@ Pergamon

Plunct. Spuce Sci., Vol 43, No. 7. pp. 885 893, 1995
Copyright ¢ 1995 Elsevier Science Ltd

Printed in Great Britain. All rights reserved

0032 063395 $9.50+0.00

0032-0633(94)00207-X

Linear transformation of the standing Alfven wave in an axisymmetric

magnetosphere

A. S. Leonovich and V. A. Mazur

Institute of Solar-Terrestrial Physics, Irkutsk 33, P.O. Box 4026. 664033, Russia

Received 15 March 1994 : revised 3 October 1994 : accepted 3 October 1994

Abstract. In an attempt to further develop the theory
of transversally small-scale standing Alfven waves.
constructed by Leonovich and Mazur (Planet. Space
Sci. 41, 697-717, 1993) their spatial structures are
investigated in the neighbourhood of the toroidal res-
onance surface. Near this surface, of important sig-
nificance are the effects of finite Larmor radius of ions
and of electron inertia which fead to the so-called kin-
etic dispersion of Alfven waves. It is shown that near
the toroidal surface there occurs a total linear trans-
formation of one kind of standing Alfven waves, whose
dispersion is due to the curvature of geomagnetic field
lines (these were thoroughly investigated in the above-
cited paper), into standing Alfven waves of another
type. kinetic waves. Formulas have been obtained
which thoroughly define the spatial structure of the
waves under consideration.

1. Introduction

This paper i1s a direct continuation ot our earlier pub-
lication (Leonovich and Mazur. 1993) devoted to the the-
ory of transversally small-scale standing Alfven waves
in the axisymmetric magnetosphere. It should here be

emphasized that in that paper the small-scale character of

the waves was assumed not only in the direction normal

1o the magnetic shells (which is quite natural, by virtue of

the inhomogeneity of plasma in this direction) but also in
the azimuthal direction. In other words, waves with large
azimuthal wave numbers, i > 1. were considered.

The theory was developed within the framework of

ideal magnetic hydrodynamics. In this approximation in
a4 homogeneous plasma and in a homogeneous magnetic
field, Alfven waves are known to be devoid of transverse
dispersion. But Leonovich and Mazur (1990) showed that
in a magnetic field with curved field lines, transversally
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small-scale Alfven waves involve a specific transverse dis-
persion which leads to a slow (as compared with the
Alfven velocity) displacement of standing Alfven waves
across the magnetic shells. Consequences of this effect
were studied in detail by Leonovich and Mazur (1993).
They showed that a standing Alfven wave is generated by
external sources near a given magnetic shell where its
polarization has a poloidal character (the electric field
oscillates azimuthally, and the magnetic field oscillates in
the direction normal to the magnetic shell). displaces then
to another shell where it has toroidal character (the mag-
netic field oscillates azimuthally, and the electric field
oscillates in the direction normal to the magnetic shell).
and 1s totally absorbed on this shell. We termed the first
and second shells. respectively. “poloidal and toroidal
resonance surfuces™.

