an analogue of
the azimuthal coordinate (whose role can be played,
e.g., by the azimuthal angle 

 

ϕ

 

). The physical length
along a field line is expressed in terms of the length ele-

ment along the third coordinate as 

 

dl

 

3

 

 = 

 

, where

 

g

 

3

 

 is the metric tensor component and  is the Lamé

coefficient. Analogously, we have 

 

dl

 

1

 

 = 

 

 and

 

dl

 

2

 

 = 

 

. The determinant of the metric tensor is

 

g

 

 = 

 

g

 

1

 

g

 

2

 

g

 

3

 

. We also introduce the following notation: 

 

B

 

and 

 

ρ

 

 are the equilibrium values of the magnetic field
and plasma density, 

 

ξ

 

 is the plasma displacement from
the equilibrium position, 

 

E

 

 and 

 

b

 

 are the electric and
magnetic fields of the wave, and 

 

j

 

 is the wave current
density. The wave source is the unsteady transverse
(azimuthal) current (with the density 

 

j

 

ext

 

) of the drifting
particles in a cloud injected into the magnetosphere [9].
In the approximate model at hand, the steady current is
zero.

In the cold background plasma approximation, the
linearized equation of small oscillations has the form

 

. (1)

 

The electrodynamic quantities are related by the equa-
tions

 

(2)

 

(Ampère’s law),

 

(3)

 

(Maxwell’s equation), and

 

(4)

 

(the condition that the magnetic field is frozen in the
plasma). Note that the external current enters only into
Eq. (2) [10]. In the perfectly conducting plasma
approximation, the longitudinal component of the wave
electric field is zero, so the electric field is two-dimen-
sional and its components are tangential to the surfaces
orthogonal to the magnetic field lines. From Eqs. (1)–
(4), we obtain the following equation for the electric
field 

 

E

 

:

 

(5)
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Fig. 1.

 

 Coordinate system.
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where 

 

A

 

 = 

 

B/  is the Alfvén speed. The electric
field of an Alfvén wave can be represented as

(6)

where Φ is a scalar function (potential) and —⊥ is the
nabla operator in the transverse coordinates. Substitut-
ing expression (6) into Eq. (5) and acting on the result-
ing equation by the operator —⊥, we arrive at the equa-
tion

(7)

where  = jext /  is the contravariant component of
the vector jext along the x2 coordinate and

is the Alfvén differential operator. We have thus derived
a nonuniform partial differential equation describing
Alfvén waves generated by the current of the azimuth-
ally drifting particles. We choose the boundary condi-
tions

the second of which corresponds to a complete reflec-

tion of the wave from the ionosphere (the points  are
the intersection points of a magnetic field line with the
upper boundary of the ionosphere). In what follows, the
damping due to the finite conductivity of the iono-
spheric plasma will be ignored.

The cloud of the drifting particles that produce the
azimuthal current is assumed to be highly localized in
the azimuthal direction; i.e.,

(8)

Here, Ω is the angular drift velocity in a nonuniform
magnetic field; e is the charge of a particle; n0 is the par-
ticle density; the theta function Θ(t) determines the
time at which the source is switched on (i.e., at which
the particles begin to be injected into the magneto-
sphere); and ϕ is the azimuthal angle, which will be
used below as the azimuthal coordinate x2. The physical
current can be obtained by replacing the angular veloc-

ity in expression (8) with the linear velocity V = ,
which depends on the x1 and x3 coordinates.

