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Abstract-Based on a general theory of penetration of low-frequency Alfven oscillations from the mag- 
netosphere to the Earth as developed in our previous paper, we have solved the problem of the distribution, 
over the Earth’s surface, of a disturbed magnetic field for particular kinds of standing Alfven waves. Four 
kinds of oscillations have been considered, namely toroidal Alfvbn waves excited by a monochromatic 
magnetosonic wave, by a sudden magnetosonic impulse and by a stochastic magnetosound as well as 
poloidal monochromatic Alfven waves. 

1. INTRODUCTION netosphere ; because it is closely associated with all 
papers of this series, we shall extensively use here the 
designations introduced in them. 

The present paper is a direct continuation of our pre- 
vious article (Leonovich and Mazur, 1991). Based 
on a general theory developed there we solve the prob- 
lem of the distribution, over the Earth’s surface, of an 
electromagnetic field induced by the particular kinds 
of Alfvin oscillations of the magnetosphere, i.e. stand- 
ing AlfvCn waves. A problem of such a kind was solved 
earlier by Hughes and Southwood (1976a,b). They 
used an extremely simple (“naive” as they call it) 
magnetospheric model in the form of a flat layer of 
perpendicularly inhomogeneous plasma bounded at 
its ends by parallel planes modelling the conjugate 
hemispheres of the Earth. 

The model we have used is more close to reality and 
includes a model of an axisymmetric magnetosphere 
and of ground layers which are described in detail by 
Leonovich and Mazur (1989a, 1991). We are using 
the solutions for standing AlfvCn waves in the mag- 
netosphere, which were obtained earlier (Leonovich 
and Mazur, 1989a,b, 1990) in terms of these models. 
In the present paper these solutions will be extended 
from the magnetosphere to the Earth’s surface. We 
shall consider the following kinds of standing AlfvCn 
waves: toroidal oscillations excited by a mono- 
chromatic magnetosound, by a sudden magnetosonic 
impulse and by a stochastic magnetosound as well as 
monochromatic poloidal AlfvCn waves. These solu- 
tions qualitatively represent the main properties of the 
most important types of real oscillations of the Earth’s 
magnetosphere. Thus, the present study completes in 
a sense, the above-cited series of our investigations of 
standing AlfvCn waves in an axisymmetric mag- 

2. A STANDING ALFVEN WAVE IN THE 

MAGNETOSPHERE 

In order to describe an axisymmetric magneto- 
sphere, we have used in our earlier papers a curvi- 
linear orthogonal coordinate system x’, x2, x3, in 
which the surfaces x’ = const coincide with magnetic 
shells, and coordinates x2 and x3 specify a field line 
on a given shell and a point on a given field line, 
respectively (see Fig. 1). Symmetry about the invert 
of the axial axis (i.e. North-South symmetry) is not 
assumed here. Therefore, the equatorial surface, 
which is a separatrix for the coordinate surfaces 
x3 = const, is generally not a flat one. We put x3 = 0 
on it. x: and x? denote coordinates of intersection 
of the field line with upper boundaries of the iono- 
spheres of the conjugate hemispheres. These quan- 
tities are functions of the magnetic shell : xi = xi 
(x’). The diagonal components of the metric tensor 
are denoted by gi (i = 1,2,3) and its determinant is 

9 = 919293. 

In the ground region of space, whose size is small 
compared with the Earth’s size, the coordinate lines 
of this curvilinear coordinate system approximately 
coincide with those of the Cartesian system (n,y,1) 
described in our previous paper. The quantities g1 can 
be considered constant here, and we denote them by 
gi*) (from here on we shall consider simultaneously 
the two conjugate hemispheres). Let us place the ori- 
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FIG. 1. THE COORDINATE SYSTEMS IN THE MERIDIONAL PLANE 
X2 = CONST AS USED IN THIS PAPER : (X’, X+-CURVILINEAR 

ORTHOGONAL COORDINATE SYSTEM TIED WITH GEOMAGNETIC 

FIELD LINES IN THE MAGNETOSPHERE ; (n, I)-LOCALLY-EU- 

CLIDEAN COORDINATE SYSTEM, WHOSE AXIS 1 IS TANGENT TO 
THE FIELD LINE NEAR THE IONOSPHERE ; AND (X, +-EUCLID- 

EAN COORDINATE SYSTEM, WHOSE AXIS Z IS VERTICAL. 