In our developed theory we used the WKB approxi-
mation in a coordinate normal to the magnetic shells,
It turns out that the corresponding quasi-classical wave
vector is zero on the poloidal surface and becomes infinite
on the toroidal surface. Note that this fully agrees with
the polarization of the wave. The extreme comminution
of the transverse spatial structure of the field wave. us
the wave approaches the toroidal surface, leads to two
important consequences. On the one hand. there is a
decrease ot the contribution of the dispersion associated
with the curvature of the field lines. which is manifested
in that the transverse group velocity, caused by this dis-
persion, tends rapidly to zero. On the other hand, there is
an increase of the role of the better known dispersion of
the Altven waves, caused by effects which are bevond the
scope of an ideal MHD, namely the inertia of the electrons
and the finite Larmor radius of the ions. Alfven waves.
for which such a dispersion is important. received the
name of kinetic waves {see, for example. Hasegawa and
Uberoi (1982)). The combination of these two factors
leads to the need to take mto account the kinetic dis-
persion when mvestigating the spatial structure of a stand-
ing Alfven wave near the toroidal surtace. This s the
subject of the present study.
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Kinetic Alfven waves have already been addressed in
numerous publications on hydrodynamical oscillations of
the magnetosphere (Hasegawa, 1976 ; see also reviews by
Southwood and Hughes, 1983 ; Goertz, 1984). However,
those publications used a magnetospheric model in the
form of a plane plasma sheet (a homogeneous magnetic
field and a one-dimensionally inhomogeneous (in the
transverse direction) plasma). Kinetic Alfven waves in the
magnetospheric model with curved geomagnetic field lines
and an inhomogeneous (in both the transverse and longi-
tudinal directions) plasma were considered by Leonovich
and Mazur (1989). They investigated the resonant exci-
tation of a standing Alfven wave by monochromatic mag-
netosound penetrating into the magnetosphere from
outside. Their treatment involved examining oscillations
with small values of azimuthal wave number, m ~ 1,
because only for such #m magnetosound can penetrate deep
into the magnetosphere. It was shown that magnetosound
excites a kinetic Alfven wave in the neighbourhood of the
toroidal surface, and from this surface the wave moves
slowly away and is damped gradually due to the Ohmic
dissipation at ionospheric terminations. This result differs
substantially from the pattern of the event when m > 1.
In this last case, as will be shown later, the Alfven wave
that is generated far from the toroidal surface, under-
goes—in its immediate vicinity—a linear transformation
to the kinetic Alfven wave.

2. The derivation of the equation for the spatial structure
of the Alfven wave

In this paper we will use the notions and notations intro-
duced by Leonovich and Mazur (1993). In particular, the
axisymmetrical magnetosphere will be described in terms
of an orthogonal curvilinear coordinate system x', x?, x7,
in which the coordinate x' characterizes the magnetic
shell, the coordinate x* represents the field line on this
shell (the azimuthal angle ¢ can be used as x7), and the
coordinate ' varies along the field line. The diagonal
components of the metric tensor will be denoted by ¢,. g>.
g3, and g = g,g.g, 1s its determinant.

The disturbed electric field of a monochromatic wave
obeys the equation

w
curlcurl E = —¢éE (1)
&
where ¢ is the dielectric constant tensor. The hyd-
romagnetic oscillations of interest are low-frequency ones,
o « w;, where w; = eB/myc is the gyrofrequency of the
ions, and are relatively large-scale ones, k, p; « 1, where
k, 1s the physical meaning of the transverse wave vector,
p; being the Larmor radius of the ions. For such oscil-
lations, the physical components (i.e. the components in
a local Euclidean basis) of the dielectric constant tensor
have the form (Akhiezer er al., 1974)
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Here 4 = B,/,/(4np) is the Alfven velocity. k, and £, are
the physical components of the wave vector
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and w(z) is a function well known in plasma physics (see
Fried and Conte, 1961)
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For real -, this function has the following limiting
expressions:

14i(n/2)"z, Izl « 1
N 1;2 N

In the approximation of an ideal MHD p, = A, = 0. In
this case relationships (1) and (2) describe, in a homo-
geneous plasma, the independent Alfven and mag-
netosound waves with the dispersion laws w* = k7 4* and
(ki +k71) A", respectively. A specific property of the Alfven
waves is the absence of the transverse dispersion: the
frequency w does not depend on k,. When going beyond
the scope of an ideal MHD, they are imparted a weak
transverse dispersion. In a homogeneous plasma. from (1)
and (2) it follows that

o =k A, A=A +ipl 4)

Such Alfven waves received the name kinetic waves. The
corresponding dispersion will also be referred to as the
kinetic dispersion here.

Even in the presence of a dispersion, the approximate
equality w ~ k4 is valid, and in the argument of the
function w one may put

o A s i
ke ve py (/o)

fh

where s = c¢/w,. is the electron skin length, and
B. = 8nn, T,/B; the ratio of electron to magnetic pressure.
Hence

2P
wis/p,)

s =

In particular
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Whens ~ p_(i.e. i, ~ m/ny). the quantity A] is a complex
one, and Im A7 < 0. From (4) it follows that this cor-
responds to the damping of the wave. It is caused by the
Cherenkov resonance due to electrons which is effective
by virtue of the relationship r, ~ 4. In the magnetospheric
plasma the values of s and p, are extremely small (varying
from & few hundred metres to su’cml tens of kilometres)
compared with typical scales of the magnetospherc.
Theretore. the kinetic dispersion has a role only for
extremely smadl-scale waves in the transverse direction.