3. SOLUTION OF THE WAVE EQUATION

We solve wave equation (7) by applying the Fourier
transformation in ϕ and t. The transformation yields the

4πρ
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following differential equation in the two variables x1

and x3:

, (9)

where  is the Fourier transformed Alfvén operator
�A, which is analogous to the Alfvén operator for a
monochromatic wave with the frequency ω and azi-
muthal wavenumber m and is defined as

Here,

is the toroidal mode operator;

is the poloidal mode operator; ω and m are the parame-
ters of the Fourier transformation in time (the fre-
quency) and in the azimuthal angle (the azimuthal
wavenumber), respectively; and

Knowing the solution to Eq. (9), we can find a solu-
tion to wave equation (7) by applying the inverse Fou-
rier transformation,

(10)

The method for solving Eq. (9) was developed in
[14]. In that paper, it was shown that the function Φmω
can be represented as

(11)

where TN(x1, x3) is the eigenfunction of the toroidal

operator . This function describes the longitudinal
structure of the Nth longitudinal standing wave mode
and is normalized so that

where the angle brackets denote integration along a
magnetic field line between two magnetically conju-

gate points of the ionosphere, 〈…〉 = .

The function RN(x1), which describes the structure
of this mode across the magnetic shells, is determined

L̂AΦmω q̃mω=

L̂A

L̂A
∂

∂x
1

-------- L̂T ω( ) ∂
∂x

1
-------- m

2
L̂P ω( ).–≡

L̂T ω( ) ∂
∂x

3
--------

g2

g
------- ∂

∂x
3

-------- g
g1
-------ω2

A
2

------+=

L̂P ω( ) ∂
∂x

3
--------

g1

g
------- ∂

∂x
3

-------- g
g2
-------ω2

A
2

------+=

q̃mω = 2mω g
en0Ω

c
2

------------- 1
2π
------ Θ t '( ) iωt ' imΩt '–( ) t '.dexp

∞–

+∞

∫–

Φ x
1

x
2

x
3

t, , ,( ) = ω mΦmω imϕ iωt–( ).expd

∞–

+∞

∫d

∞–

+∞

∫

Φmω RN x
1( )T N x

1
x

3,( ),≈

L̂T

g
g1
-------

T N
2

A
2

------ 1,=

…( ) x
3

d
x–

3

x+
3

∫



394

PLASMA PHYSICS REPORTS      Vol. 33      No. 5      2007

MAGER, KLIMUSHKIN

from the solution to the differential equation (see also
[13])

(12)

where

(13)

Equation (12) was derived by using the following linear
expansions of the eigenfrequencies of the toroidal and
poloidal operators in the vicinity of a certain magnetic
shell (at a distance L from it) in the equatorial plane:

for the toroidal frequency and

for the poloidal frequency. Here, the functions ΩTN(x1)
and ΩPN(x1) are monotonically decreasing over most of
the magnetosphere. In Eq. (12), the frequency-depen-

dent functions (ω) and (ω) represent the coor-
dinates of the magnetic surfaces on which the wave fre-
quency is equal to the toroidal and the poloidal fre-

quency, i.e., (ω) and (ω) are solutions to the
equations ω = ΩTN(x1) and ω = ΩPN(x1):

(14)

where ∆N is the distance between the toroidal and poloi-
dal surfaces (in a cold plasma, the poloidal surface is
nearer to the Earth than the toroidal one).

Equation (12) has the solution [16]
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where we have introduced the notation

Hence, according to expressions (10) and (11), the
solution to wave equation (7) has the form

(16)

where the function

(17)

describes the transverse structure and temporal evolu-
tion of the wave. With allowance for relationships (14)
and expression (15), the expression for �N can be
reduced to (see the Appendix)

(18)

where

(19)

Solution (18) is valid for steady waves on time scales
such that Ω0t � 1, i.e., many wave periods after the
injection of the particles into the magnetosphere.

4. STRUCTURE AND EVOLUTION 
OF THE WAVE FIELD

Let us consider a source moving at a velocity much
lower than the Alfvén speed. In this case, the double
integral in expression (18) can be calculated by the sta-
tionary-phase method under the assumption that the
parameter µ = Ω0/Ω is large. The stationary-phase point
(m0, κ0) can be found from the conditions
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(21)

From Eq. (20) we find the relationship between κ0 and
m0:

(22)

where

From Eq. (21) we find κ0:

(23)