Points of intersection of the field line with the upper bound- 
ary of the ionosphere are denoted by xi and x? . 

gin of the coordinates of the system (n, y, I) at point 

(a’, .?, xl), where (a’, 2,) is a certain given field line, _ 
and 2: = xi (2’). For the region under consider- 

ation, we then have 

n = J@(x’ -X’), y = J@(x%2), 

1= TJp(X3--Xi), 

and 

xl-2’ =sx- ~ Sln(z-z,); 

X3 -2; = T %xr cs (z--z*). 

From the last formulae it follows, in particular, 

that on the ionosphere-magnetosphere boundary 
(z = ZA) : 

cm x+ x’ = 2’ + ----_& 
sin x* 

Js:) 

X3=x:f ------x = x; (x’). 

Jz 

Let B,(x’, x2, x3, t) be covariant components of a 

disturbed magnetic field and let &(x’,x2,x3,0) be 

their Fourier-harmonics in time. Physical components 

of all vectors will be denoted by a “cap” over the 

letter, specifically l?, = B,/&. On the ionosphere- 

magnetosphere boundary we have 

&,y(x, YY zA, f) 

= 8,,, ( 2’ + 3x,, x2+ &,x3*. t 
& x/G > . (1) 

An asterisk as the index will henceforth mean that a 

value of the quantity on the ionosphere-mag- 

netosphere boundary for any of the two conjugate 

hemispheres is taken. A formula analogous to (1) is 

valid also for the Fourier-transforms &,(x, y, zA, w). 

These latter ones can be expanded in terms of spatial 

Fourier-harmonics : 

m s s co 

&k y, zA, w> = dk a, 
-ox -m 

x B(k,, k,, zA, 0) exp (ik,x+ik,y). 

It is the functions BJx, y,z,, t) and &(kx, 
ky,zA,o) introduced in this way which are involved 

in formulae (63), (67) and (70) of our previous 

paper. 

3. THE GROUND FIELD OF A STANDING ALFVEN 

WAVE EXCITED BY A MONOCHROMATIC 

MAGNETOSOUND 

Leonovich and Mazur (1989a,b) constructed an 

analytic theory of resonance excitation of standing 

AlfvCn waves by a magnetosound in an axisymmetric 

magnetosphere which gives relatively simple formulae 

describing the space-time structure of the disturbance 

field in the magnetosphere. According to this theory, 

the excited AlfiG waves are nearly toroidal ones, i.e. 

the azimuthal component of the disturbanced mag- 

netic field is much larger than a normal one, & >> g, ; 
accordingly, the spatial scale of the oscillation in the 

direction normal to the magnetic shell is much less 

than the azimuthal one. For that reason, we shall 

confine ourselves to examining the azimuthal com- 

ponent j2 in the magnetosphere and, corres- 

pondingly, the meridional component B, on the 

ground. Having a property of toroidality, Alfvtn 

waves, in other respects, depend strongly on the 
character of magnetosonic oscillations. In this and in 

the next two sections we shall consider three different 

examples. 

Monochromatic magnetic sound with a given fre- 

quency w excites an AlfvCn wave in a narrow neigh- 

bourhood of the resonance magnetic shell, whose posi- 

tion is defined by the equation R,(x’) = w, where Q,, 

is the frequency of the N-th harmonic of toroidal 

eigen-oscillations of the magnetosphere. We shall 

restrict ourselves to the most typical case when the 
resonance shell lies in the region of monotonic vari- 
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ation of the function &(x1), where near the res- 
onance surface one can use the representation 

i-&Jx’) =n,(l-y). 
Here 2’ is a coordinate of the resonance surface, on 
which & = o. 