In an inhomogeneous plasma and an inhomogeneous
magneltic field relationships (1) and (2) can be brought to
a0 system of differential equations for covariant com-
ponents of the electric field of the wave E, (i =1, 2. 3).
These are related to the physical components E, by the
&qu]ltV E = E; v ¥ The quantities k, in the expression
for the dielectric LOll\lan tensor should be treated as the
operators A, = —i(l;y JgaVv.. where V, = ¢/cx’. Since the
terms that contain lhc operators &, play an important role
for extremely small-scale waves. it may be assumed that
they commute with functions that describe equilibrium
paramcters of the plasma and the magnetic field (i.e. the
dertvatives V. in these operators can be referred only to
ficlds £,1.

From (1) and (2) when k7 p3| < | it is easy to obtain
the expression for the lomcltudlndl component E;:

N
-
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After that. the system of equations for the transverse
components £, and £, can be reduced to the form
(P'+["E =0 (6)
where the operator P, has the same form as in Leonovich

and Mazur (1993) :
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and L, differs from that in the previous paper by the
presence of dispersion additions:
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Using. as in the paper just cited above, the perturbation

theory based on the transverse small-scale character of
the oscillations, we find that in the main order of this
theory the solution of system (6} has the form

r ivi
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where the potential @ satisfies the cquation

<V.L‘[v.+V>L‘,\vzm>+;\.m";>A o

¢ A
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Here we have passed tfrom the variable v to the physical
length along the field line 7. whose differentials are related
by the relationship

d7 = 7R dy’

as well as using the notations

g\ lee e
p = ") A= Vit Vi g =ygige.

Y

Equation (8) describes the spatial structure of an Altven
wave. [t differs from an analogous cquation reported in
Leonovich and Mazur (1992) by the presence of the two
fast terms.

The boundary condition on the ionosphere for the
potential @ has the same form as in the eited paper:

_eosy . (O
Pl = Fi L {(9)
4y o
Here 7, represents the coordinates of the ionospheric ends
of the field fine. . refers to angles they make with the
local vertical. and Z!*' corresponds to integral Pedersen
conductivities of the conjugate ionospheres. Dispersion
effects in (9) can be neglected because the dispersion par-
ameters p, and A, on the tonosphere are much smaller
than those in the magnetosphere.

In order to pass from the partial differential equation
(8) to an ordinary differential equation that describes
the mode structure near the toroidal surface. we avail
ourselves of the perturbation theory based on the close-
ness of the desired solution to the toroidal mode. This
means that this solution can be represented as

D=1 (xHTux'/r+ajet (10)

Here A, is the azimuthal wave vector (it v~ = ¢ is the
azimuthal angle, then A, = nris the azimuthal wave num-
ber), Ty a toroidal wave function. and ¢ a small correc-
tion. The function T, is the eigen-solution of the longi-
tudinal problem

TV

. o7y Q. .
L(QT\)I\E p—f +p JE I'.=0. T.. =0.

Here Qg = Qr (') are toroidal eigentrequencies. The
desired function in (10) is the function I (") that defines
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the transverse structure of the mode. The equation descri-
bing it is the solvability condition for the correction ¢..

Proceeding along similar lines as in Leonovich and
Mazur (1993), we obtain

L oL d d o , . dby
o~ Ay 2 + —[(w+1iy4)" —Qrx] 2
dy'' dx! dx!
—khepy Ve =0, (1)
Here
, Lo AL AT
2= - 352 -—p— T5d
Ax §|i‘(/\> 41)+2“pa/p(’:/(/ ; Tvd/

A
wry = —Ql — = |Txd/
ar-p

and vy, is the decrement of damping of the mode on the
ionosphere, and the expression for it is given in the cited
paper (it is assumed that y, « w). In that paper it is
also emphasized that the value of wyy is nonzero as a
consequence of the curvature of geomagnetic field lines,
and it is shown that for realistic magnetospheric models
it is positive. The expressions for pi and wry simplify
considerably for harmonics with ¥ > 1, when the WKB
approximation in coordinate / is applicable. In this case

