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Abstract. In an attempt to further develop the theory 
of transversally small-scale standing Alfven waves, 
constructed by Leonovich and Mazur (Planet. Space 
Sci. 41, 697-717, 1993) their spatial structures are 
investigated in the neighbourhood of the toroidal res- 
onance surface. Near this surface, of important sig- 
nificance are the effects of finite Larmor radius of ions 
and of electron inertia which lead to the so-called kin- 
etic dispersion of Alfven waves. It is shown that near 
the toroidal surface there occurs a total linear trans- 
formation of one kind of standing Alfven waves, whose 
dispersion is due to the curvature of geomagnetic field 
lines (these were thoroughly investigated in the above- 
cited paper), into standing Alfven waves of another 
type, kinetic waves. Formulas have been obtained 
which thoroughly define the spatial structure of the 
waves under consideration. 

I. Introduction 

This paper is .I direct continuation of our earlier pub- 
lication (Leonnvich and Mazur. 1993) devoted to the the- 
ory of transversally small-scale standing Atfven wave5 
in the Ltsisqmmctric magnetosphere. It should here be 
emphasized that in that paper the small-scale character 01 
the waves was assumed not only in the direction normal 
to the magnetic shells (which is quite natural. by virtue of 
the inhomogcneity of plasma in this direction) but also in 
the a/imuth:tl direction. In other words. waves with large 
azimuthal M;I\~ numbers, /IT >> 1. were considered. 

The theory was developed within the framework ot 
ideal magnetic hydrodynamics. In this approximation in 
LI homogeneous plasma and in a homogeneous magnetic 
Geld. AIf\-en haves are known to be devoid of transverse 
dispersion. Hut Leonovich and Mazur (1990) showed that 
in a magneric field with curved field lines, transversalIF 

small-scale Alf\en waves invoILe ;I spccitic transverse dis- 
persion which leads to a slow (;IS compared with the 
Alfven velocity) displacement of standing Alfven wave\ 
across the magnetic shells. Consequences of this etfecr 
were studied in detail by Leonovich and Mazur ( 1993). 
The) showed that ;I standing Alfvcn KI\.C is gcneratcd b> 
external sources near a given magnetic shell there its 
polarization has a potoidal character (the electric field 
oscillates azimuthally. and the magnetic field oscillates in 
the direction normal to the magnetic &II). diapla~c~ then 
to another shell where it has toroidal character (the mag- 
netic field oscillates azimuthally, and the electric Geld 
oscillates in the direction normal to the magnetic shell). 
and ih totally absorbed on this shell. We termed the first 
and second shells. respecti\ cl!. “poloidal and loroidul 
resonance surfaces”. 

In our developed theory w;t’ used the WKB approsi- 
mation in a coordinate normal to the magnetic shell\. 
It turns out that the correspondin, ~7 quasi-classical wa\‘t’ 
L’ector is zero on the potoidat surface :~nd becomes infinite 
on the toroidal surface. Note that thi\ i‘ull~ agrees with 
the polarization of the \\a\~. The e\trcnic coniniinution 
of the transverse spatial structure 01‘ the Geld \+a\~. ;I\ 
the M~VC approaches the toroidal surface, Icad~ to t\+o 
important conseyueticcs. On llie one hand. thcre is ;I 
decrease of the contribution of the dispersion :Lxsociated 
with the curvature of the ticld lincx. which is manifcstcd 
in that the transverse group velocit!. caused by thi\ dih- 
persion, tends rapidly to zero. On (he other hand. there is 
an increase of the role of the bcttrr kno\cn dispersion ot 
the Alfven wa\-es. caused by cttcth which are beyond the 
scope of an ideal MHD. namelv the inertia ofthc electrons 
and the linitc Larmor radius of the ions. Alflen wave\. 
for which such a dispersion is important. received the 
name of kinetic waves (see. for csaniplc. tlasega~,a and 
Ubcroi (1982)). The combin;rtion of these two factors 
leads to the need to take Into account the hincric dis- 
persion M hen in\,eatigating the spati:tl Xtructurc of;1 stand- 
ing Alficn wave nc;Ir the torni& \urt;tce. This 15 the 