According to results reported by Leonovich and 
Mazur (1989a), the Alfven wave field is represented 
by the expression 

B,(x’,x2,x3,t) = M(X’,X2) 

X fiJx3)4($$ +ia)emimf. (3) 

The function 

fiN(X3) = &(_P, x3)/Jm 

represents the longitudinal structure of a standing 
wave. Index N denotes the harmonic number and is 
equal to the number of nodes of the function on a 
field line. When N >> 1, one can apply formulae of the 
WKB approximation : 

/ ? \I/2 1 ^ 
fMx3) = & (s,;*)‘,4 t ) 

Xcos(*J*). (4) 

This formula represents qualitatively precisely fiN(x3) 
even if N N 1. The function 4(t) represents the field 
structure along the normal to the magnetic shell. It 
has the following integral representation 

o(t) = -i%,,exp(-ic+icf), (5) 

which gives the asymptotic representations 

4%) = 

[-fexp(~i~3/z+i~) whenl-tco, (6a) 

1 

4 
when < + -co. (6b) 

This last formula is applicable not only when 5 + - cc 
but also throughout the entire sector 
0 < arg 5 < 411/3 of a complex plane c, in particular 
for imaginary positive values of 5. A more detailed 
description of the function 4(c) is given in the Appen- 
dix of a paper by Leonovich and Mazur (1989a). The 
parameter b defines the spatial scale of oscillations 
across the magnetic shells. It is given by the formula 

b = 2- 1/3pj3/1f/3, where pN is the dispersion length. 
The dimensionless parameter E = (IN/b)(yN/QN) char- 
acterizes the relative role of the dispersion and dis- 
sipation in the oscillation field structure. When E -CC 1, 
the dispersion is dominant. According to formula 
(6a), the oscillation field in the transverse direction is 
then an escaping wave. When E >> 1, the transverse 
structure is determined by the dissipation. In this case 
one can apply formula (6b) which gives a well-known 
expression 4 = (x’-f’+iab)-l. When E N 1, the 
roles of the dispersion and dissipation are compar- 
able. Finally, the function M(x’, x2) characterizes the 
Alfvin wave amplitude and is specified by the mag- 
netosound field. A typical scale of its variation in the 
variables x’ and x2 coincides with the one for the 
magnetic sound and is comparable with the size of the 
magnetosphere, i.e. is much larger than the value of 6. 

All of the above parameters are functions of the 
magnetic shell. If we restrict ourselves to the dayside 
magnetosphere, then with McIlwain’s parameter 
varying from L = 1.3-1.5 to L = 7-10, they vary in 
the range 

lN = (103-3. 104) km, 

pN = (0.1-30) km, and yN/R, = 10-‘-10-3. 

From this we have b = 3-300 km and E = 102-10-l. 
From formulae (1) and (3), on the ionosphere- 

magnetosphere boundary, we get 

B,(x, y, zA, f) = B,(x, J+#J $ +is eeim’, 
( ) 

(7) 
X 

which is designated 

B, = M(x’, x2)&,(x;) cos x, b, = b&/cos x. 

Q-4) 

The quantity b, is a typical transverse scale b projected 
onto the ionosphere. A typical range of its variation 
is b, = l-30 km. The field on the ground can be cal- 
culated by using formulae (70) of our previous paper ; 
however, it is easier to do this by passing to spatial 
Fourier-harmonics. From (5) and (7), by neglecting 
the weak dependence of b, on x and y, it is easy to 
obtain 

B,(k,, k,,, zA, 0’) = -iB,b,B(k,) 

x exp 
( . 

- ;k;b:-Ek,b, 
> 

6(k,,)6(o-a’). 

On substituting this expression into formula (63a) of 
our previous paper and by performing an inverse 
Fourier-transform, we get 
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s m 

B&x, y, 0, t) = B*(x, y) eC”* 
&(flm it exists in the ma~etosphere, does not manifest itself 

___ 
II ZP on the ground. 

When E >> 1, the transverse wave structure is also 

X4 
x-((z,-z)tanX absent in the magnetosphere. In this case, from (7) it 

6, * (‘I follows that 

This relationship, combined with (3) and (8), solves 
the problem of the coupling between the toroidal 
monochromatic wave in the magnetosphere and the 
field on the ground induced by it. 

Let us note the equality useful for the following 
treatment which follows from (7), (9) and formula 
(70a) of our previous paper : 

s a 

-no 

dx’P(x-x’# ($ +iz) = c dz?$) 