/\: ! Azg— i\:, = g/ (1’))
YTfg AT \a /) T TA” “
(a4,
N AN T

Equation (11) differs from an analogous equation from
our previous work by the presence of the first term. An
important role is played by the sign of the dispersion
parameter Ay. In the inner part of the magnetosphere
where fB. <« m,/m, and, consequently, s* > pi.p; and
A2 & —s" itis negative. In the outer magnetosphere where
B.>» m./m; and A] x p; it is positive. In the intermediate
region this parameter is a complex one, and Im A} < 0.

It

3. Linear transformation of a standing Alfven wave near
the toroidal resonance surface

If the WKB approximation is applied to equation (11),
that is, the solution is sought in the form

Vy ~exp(ifk, dx") (13)

then for the quasi-classical wave vector &k, we obtain (by
neglecting the damping on the ionosphere) the equation

WAk — (0 = Q3 kT —kwry = 0. (14)

Alternatively, this equation may be treated as a relation-
ship that relates the local frequency  to the wave vector
k. By solving it for w» and taking into consideration that
lkipx| < 1. we obtain a local dispersion equation

. ) e KWy
07 = Qi+ ATy — ,T’i~ (15)

The last two terms on the right-hand side represent dis-
persion corrections. For relatively large-scale waves, such
that

. ks owhi
ki « — — (16)
A K
one can put
s , ki
<U':Qf,\~—’—uf"\. (17)
Ky

These waves were investigated in our previous paper and
were referred to as small-scale waves. This implied that
their transverse wavelength is much smaller than typical
magnetospheric scales (it should be noted that the limit
k7 — 0 cannot be considered in (17): this would imply
violating the applicability condition for the WKB
approximation ; the relevant criteria were considered in
the cited paper). In the present study the waves that satisfy
condition (16). will be referred to as large-scale ones by
reserving the term of the small-scall wave for the inverse
case
ks wrg

ki»-——=.
Ay w

In this case
0 = QF(1 +kTAR). (18)

This dispersion equation is quite similar to equation (4)
for kinetic Alfven waves. Based on (18) one can determine
the group velocity of a small-scale standing Alfven wave
in coordinate x':
Cw
l‘gl,\' = ﬁl‘ = QTN‘klA.’:\” (19)

Note that when Ay > 0 (i.e. in a rather hot plasma,
B. > m,/m;) the signs of group velocity vy, and phase vel-
ocity w/k _ coincide, and when A3 < 0 (in a cold plasma.
f. «< m./m;) they are opposite.

We now return to the usual (for the WKB approxi-
mation) treatment of relationship (14) as an equation for
k,. From it we have

2 O Qi (07 =050 + 4R AR O W)
200°A% '

(20)

This equality defines the function ki = ki (x'). provided
that the dependence Qry = Qry(x') is specified. We shall
restrict our attention to the case when in a small vicinity
of the toroidal surface one can use the linear expansion

NIRRT
Q2 = w:<l - irii) 1)

N

where x4 is a coordinate of the toroidal surface (on which
Qry = w). /1s the nhomogeneity scale, and it 1s assumed
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Fig. 1. The square of the quasi-classical wave vector k7 plotted
against the coordinate v'. Dashed lines show the asymptotic
representations k7 = (x' — v}/ vA3). Case “a”" corresponds to
values of A7 >0 and case b corresponds to values of
A3 <0

that |x' — x|, ] « /. On substituting (21} into (20). we

obtain
(NN DU A T Wy
R | N Rt +4k§/\iv; .
I \/ ‘s [V

(22)

This dependence 1s plotted in Fig. 1.

Sufficiently far from the toroidal surface. when
v — Xk | > A-AGOeRd /o) . the two roots in (22)
assume the form
2 . 1 4
;.‘?/-.\?,‘,L\ ,,l,, e k= \;\f\ (23)
07 N =y £ A%

1\']‘ = —

The first of them describes a large-scale wave, whose dis-
persion is given by equation (17). The transmission region
for it is located at x' < x4,. The second root represents a
small-scale (kinetic) wave with the dispersion law (18).
The transmission region for it is located at x' > x+, if
Az > 0,and at ' < x}yif A3 < 0.