In Eq. (21), we have omitted the last two terms because
they are proportional to the small parameter δ = ∆N/l �
1 (in a cold plasma, the distance ∆N between the toroi-
dal and poloidal surfaces is much less than the typical
scale lengths of the magnetosphere and is finite at
|κ0 |  ∞ and m0  ∞). Thus, the approximation at
hand is valid for |ϕ – Ωt | � δ, i.e., for distances from
the source that are much larger than ∆N. From relation-
ships (22) and (23) we obtain the equation for m0:

(24)

Let us consider two limiting cases:
(i) at short distances from the source, Ωt − ϕ  0,

we have
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(ii) at long distances from the source, |Ωt − ϕ| 
∞, we have
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We thus see that m0 changes within a relatively narrow
interval of width µδ, from mP (near the source) to mT

(far from the source or an infinitely long time after the
passage of the source). Taking into account this circum-
stance, we represent m0 as a sum of two terms:

Substituting this representation into Eq. (24) and ignor-
ing the terms proportional to δ2 and δ3, we find m' to
arrive at the following expression for m0:
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In the vicinity of the stationary-phase point (m0, κ0),
phase expansion (19) yields

(26)

where

The quantity U, which enters into expansion (26), is
proportional to the small parameter δ and is finite. The
quantities m0 and κ0 are proportional to the large
parameter µ, so A0 and B0 are proportional to δ/µ and C0
is proportional to 1/µ. As a result, expansion (26) for
the phase takes the form

(27)

According to the stationary-phase method, we reduce
expression (18) for �N to

After integration, we obtain the following final approx-
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is its amplitude. As is seen, expression (30) contains the
theta function Θ(Ωt – ϕ). This indicates that, in the
approximation at hand, there is no wave field ahead of
the source.

From expression (29) for the phase, we can readily
determine the frequency of the wave and its lengths in
the azimuthal and radial directions. These wave param-
eters are described by the following approximate
expressions:

(31)

for the wave frequency,

(32)

for the azimuthal wavelength and the azimuthal compo-
nent of the wave vector, and

(33)

for the radial wavelength and the radial component of
the wave vector. Consequently, the frequency of the
wave and its length in the azimuthal direction depend
on the radial coordinate x1. They also depend on time:
as the source moves farther and farther away, the fre-
quency ω changes from ΩPN to ΩTN and λϕ changes
from 2πL/mP to 2πL/mT. However, the time dependence
is very weak because, in a cold plasma, ΩPN ≈ ΩTN.

What is even more important is that the radial com-
ponent of the wave vector depends strongly on time.
For Ωt – ϕ � 0, the radial wave vector component is very
small, kr � kϕ. As the source moves away from a point
at a given azimuthal position, the radial component
increases (see Fig. 2), i.e., kr  ∞ for Ωt – ϕ  ∞.
From expressions (6) and (28) it follows, however, that
the wave polarization is expressed through the ratio
between kr and kϕ: |Eϕ/Er | = kϕ/kr. Therefore, the gener-
ated wave has an initially poloidal polarization, Er �
Eϕ, and, as time elapses, it is converted into a wave with
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a toroidal polarization, Er � Eϕ. As the distance from
the source increases, the azimuthal component of the
electric field, Eϕ, decreases as (Ωt – ϕ)–1, while the
radial component, Er, approaches a constant value, so
the amplitude of oscillations of the wave electric field
E always remains constant. The characteristic transfor-
mation time is equal to

(34)

which corresponds to sufficiently long angular dis-
tances from the source, φ = Ωτ ~ 1. An initially poloidal
pulse-excited Alfvén wave transforms into a toroidal
wave in a similar way (see, e.g., [8]) on the same time
scale, τ ~ m/ω (where m is the azimuthal wavenumber).