Xa, 
x--(z-z*) tan x 

b, 
fi a+f 

( )I . (10) + 
Let us consider some particular cases of formula 

(9). Note, at first, that the integral over z is actually 
taken in the interval (H,H+A), where the function 
e”(z) is non-zero. The Hall layer thickness A = 3& 
40 km is significantly less than the height, at which it 
is located H zz 100 km, and for approximate cal- 
culations one can put H >> A. If in this case the 
inequality 

b, >> A tan x (11) 

holds then, when integrating over z, the variation of 
the argument of the function C#J can be neglected so 
that 

xmpT +i(E+ E)]e+““, (12) 

where x, = (z,,,-H) tan x. If E 4 1 and H/b.r is also 
not too large, the structure of the inning wave that 
exists in the magnetosphere must also manifest itself 
clearly on the Earth’s surface. If, however, 

b, cc H, (13) 

then using the asymptotic representation (6b), from 
(12) we obtain 

B,(x,y,O,t) = B 5 bx 
*C, x-x,+i(H+Eb,) 

e-Iwr. (14) 

This same expression, provided that the inequality (13) 
is satisfied, follows directly from formula (9). In this 
case the structure of the running wave, even though 

By@, y, zA, t) = BE & e--l”“, 
x 

(1% 

where B, = -iBe}& is a typical value of thefield on 
the ionosphere, and 6, = &Sj, = (~~J~~)(l*~~~icos x) 
is a typical scale of its variation along axis x. From 
(14) we then get 

B,(x, y, 0, t) = B, 5 6, 
CP H+G,-i(x-x,) e 

--I”“. (16) 

Relationships such as (15) and (16) which are valid 
when the transverse dispersion of an Alfven wave 
has no effect at all, were obtained by Hughes and 
Southwood as far back as 1976. 

Bearing in mind the above values of the parameters, 
it can be concluded that case (13) most probably 
occurs when formula (14) or (16) is valid ; and only 
at high latitudes where the parameter b, can reach 
values as large as 30 km and the angle x is small, can 
case (11) be realized, when the running wave structure, 
though in a smoothed form, manifests itself on the 
ground (Fig. 2). 

The formulae of the present section permit us to 
associate oscillation amplitudes of the ground mag- 
netic field with those at any point of the magneto- 
sphere, in particular at the equator where measure- 
ments on spacecraft (geostationary satellites, for 
example) are mostly made. We confine our attention 
to order-of-magnitude estimates. From (3) follows an 
estimate of a typical value of the field at the equator 

and from(12) follows that of the field on the ground 

From this we have 

From formula (4) we have 

where As = (gigz) Ii2 is the cross-sectional area of a 
thin flux tube having a unit size in coordinates x’ and 
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xA 0 

FIG. 2. SCHEME OF PASSAGE OF THE FIELD OF A TOROIDAL 
ALAN WAVE (&), EXCITED BY MONOCHROMATIC MAG- 
NEMSOUND, FROM THE MAGNETOSPHERE (Z>Z*) To THE 

EARTH(z=O). 
In the mangetosphere, Alfvtn oscillations are a standing 
(between the magneto-conjugate ionospheres) and running 
(across the magnetic shells) wave; the direction of transverse 
propagation is indicated by the heavy arrow. The field of the 
oscillation, induced on the Earth’s surface (6,) also is a 
running (in the latitudinal direction) wave. It is evident that 
the oscillation field transport occurs along the field line (axis 
[). While in the magnetosphere the transverse wavelength b, 
is much less than the atmospheric thickness H, on the Earth’s 
surface the typical spatial scale of the oscillation field reaches 

the value of H. 

x2. Subscripts 0 and * refer to the quantities at the 
equator and on the upper edge of the ionosphere, 
respectively. As far as the relation of the function 4 
is concerned, there exist three substantially different 
cases. We give here the result for each of them : 

1 when b, F: 6,, b, b H, 

x b,/H when b, 3 6,, b, cc H, 

&JH~ when b, cc 6,, b, << H. 

The wide range of variation of the parameters 

involved here leads to the fact that the ratio B,/B, is 
able to assume, in different cases, values both larger 
and smaller than unity. 

4. THE GROUND FIELD OF A STANDING ALFVEN 

WAVE EXCITED BY A SUDDEN IMPULSE OF 

MAGNETIC SOUND 

A sudden impulse of magnetic sound having 
the form of a &function of time, is a theoretical 
idealization which is, in a sense, opposite to a mono- 
chromatic oscillation. It might be expected that it 
models some important features of magnetosonic 
oscillations excited by a short-duration source such 
as a substorm explosion or an SSC event. Leonovich 
and Mazur (1989b) obtained a formula that rep- 
resents an Alfven wave excited by such a magnetic 
sound 

B2(x’, x*,x3, t) = M(x’, x’)ri,(x’)e(t) 

x e0N’ sin [Q,(x’)t+t3/6r~]. (17) 

Here rN = (ZN/pN)2/3fii ’ is the dispersion time. This 
wave is also a toroidal one. The above formula refers 
to a region of monotonic variation of the function 
RN(xl) where expansion (2) is applicable ; in this case, 
however, 2’ is an arbitrarily chosen surface rather 
than the resonance shell (it is absent altogether). It is 
convenient to introduce the designation 

where 

1, = l‘&/cos x. 