In the small vicinity of the toroidal surface. waves of
one type transform to waves of another type. In order to
investigate qualitatively this process and, in particular. to
determine the transformation coefficient. it is necessary to

have recourse to the original equation {1). On substituting
expression {21) into it, we obtain

Ldr d (.\" — i, A\ dE
T L T R
) Ay dy! /' o ) dy
fiw-
e TN T
)

Leonovich and Mazur (1993) introduced the notations

N

€1)” / '
. A TP

[

ln = - . -
iy O

;\'::/ LRSS
Remember that /¢, Is a typical transverse wavelength of
the large-scale mode near the toroidal surface. For the
oscillations of interest with m > 1. it is rather small:
Zx << /. Let us introduce the dimensionless coordinate
E=(x' —vty) 2y and a complex variable = = 4ingy.
Equation (24) then assumes the form

e = =0, (25)

Here it is designated that 27 = A3/, 7, .. and the deriva-
tives are taken in the variable = The dimensionless par-
ameter « is small: |%] « 1. Taking into consideration
that it generally is a complex one. we put »° = |x|¢ ™
Since Im A% < 0. it may be assumed that 0 < ¢ < n. To
positive A3, there corresponds the value of = 0. while
the value of y = 7 corresponds to negative A+

A solution of equation (25) is readily obtained using
the Laplace method. A full set of lincarly independent
solutions is given by the integrals

) | dr g ] '
Fo)= cxp( L+ +:1), (26)
nlo 1 N !

N /

Each of the possible paths of integrations (', in the plane
of a complex variable 7 must be such that the function

5 N A
Jl)-;exp(}l ,)

takes. at its ends, equal values (or. tfor a c¢losed path, it
returns to the original value when the path 1s traced
around). It 1s easy to see that the function Z(7) — 0 when
[t} — % in the following sectors:

Qo4 omw
S

2o+ ow
<argr < -+

3 >

where n is an arbitrary whole number. In Fig. 2 these
sectors are shaded. Moreover. Z(1) — 0 if 1 — 0 proceeds
so that Re r < 0 (say. along the negative semi-axis of
the real 7). From these considerations it follows that the
solutions of equation (25) ure the integrals (26). provided
that one of the contours C,. (... ... (- are chosen as the
path of integration, as shown in Fig. 2. Since there exist
only four linearly independent solutions. these solutions
involve three relationships that are readily established
from the pattern

O ey Ay

Fo=F.—F . Fo=F —F.



890 A.S. Leonovich and V. A. Mazur: Transformation of the standing Alfven wave

A
Im:
Ca
/T
G ’Q g
™
673
C2
G 0 Ret
Cs
L
3 Cs RN
N
e
.
N
N 3

Fig. 2. The possible paths of integration in formula (26)

A general solution is the linear superposition of any four
linearly independent functions F;.

The particular form of this superposition is determined
by boundary conditions which must be satisfied by the
solution in an asymptotically distant region, formally
when - — +oc. For the solution of interest, these con-
ditions can be formulated as follows. Firstly, this must be
a bounded solution. This means that growing asymptotic
representations must be absent in the opacity regions of
both the large-scale and small-scale waves. Secondly. in
the transmission region of the small-scale mode its asymp-
totic representation must be a wave that carries the energy
from the resonance region (i.e. its group velocity must be
directed from the toroidal surface to infinity). From the
physical point of view, this signifies that, on the one hand.
the kinetic wave is generated in the neighbourhood of the
resonance surface as a result of the transformation of the
large-scale mode. On the other hand, there are no kinetic
waves that bring the energy from infinity, that is, waves
generated by some external sources. These conditions fix
the desired solution up to an arbitrary factor which is
determined by the amplitude of the incident large-scale
wave.

It appears that the conditions formulated are satisfied
by the solution F(z). To verify this, we consider the
asymptotic representations of the function F\(z). Omit-
ting standard calculations based on the saddie-point
method (see Budden. 1961), we give the final result as

Fii)= (="' exp[—2i(—:)' 3—ig]

+ (— ;)H exp [hf;(cosl/z/ +isinlg>(~ ;>?