subject ol’the prtxnt 5tid~. 
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Kinetic Alfven waves have already been addressed in 
numerous publications on hydrodynamical oscillations of 
the magnetosphere (Hasegawa, 1976 ; see also reviews by 
Southwood and Hughes, 1983 ; Goertz, 1984). However, 
those publications used a magnetospheric model in the 
form of a plane plasma sheet (a homogeneous magnetic 
field and a one-dimensionally inhomogeneous (in the 
transverse direction) plasma). Kinetic Alfven waves in the 
magnetospheric model with curved geomagnetic field lines 
and an inhomogeneous (in both the transverse and longi- 
tudinal directions) plasma were considered by Leonovich 
and Mazur (1989). They investigated the resonant exci- 
tation of a standing Alfven wave by monochromatic mag- 
netosound penetrating into the magnetosphere from 
outside. Their treatment involved examining oscillations 
with small values of azimuthal wave number. 171 c 1, 
because only for such I?Z magnetosound can penetrate deep 
into the magnetosphere. It was shown that magnetosound 
excites a kinetic Alfven wave in the neighbourhood of the 
toroidal surface, and from this surface the wave moves 
slowly away and is damped gradually due to the Ohmic 
dissipation at ionospheric terminations. This result differs 
substantially from the pattern of the event when 111 >> 1. 
In this last case, as will be shown later, the Alfven wave 
that is generated far from the toroidal surface, under- 
goes-in its immediate vicinity-a linear transformation 
to the kinetic Alfven wave. 

2. The derivation of the equation for the spatial structure 
of the Alfven wave 

In this paper we will use the notions and notations intro- 
duced by Leonovich and Mazur (1993). In particular, the 
axisymmetrical magnetosphere will be described in terms 
of an orthogonal curvilinear coordinate system x’. s’, s3, 
in which the coordinate s’ characterizes the magnetic 
shell, the coordinate s’ represents the field line on this 
shell (the azimuthal angle cp can be used as s’). and the 
coordinate s1 varies along the field line. The diagonal 
components of the metric tensor will be denoted by g,, g2, 
gi, and y = g,gZgj is its determinant. 

The disturbed electric field of a monochromatic wave 
obeys the equation 

curl curl E = g F^E 
(2 ’ (11 

where C is the dielectric constant tensor. The hyd- 
romagnetic oscillations of interest are low-frequency ones, 
w << 0,. where w, = eB/m,c is the gyrofrequency of the 
ions, and are relatively large-scale ones, k,p, << I, where 
&, is the physical meaning of the transverse wave vector. 
p, being the Larmor radius of the ions. For such oscil- 
lations, the physical components (i.e. the components in 
a local Euclidean basis) of the dielectric constant tensor 
have the form (Akhiezer et al., 1974) 

2 ,? = ij, = tL3 = tti2 = 0. (2) 

Here A = B,,jj(47rp) is the Alfven velocity. /i, and R, are 
the physical components of the wave vector 

and N’(Z) is a function well known in plasma physics (see 
Fried and Conte, 1961) 

For real Z, this function has the following limiting 
expressions : 

i 1 +i(7r/2)“‘:, 121 << 1 

w(z) = I- 0 
1.2 

_l+i ; =emZ2’, IZI >> I’ (3) 
_? 

In the approximation of an ideal MHD p, = A, = 0. In 
this case relationships (1) and (2) describe, in a homo- 
geneous plasma. the independent Alfven and mag- 
netosound waves with the dispersion laws UJ’ = h_fA’ and 
(kf +kl) A’. respectively. A specific property of the Alfven 
waves is the absence of the transverse dispersion: the 
frequency (u does not depend on li,. When going beyond 
the scope of an ideal MHD, they are imparted a weak 
transverse dispersion. In a homogeneous plasma. from (1) 
and (2) it follows that 

(!Y = X_‘A?( 1 +,(-;A’). A’ = A; +;pf, (4) 

Such Alfven waves received the name kinetic waves. The 
corresponding dispersion will also be referred to as the 
kinetic dispersion here. 

Even in the presence of a dispersion. the approximate 
equality (r, z /qA is valid, and in the argument of the 
function )t’ one may put 

01 ‘4 s PC ---=-_=__= 
k I,[‘, I’, - p, - (171,..172,) 

where .s = c/~+,~ is the electron skin length, and 
$e;ci~~,, T,/Bo the ratio of electron to magnetic pressure. 

In particular 



,\t ,I --,;-. 
.\ >> p.. (/jc << ~11,,1!?7,) 

! 0;. .\ <c I’\. (/I( >> 112,pn,) 

When .Y - 11, (i.e. I;, - /~z,,‘\?I,). the quantity A,’ is a complex 
one. and Im A;’ c 0. From (4) it follows that this cor- 
responds to the dampin g of the wave. It is caused by the 
(‘hercnko\ resonance due to electrons which is effectike 
hy virtue ol‘thc relationship I‘, - .-t. In the magnetospheric 
plasma the \,alucs of.s and 0, arc estremely small (varying 
I’rom ;I fc~ hundred metrcs to scvcral tens of kilometres) 
c.ompared 1% it h typical scalt‘~ of the magnetosphere. 
Therefore. the kinetic dispersion has a role on1y for 
c.xtremely sm;tll-scale waves in the transverse direction. 