From the relationships (1) and (17) it follows that 
on the lower edge of the magnetosphere 

B,(& Y,ZA, t> = B&G MO 

x e-y,’ sin [c0,(x)t+t3/6& 

where, as before, 

B, = M(x’, x2)fiN(x3,). 

Let us Fourier-transform this expression in coor- 
dinates x and y (but not in time). Neglecting the weak 
dependence of it4 on the coordinates, we have 

B,,(k,, k,, t) = i B,e(t) e-?N’ 

x [exp(-i&t-it3/6ri)6(kX-q(t)) 

-exp(i&t+it3/6z~)6(kX+q(t))]&). (18) 
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Here it is designated 

Expression (18) has a simple physical meaning, 
namely that as a consequence of the transverse inhomo- 
geneity of the magnetosphere, the spatial structure 
of the Alfven wave becomes finer in scale in the trans- 
verse direction. In other words, the wave vector k, 
increases in accordance with the equation 

The dispersion term t3/6ri begins to play a role 
when t-rN; but in this cast yNt - aZN(H/lX)rN = 
H/b,. In typical cases H >> b,, i.e. the oscillation is 
damped earlier than the dispersion effect begins to 
manifest itself. Only at high latitudes can b, reach 
values of the order of H and the dispersion must 
then manifest itself in an increase, with the time, 
of the observed oscillation frequency. The main 
features of the above picture are illustrated by Fig. 3. 

On substituting expression (18) into formula (63a) 
of our previous paper and by performing an inverse 
Fourier-transform, we obtain 

4(x, y, (40 = B,(x, y)@(t) e+ 

m 

X s (TH (‘) dz---e qfqz 

0 & 

sin [c+(x-(zA-z)tan x)t+t3/6r,$]. (19) 

Let us introduce the function 

cu cH(d = s dzcr,(z)exp[-q(l-itanX)(z-H)]. 
0 

When qA CC 1, we have &,(q) = I&. When qA B 1, 
the function 2&(q) decreases as a power-law, and the 
exponent of a power depends on the smoothness of 
the function c~u(z). Using this function the expression 
(19) can be rewritten as 

&(x, Y, 0, t) = B,(x, Y) 
I%(s(r))I e(t) 

Z 
P 

x exp [ - h + @Jf/L) 4 

x sin [w,(x-x,)t+t3/6z,:-arg &(4(t))]. 

A most important property of the obtained solution - * - 
is that the spatial structure of the oscillation field gets FIG. 3.THE UPPER P~TSHOWST~TI~BE~VIOUROE~E 

finer in scale in coordinate x, which is caused by a ALF&N OSCILLATION FIELD IN THE MAG~~~~ [&(t)], 

corresponding phenomenon in the magnetosphere. 
EXCITED BY A SUDDEN 1MPULSE OF ~AG~~UN~~ AND OF 

This results in the addition of a,(H/Z,) to the damping 
MAGNETIC FIELD OSCILLATIONS INDUCED BY THEM ON THE 

EARTH’S SURFACE IS_(t>l. 

decrement. The imolication of the additional dam& 
. ,..,* 

The oscillations on the ground are damped considerably 
A A ” 

is quite clear, i.e. as the wave vector k, increases, the more rapidly compared with the oscillations in the ma& 

passage of the oscillation field through the atmosphere netosphere (the relationship of the typical damping dec- 

to the Earth gets more complicated. A tYPical value 

rements is r’ ,,, = &H/l, >> yN). This is attributable to the fact 

of H/I, = 0.1-1, i.e. the damping decrement is 
that the spatial structure of the oscillations in the mag- 
netosnhere get finer because of the uresence of a transverse 

sufficiently large. Possibly, this accounts for the rapid plasma inhomogeneity as shown in <he lower part. Similarly, 

damping of the Pi2 trains and for oscillations the transverse structure of the oscillations get finer also on 

a~ompan~ng SSC. When qA > 1, i.e. when t > (&A) 
the ground but with a significantly Iarger decrease of the 