N34
Fi(2) =:'4exp(—2:’3)+<;>

~i“+i‘q, c . (28)

Here it is designated as u = || % = |Ay|" */ L7/ 21y. From
these asymptotic representations it is evident that the typi-
cal wavelength in the variable - for the large-scale mode
is unity, and for the small-scale mode it equals the value
of w. In terms of the initial variable x' they are, respec-
tively, Ary and sy = pAry = |Ay[?77 57, Incidentally, the
last assertion holds only for the sufficient smallness of the
damping. For the large-scale wave this smallness implies
&ry < 1. For the small-scale wave the condition is more
rigorous

Sy= TN aptiy (29)

If, however, the inverse inequalities ¢ry > 1 and d, > |
are satisfied, then expressions (27) and (28) are inap-
plicable. and the typical scale of the oscillation is deter-
mined by dissipative parameters (see below).

From formulas (27) and (28) it follows that in the
transmission region of the large-scale mode (- < 0) this is
a4 wave running toward the resonance surface, and the
reflected wave 1s absent. The result of our previous paper
is thereby reproduced, with the only difference being that
the large-scale wave is now not absorbed on the toroidal
surface but is transformed into the kinetic Alfven wave.

The transformation effect is manifested most distinctly
in the absence of the dissipation, that is, when 7, = 0 and
at real values of Ay. For positive values of Aj. that is.
when y = 0, from (27) and (28) we have

F(zy=(=2)"" 4exp[—2i(—:)' 3—in}

-\ 2 N oon
*(w) “"[‘3(1) *‘:} T

F(o)=z"""exp(—=2:'7)

AN 2./ o
+ </l> eXp [— 31<;> ’—14:l, [ i & (30)

and for Az < 0, that is, when iy = 7, we obtain

4

PR 2 N oon
) w3

Fi(z) =z "texp(—2z"7)

F(o)y=(—2"" 4exp[—zi(—:)‘ J-iﬂ
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Let us demonstrate that the transformation of the large-
scale wave into a small-scale wave is a complete one, that
i, the energy flux carried by the small-scale wave is equal
1o the energy flux brought by the large-scale wave. For
this purpose. we use the expression for transverse com-
ponents of the Poynting flux vector S'(i = 1,2) obtained
by Leonovich and Mazur (1993). A little manipulation on
the formulas obtained in that paper yields

S‘l . (,,: /\':I‘I “ 'I:
- '_xn_ ov N .

Let us consider the case Ay > 0. According to the for-
mulas from the cited paper. in the transmission region of
the large-scale mode

|

R e B

/Ty /'

and from (30) we have

el = (-0 '
Hence
st _ @
C8n /]

In the transmission region of the small-scale mode

l . N
o - . l.l\ _ (!)/\'x/\iv" ”N R (~> .

pEL U

—1

Whence

¢
§n /.

Similar calculations can also be made for A3 < 0. In
this case the transmission regions for the large- and small-
scale waves coincide. Their phase velocities have the same
sense of direction : toward the toroidal surface. However,
when A3 < 0 the group velocity of the small-scale wave is
directed opposite to the phase velocity, it carries the
energy away from the resonance surface. Qualitatively the
structure of the mode on coordinate x' is presented in
Fig. 3.

If the weak dissipation on the ionosphere is taken into
account, then the amphtudes of the running waves
decrease in the course of their propagation. By confining
ourselves to the case Ay > 0 and retaining only the leading
asymptotic representations. from (30) we obtain

Fiz)y =

- 14 N JINT2
R N R
NS p - p
Nty o
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Fig. 3. Spatial structure of the potential ¢ versus coordinate x'.
Solid line presents large-scale mode and shaded line small-scale
mode and envelopes of amplitude. Case (1) corresponds to
A% > 0and case (b)to A3 <0

The typical attenuation length of the small-scale wave
Su/0% ~ (AL Ol fy3). albeit much larger than the
wavelength s.. is, however. much smaller (at realistic
values of parameters) than the distance between the polo-
idal and toroidal surfaces. Thus. after having been trans-
formed into the small-scale mode. the Alfven wave is
dissipated in a small vicinity of the toroidal surface.