Let us estimate the amplitude of the generated wave.
From expressions (13), (16), and (30), we obtain

where we have used the normalization condition for TN,

which implies that TN ~ A/L and  ~ n0AL.
From expression (6) we find the wave electric field,

(35)

and, consequently, the wave magnetic field,

. (36)

Using expression (36), we can determine the proton
density in the drifting cloud, n0, that is required for the
generation of Alfvén waves with amplitudes consistent
with the observed magnetic field strengths b in the mag-
netosphere:

The waves that are generated on small azimuthal
scales in the magnetosphere have amplitudes of up to
b ~ 40 × 10–5 G, their periods and azimuthal wavenum-
bers being about 100 s and m ~ 20–100, respectively.
Such waves are most often observed in the vicinity of a
magnetic shell with a radius of about six Earth radii [3].
The characteristic Alfvén speed is ~1000 km/s. In order
for Alfvén waves with such parameters to be generated,
the proton density in the drifting cloud should be
n0 ~ 10–2 cm–3, which is much lower than the density of
the background (cold) plasma. The energy � of protons,
which determines their drift velocity in a nonuniform
magnetic field (the source velocity Ω), should be about
50 keV (the azimuthal wavenumber of the generated
wave is m ~ ω/Ω). Protons with such energies are often
observed simultaneously with waves having large azi-
muthal wavenumbers m.
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Fig. 2. Contour lines of the phase. The contours correspond
to the phases that are multiples of 2π. The source, which is
at ϕ – Ωt = 0, moves from left to right. The ordinate is the
dimensionless radial coordinate ξ = x1/l.
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5. CONCLUSIONS

The general pattern of the generation of an Alfvén
wave by a moving plasma nonuniformity (a cloud of
high-energy particles drifting in the azimuthal drift
direction) is as follows. At a point with a given azi-
muthal coordinate, the wave is excited immediately
after the passage of the cloud. The wave propagates in
the source propagation direction and initially has a
poloidal polarization. As the source moves away from
that point, the wave polarization gradually changes
from poloidal to toroidal. Under realistic assumptions
of the particle density and energy, the calculated ampli-
tudes of the generated waves are close to the observed
ones.

The mechanism studied in the present paper makes
it possible to explain the distinctive features of the azi-
muthally small-scale waves in the magnetosphere that
were mentioned in the Introduction:

(i) The azimuthal wavenumber m is completely deter-
mined by the eigenfrequency ω ~ ΩPN(x1) of the longitu-
dinal wave mode and by the propagation velocity Ω of
the source, m ~ ω/Ω. This explains why the observed
waves have definite azimuthal wavenumbers m.

(ii) According to observations, the phase velocity of
the poloidal Alfvén waves has the same direction as the
proton drift.

(iii) Although the wave at a point with a given azi-
muthal coordinate is converted into a toroidal wave, it
remains poloidally polarized over a fairly long time,
τ ~ m/ω. This is the case for sufficiently long angular
distances from the source, φ = Ωτ ~ 1. Moreover, the
source continues to move in the azimuthal direction,
exciting a poloidal wave at newer and newer points in
space; thus, in a certain sense, the wave always remains
poloidal. If we take into account the wave damping
(e.g., due to the finite conductivity of the ionospheric
plasma), then we can see that the wave does not have
enough time to be converted from a poloidal to a toroi-
dal one, so it is a poloidally polarized wave that has the
maximum amplitude.

As was mentioned in the Introduction, these charac-
teristic features of the waves with large azimuthal
wavenumbers cannot be adequately explained in terms
of the bounce–drift resonance mechanism. It should be
noted, however, that the wave excited by a moving
plasma nonuniformity can resonantly exchange energy
with the particles; as a result, the wave will undergo
collisionless damping or growth. In addition, the wave
field excited by the beam of injected particles can exert
a ponderomotive force on it, thereby leading to the for-
mation of a steady ring current. These questions, how-
ever, are beyond the scope of our study, which is
devoted to rather early stages of the wave field evolu-
tion.
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APPENDIX

Derivation of Expression (18)
With allowance for relationships (14), solution (15),

and the expression for q(ω, m) (see the notation in
Eq. (12)), function (17) can be written as

The last two integrals in this expressions are taken as
follows:

As a result, the function becomes
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In the limit Ω0t  ∞ (the upper limit in the integral
over κ), this expression reduces to formula (18).
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