QG’, a power-law damping associated with the 
amplitude. The typical dispersion time zN denotes the time 
interval, during which the fresuencv of Alfvkn oscillations 

decrease of the function Z&q(t)), is also added. varies appkciat;ly. 
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5. THE GROUND FIELD OF STANDING ALFVEN 

WAVES EXClTkD BY A S TCICHASTIC MAGNETIC SOUND 

In the two preceding sections, when writing the 
formulae for the Alfven wave field [relationships (3) 
and (17)], we have limited ourselves to considering 
one longitudinal harmonic. This is quite admissible 
because a total field is a superposition of fields of 
different harmonics and each term of the sum can be 
studied separately. Moreover, in the case of mono- 
chromatic oscillations near a given resonance surface, 
a field of one harmonic only is different from zero ; 
but when considering stochastic oscillations, the prob- 
lem is that of calculating different correlators, i.e. 
quadratic combinations of fields ; it is necessary then 
to consider the entire sum. 

According to Leonovich and Mazur (1989a), 

&(x1, x2, x3,0) 

= CliN(X’,X2,W)EiN(X’,X3)&N(X’,W), 
N 

C(N = 2-V y 
0 

2’3, 
N 

fiN(x’, x2, 0) = e,(x’, x3) 
db3(X’,X2,X3,W) 

dx3. 

(20) 
These are written for a of mono- 
tonic variation of function C&(x’). Here 
eN(x’,x2) a certain function, the for 
which given in paper just The field a 

is a function. For 
purposes, an of these functions is 

by and Mazur, 
1989b) 

(@(xl ) x2, x3, co)& (xl/, x2’, x3’, cd)) 

= b*(x’,X*,x3,co)b(X”, x2’,x3’,o)qw--w’). 

(21) 

The function b(x’, x2, x3, o) satisfies the equation for 
a monochromatic magnetosonic wave. The quantity 
Ib(x’, x2, x3, w)l’ at fixed values of x’, x2, and x3 can 
be treated as the spectral density of magnetic sound 
at a given point or-at a fixed value of o-as the 
distribution of the given spectral harmonic in space. 

From (20) it follows that on the lower edge of the 
magnetosphere 

&(x, y, ZA, 0) = c fiN(x’, x2, ~)fi.&‘, +jN(x, m), 
N 

where 

According to formulae (70a) of our preceding paper 
and to (10) of this paper, on the ground we have 

&x, Y, 0,4 = QMX’, x2, o)fi‘v(x’, x:,Fv(x. o), 

where 

N 

s 

cc 
P,(x, 0) = dx’P(x-x’)&,(x’, o) cos x 

-m 

The quantity p,,,(x,o), which is considered to be a 
function w at a fixed value of x, is concentrated in the 
vicinity of w = e+.,(x-xA) on a scale 

(22) 

Am- 
%av when c(~ > yN/!& + H/I,, 

YN + (HlL)fi, when aN -c yN/RN + H/l,. 

(23) 

In the first case the function p,(x, w) has the character 
of the oscillation in o with a “wavelength” a&,. 

The field &x, y, 0, CD) is a random function, whose 
properties are defined by different correlators. Let us 
calculate 

(~~(x,Y,O,o)B,(x,Y,O,w’)) 

=,c,’ ( p; x’, x2, w)fi,(x’, x2, w’))lj,(x’, xi) 

x Ei,.(x’, x@&x, C@‘,(x, w’). 

In this sum it is possible to retain only terms with 
N = N’ because, when N # N’, the product p$rN is 
virtually zero, i.e. monochromatic AlfvCn oscillations 
corresponding to two different resonance surfaces do 
not overlap one another. Besides, from (21) it follows 
that 

<Z(x’, x2, 4&(x’, x2, 0’)) 

= l/%(x’ ,x2,w)126(w-w’), 

where 

h(x’, x2, w) = e,(x’, x3) 
a6(x1,x2,x2,w) 

ax2 dx3. 
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As a result, we obtain 

(&(x, y, 0. CO)BX(X, y, 0, w’)) = m(x, y, w)d(w-w’). 