In an inhOliioeelicC)us plasma and an inhomogeneous 
magnetic field relationships (1 ) and (2) can be brought to 
%L system of difrerential equations for covariant com- 
ponents or the electric field of the wave E, (i = 1, 2. 3). 

rhesc are rclatcd to the physical co$ponents f?, by the 
equality 12. = E v,,c/,. The quantities li, in the expression 
I’or the dielectric constant tensor should be treated as the 
i)perators I;, = -i( I L.l~/:)V,. \\herc V, = i:‘is’. Since the 
lcrnis that contitin the operator, /;,, play an important role 
i.or extremely small-scale WWS. it may be assumed that 
I hey commute with functions that describe equilibrium 
parameters c~I‘ the plasma and the magnetic field (i.e. the 
derivati\.ch ‘G in thcsc operators can bc referred only to 
licld, E, I, 

F‘rom ( I ) and (7) when kTL 1,): 1 << I it is easy to obtain 
[he expression l’or the longitudinal component El : 

,4fter that. the system of equations for the transverse 
components E, and E2 can he reduced to the form 

(PI;+ f?,E, = 0 (6) 

where the operator p,, has the same form as in Leonovich 
and MaTur ( IWi) : 

and i,, difcrs from that in the previous paper by the 
presence of dispersion additions : 

Using. as In the paper just cited above. the perturbation 

theory based on the transverse small-scale character ol 
the oscillations. we find that in the main order of this 
theory the solution of system (6) has the form 

E, = V,@ 

where the potential CD satisfies the equation 

(7) 

(V,i,V, +v,i,,v+l)+;,.J/ /,; ;‘;; ,A (1, 

~ > C‘(l) 
;, \ (i .%*A- ,‘, 7 0. (Xl 

Here we have passed from the variable Y’ to the physical 
length along the field line /. whose differentials are related 
by the relationship 

d/ = \ 11; d.\- 

as well as using the notation4 

.4: “ 
/I = -- . 

i 1 $1 I 
A: = l-0; +!,’ C’t. (1 := (/,.(j?. 

!I I 

Equation (8) describes the spatial structure of an Alfvcn 
wave. It differs from an analogous equation reported in 
Leonovich and Mazur (1993) by the prcsencc of the tL\o 
last terms. 

The boundary condition on the ioncjspherc Kor the 
potential Q hax the same form JS in the cltc’d paper : 

Here 1 + represents the coordinates of the Ionospheric ends 
of the ?ield line. x. refers to angles the! make with the 
local vertical. and IL;*’ corresponds to integral Pedersen 
conductivities of the conjugate ionospheres. Dispersion 
effects in (9) can be neglected because the dispersion par- 
ameters 1’) and A, on the ionosphere are much smaller 
than those in the magnetosphere. 

In order to pass from the p‘irtial dill‘erential equation 
(8) to an ordinary differential cqu:ttion th;tt describes 
the mode structure near the toroid:il surface. we avail 
ourselves of the perturbation theory based on the closc- 
ness of the desired solution to the toroidal mode. This 
means that this solution can hc reprcscnrcd ;I> 

(I)= II.,(.\-‘)T,(\-‘./l*r,,,]c”‘, (10) 

Here li2 is the azimuthal R;I\~‘ brctor (11‘ .I ~= cp IS the 

azimuthal angle. then I\, = /II i\ the a/imuthal \vave num- 
her). T,. a toroidal wave function. and v)\ a small correc- 
tion. The function T, is the eipen-solution of the longi- 
tudinal problem 

irn,,,1-, z ( ;i/J;’ f/J 
QZ\ 

.J’ 
T ., == 0. I‘, I. = 0. 

Here &, z R,,(.Y’) are toroidal eigenl‘requcncies. The 
desired I‘unctinn in (IO) is the function I’,(.\.’ I th:lt detincs 
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the transverse structure of the mode. The equation descri- 
bing it is the solvability condition for the correction (p,,. 

Proceeding along similar lines as in Leonovich and 
Mazur ( 1993). we obtain 

Here 

-k;wrvC’,v = 0. (1 I) 

(15) 

The last two terms on the right-hand side represent dis- 
persion corrections. For relatively large-scale waves. such 
that 

one can put 

ll’T,\ = - 

and Y,~ is the decrement of damping of the mode on the 
ionosphere. and the expression for it is given in the cited 
paper (it is assumed that y,<< CL)). In that paper it is 
also emphasized that the value of H’~,~ is nonzero as a 
consequence of the curvature of geomagnetic field lines. 
and it is shown that for realistic magnetospheric models 
it is positive. The expressions for p’,, and 11‘~,%, simplify 
considerably for harmonics with N >> 1, when the WKB 
approximation in coordinate / is applicable. In this case 

1 8’ 1 A 
II’,.,\ = - ~ 

i(- -1 
-d/. 