If the parameter Ay is essentially complex such that the
value of s is rather far from the values of = 0 and =,
then —as is apparent from (27) and (28) - the typical scale
of attenuation of the small-scale mode coincides with its
wavelength s .

The full spatial structure of the wave field is determined
by the potential

®=CFT.e"" =
TR NN :
: . STA : | W
C(p’) F, < T + Ly, ]r\(.\‘ Syt (33

Here we have passed (as in the paper of Leonovich and
Mazur (1993)) from the function 7T to the function
ry = (pt, A) T, with the advantage that it is dimen-
sionless and. on the order of magnitude. unity. The con-
stant C is determined by the amplitude of the incident
large-scale wave. By comparing expression (33) with the
corresponding expression from the cited paper in the
region /¢, << vty —x' « Av\, we oblain
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oy~ AN
C=\/ni‘pf,’~’»Ee“”r(pFZ"> : (34)
<10

Here, as before, the “"cap™ denotes the physical value of a
correspondmg quantity (say. Apy = /¢ Apx). and the sub-
script “‘zero™ refers to its equatorial value. For an expla-
nation of the other symbols, the reader is referred to the
cited paper.

From (33) and (34) we readily obtain the expressions
for physical components of the wave's electric field :

- B g (0
! \/’ ’J'] un O’AU

X —X
x F <))T\ +1&T\>I\

TN
LI T NN
B \/’!/: gA,

x F, (\/-T\T\ +1eﬂ>u (35)

ATN

The ratio of these components, on the order of magnitude,
is

As far as the ratio F{/F, is concerned, its representative
value near the toroidal surface depends on the relative
role of the effects of the small-scale dispersion and dissi-
pation. If the former effect has a more important role,
then—as follows from (31)—F'/F ~ 1/u. If the dissipation
is more important, then F'/F ~ 1/ery (see our previous
paper). By comparing these quantities, we arrive at the

conclusion that if
AN 23 '}'N

then the dispersion effect is more important; otherwise,
the dissipation effect in the ionosphere predominates.
Under conditions of the Earth’s magnetosphere either
case can occur on different magnetic shells (for more
details, see Leonovich and Mazur (1989)). If condition
(36) is satisfied, then

E, |

-~
E: fg

with the inverse inequality
E, 1 w
E R0y v

being satisfied. In either case the oscillation is a toroidal
one: £, » E,.

4. Conclusions

Let us formulate the results obtained in this study.

(1) We have obtained a partial differential equation
that defines the spatial structure of 4 monochromatic azi-
muthally small-scale (m > 1) Alfven wave in the axi-
symmetric magnetosphere (equation (8)). It is a gen-
eralization to the analogous equation from our previous
paper which includes kinetic dispersion effects of Alfven
waves.

(2) Based on this partial differential equation, near the
toroidal surface, precisely where the kinetic dispersion is
essential only, we have obtained an ordinary differential
equation that describes the wave field structure in the
direction normal to the magnetic shells (equation (11)).

(3) By solving this equation, we have obtained for-
mulas that fully define the spatial structure of a standing
monochromatic Alfven wave near the toroidal surface
(formulas (33)- (35)).

(4) From these formulas it follows that a relatively
large-scale Altven wave, generated by external sources in
the neighbourhood of the poloidal surface and trans-
ferred, as a consequence of the curvilinear dispersion,
toward the toroidal surface, undergoes in its vicinity a
linear transformation into a small-scale kinetic Alfven
wave. The transformation is a complete one : the reflected
large-scale wave is absent, and the energy flux that is
brought by the large-scale wave to the toroidal surface. is
equal to the energy flux carried by the small-scale wave
away from this surface. As a consequence of the Ohmic
dissipation on the ionospheric terminations the kinetic
Alfven wave attenuates slowly in the process of its propa-
gation across the magnetic shells. The attenuation length
is much larger than the transverse wavelength but 1s much
smaller than the distance between the poloidal and toro-
idal surfaces. One is led to conclude that Alfven waves,
after having transformed into the kinetic mode, are
dissipated in the immediate vicinity of the toroidal
surface.
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