Here it is designated 

m(x,y,w) = ~lLMx’,x2,412 
N 

xEi~(x’,x:)I~N(x,w)l*. 

This function can be regarded as the spectral density 
of oscillations at a given point of the terrestrial 
surface. The presence of the terms lp,,,l’ means that 
the spectrum consists of a sequence of peaks at fre- 
quencies o = +,(x--x,& whose width is defined by 
relationship (23). For typical values of the parameters 
Aw - (H/Z$&, = (0.1-l)&. 

It is also of interest to consider a mean square of 
the pulsation amplitude on the ground. We have 

<B:(x, Y, 030 > = 2 
s 

m m(x, Y, w) do 
0 

=2Cla”N(x’,x’,n,(x’))l2Ei~(x’, x:, 
N 

X 

In this equality, by assuming that 1pJ’ is a sharp 
peak, we factor the smooth function lp”N(x’, x2, o)12 
outside the integral sign over w, at point 
w = wN(x--xJ x C&+(x’). Using the expression (22) 
and the integral representation (5) it is easy to cal- 
culate the last integral. As a result, we obtain 

I, 
zfz’ 

Hf $I.<+ 2 
N 

X 

H+ g I, + 
+ (z-z’)*tan* x’ 

N 4 

Under the assumption that A CC H and y,/Q, CC H/I, 
this expression simplifies considerably : 

@3x, Y, ‘At)> = ; 

x ~B”N(x’,x’,C&(x’))1’ @,(x1,x>. (24) 

These relationships can be used for interpreting the 
distribution, over the Earth’s surface, of the amplitude 
of Pc3-Pc5 pulsations. In this regard it is mainly pos- 
sible to repeat the conclusions drawn in a paper by 
Leonovich and Mazur (1989b), by taking into account 
of course the differences of formulae for the field on 
the ground from those for the field in the mag- 
netosphere. A detailed analysis of this question is 
beyond the scope of the present paper, and we shall 
limit ourselves to making one remark. In the plas- 
mapause region a typical scale 1, decreases abruptly. 
In accordance with formula (24), this might account 
for the presence of a deep minimum in the meri- 
dional profile of the Pc3 amplitude in this region 
(see Fig. 4). 

6. THE GROUND FIELD OF A MONOCHROMATIC 

STANDING ALFVEN WAVE OF THE POLOIDAL TYPE 

The main difference of poloidal AlfvCn waves from 
toroidal ones is that the value of the azimuthal wave 
vector is large. Hence, their spatial scale along the 
normal to the magnetic shell turns out to be much 
larger than the azimuthal scale. To this, there cor- 
responds the radial polarization of a disturbed mag- 
netic field: b, >> 6,. Leonovich and Mazur (1990) 
have obtained formulae governing the field of a mono- 
chromatic Alfven wave of the poloidal type having a 
given value of the azimuthal component of the wave 
vector. They are representable as 

8,(X’,X*,X3,t> = MFf((x3)cj (?? +ic) 

x exp (ik2x2 -if@, (25a) 

(25b) 

Here k, is the covariant azimuth component of the 
wave vector. If the azimuthal angle rp is used as the 
coordinate x2, then k2 = m is the azimuthal wave- 
number. The function pN(x3) represents the longi- 
tudinal structure of the mode and is, in its meaning, 
similar to the function fi,,(x3). As a matter of fact, 
these functions differ, but for N >> 1 the difference 
disappears so that for p&x’), the expression (4) can 
be used. The function C$ has the same meaning as 
before, but the parameters b and E are different here : 

b = 2- “3~,?j31#3, E = (ZN/b)(yN/QN), 
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Tfie dashed line in the plot shows the possible ~ha~our of the amp~tude profile in the region of the 
dissipative layer if this layer does not coincide with the plasmapause-in this case the formation of a pro&le 

with two Iocai minima is possible. 

Field induced by Alfvkn waves in ma~etosphere 

where r, is the dispersion length of poloidal Alfvkn 
waves, associated with curvature of field lines (for 
more details see the paper cited above). By the order 
of magnitude 

where L is the field line length, and m is the above- 
mentioned wave number. 

Importantly, for not too large values of m, for 
m < 100, say, the parameter r, is much larger than 
the analogous parameter pN for toroidal waves. This 
means that the dispersion-induced properties of the 
wave must be more pronounced for poloidal oscil- 
lations as compared with toroidal ones. In particular, 
for them the parameter E c< 1 and we, by neglecting 
further the dissipation influence, shall assume E = 0. 
For the same reason, we examine both transverse 
components of the disturbed field. Their ratio 
&/j, N (ff,6) - ‘, though being small, but not so small 
as in the toroidal wave. 

It is necessary to give one more explanation. Leono- 
vich and Mazur (1990) have considered poloidal 
eigen-oscillations, but the question of their sources 
was not treated. Therefore, the equation obtained in 
their paper for the transverse structure of the oscil- 
lation field is a homogeneous one. Its solution is repres- 
ented in terms of the Airy function Ai(C) which is a 
standing wave, i.e. a superposition of a wave arriv- 
ing at the resonance surface and of a wave escaping 

from it; but if the more realistic point of view is 
adopted and the oscillation source is included in the 
treatment, then the transverse equation becomes in- 
homogeneous and its solution will be represented by 
the function I#(<), i.e. a wave escaping from the reson- 
ance surface where it is generated by the source. For 
that reason, formulae (16) involve the function 4(r). 

According to the equality (l), from (25) we have 

Corresponding Fourier-transforms have the form 

B,(kx, k;, z,, 0’) = -iB,b,B(k,) 

x exp 
(’ > 

- +J: 6(k,--k#(o--id), 

k 
B,(k:, k;, ZA, 0’) = iB,bx k; cos ‘)I x B(k:) 
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A typical value of k, N b; ’ is much less than k,, and 
this means, in particular, that k, = jk,,(. On sub- 
stituting the obtained expressions into formulae (63) 
of our previous paper and by performing, then, an 
inverse Fourier-transform, we obtain 

.& 
4(x, Y9 090 = ’ cos x k,b, 1 exp (ik,y - iot) dz 

x-(zA--z) tan x 
1 bx ’ 

By(x, Y, 0, t) = - 
B * exp (ik,,y - iot) dz co.3 x 

6$‘) i k, ok) 4 _ 

P lk,l & I[ 
*-@A;Z)ts 

x 1 
If the inequalities 

&A<< 1, A<<b, 

are satisfied, then these relationships are simplified 
considerably 

B.h, Y, 0, 0 = i- 

Xe-lk,‘H exp (i%y - iwt), 

FIG. 5. THE MIDDLE SHOWS THE LATITUDINAL STRUCTURE OF 
TWO HORIZONTAL CUMPONENTS OF MAGNETIC FLELD OSCIL- 

LATIONS INDUCED ON THE EARTH'S SURFACE BY FOLOIDAL 

AL&N OSCILLATIONS OF THE ~GNE~SP~~. 
The upper part gives the h~o~aphs of a disturbed magnetic 
held of poloidal oscillations of the magnetosphere, eor- 
responding to different points on the plots B,(x) and B,(X). 
The lower part gives the respective hodographs of magnetic 
field oscillations on the Earth’s surface. There is a rotation 
of the ellipse of polarization of the oscillattons by n/2 
between the magnetosphere and the Earth associated with 
the influence of ionospheric Hall conductivity. Besides, it is 
evident that the orientation and the shape of the ellipse 

depend on the point of observation. 

detailed comparison of the theory with obse~ational 
data and, perhaps, of conducting new problem- 
oriented experiments. It is our hope that the theory, 
developed in our papers, of standing Alfven waves in 

From the expressions obtained it is evident that, 
an axisymmetric magnetosphere and of their pene- 

for poloidal oscillations, the running wave structure, 
tration to the Earth is capable of forming the basis 

defined by the functions 4 and d’, must manifest itself 
for such investigations. 

quite clearly on the ground. The wave’s polarization 
in the terrestrial plane is an elliptic one, with the major 
axis directed approximately along the parallel. The 
ratio of semi-axes B.JBy - (kybJ ’ is a small, but 
quite perceptible, value (see Fig. 5). 

7. CONCLUSIONS 

The examples considered in the present paper apply 
to procedures and methods. They possibly reflect 
some substantial properties of geomagnetic pulsations 
but cannot be regarded as giving a sufficiently 
adequate interpretation of some or other kinds of 
them. This requires that suitable investigations be car- 
ried out, with the use of an adequate model of the 
oscillation source and with the purpose of making a 
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