I, lY2P P 

Equation (11) differs from an analogous equation from 
our previous work by the presence of the first term. An 
important role is played by the sign of the dispersion 
parameter Ai,. In the inner part of the magnetosphere 
where /Jr << rpl,jnr, and. consequently, s’ >> p,‘. pi and 

-? it is negative. In the outer magnetosphere where 
z>rt,, Inz and A:! + pf it is positive. In the intermediate 
region Thib paraietyr is a complex one, and Im A,’ < 0. 

3. Linear transformation of a standing Alfven wave near 
the toroidal resonance surface 

If the WKB approximation is applied to equation (1 1). 
that is. the solution is sought in the form 

VV * exp (is/i, d.u’) (13) 

then for the quasi-classical wave vector k, we obtain (by 
neglecting the damping on the ionosphere) the equation 

co’A,‘,k; - (u’ - z2f,v)k; -k; \t‘T.v = 0. (14) 

Alternatively. this equation may be treated as a relation- 
ship that relates the local frequency (11 to the wave vector 
X-, By solving it for CO and taking into consideration that 
Ik;?pKl << 1, we obtain a local dispersion equation 

These waves were investigated in our previous paper and 
were referred to as small-scale waves. This implied that 
their transverse wavelength is much smaller than typical 
magnetospheric scales (it should be noted that the limit 
k;! -+ 0 cannot be considered in (17) : this would imply 
violating the applicability condition for the WKB 
approximation : the relevant criteria were considered in 
the cited paper). In the present study the waves that satisfy 
condition ( 16). will be referred to as large-scale ones by 
reserving the term of the small-stall wave for the inverse 
case 

In this case 

Uj2 = Q&(1 +/?:A$). (18) 

This dispersion equation is quite similar to equation (4) 
for kinetic Alfven waves. Based on (18) one can determine 
the group velocity of a small-scale standing Alfven wave 
in coordinate s’ : 

(19) 

Note that when Ai; > 0 (i.e. in a rather hot plasma, 
PC >> tn,/rn,) the signs of group velocity I*:,% and phase vel- 
ocity (u/k, coincide, and when Ai < 0 (in a cold plasma. 
Be CC nl,/nl,) they are opposite. 

We now return to the usual (for the WKB approxi- 
mation) treatment of relationship (14) as an equation for 
h-, From it we have 

(XJ) 

This equality defines the function k;’ = kf(s’). provided 
that the dependence R,,$ = C&,\(s’) is specified. We shall 
restrict our attention to the case when in a small vicinity 
of the toroidal surface one can use the linear expansion 

(21) 

where s;,, is a coordinate of the toroidal surface (on which 
fir,,, = w). tV is the inhomogeneity scale. and it is assumed 
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k: 

Fig. 1. The square of the quasi-classical wave vector X-f plotted 
against the coordinate v’. Dashed lines show the asymptotic 
representations Xi = (-1.’ --.v) ,),(/ ,A’,). Case “a“ corresponds to 
values of Ai > 0 and USC “h” corresponds to values of 
A’, <o 

that I.\-’ --.\.I, 1 cc / \‘. On substituting (21) into (30). we 
obtain 

(3’) __ 

This dependence is plotted in Fig. I. 
Suficientl~ far from the toroidal surface. when 

1.\-‘-.\-+,I >> /c:A~(II.~~:Ic~J)/,. the two roots in (22) 
assume the t‘orm 

The first of‘thcm describes a large-scale wave. whose dis- 
persion is gi\,en by equation ( 17). The transmission region 
f-or it is located at x’ < .Y$,, The second root represents a 
small-scale (kinetic) wave with the dispersion law (18). 
The transmission region for it is located at x’ > xi, if 

7 
A; > 0, and at s’ < xc, if Ai < 0. 

In the small vicinity of the toroidal surface. waves of. 
one type transform to waves of another type. In order to 
investigate qualitatively this process and. in particular. to 
determine the transformation coefficient. it is necessary to 

have rccoursc to the original equation (I 1. On substituting 
expression (21) into it, wc obtain 

Xtl, , \ 

I’, =: 0. (24) 

Leonovich and Marur ( 1903) introduced the notations 

Remember that ; r, is a typical tran5versc kavelcngrh 01 
the large-scale mode near the toroidal surface. For the 
oscillations of interest with 111 >> I it i> rather small : 
/., , <: / ,, Let us introduce the dimensionless ccxjrdinate 
< = (.\-I - i-4 ,) /, , and a comple\ \ariablc I = j + IL, ,. 

Equation (23) then assumes the fern! 

%‘ I “:“+:I.,+ I., - I \ -= 0. (75) 

Here it is designated that y2 = ;I:/, /.; ,. and the deriva- 
tives are taken in the variable z. The dimcnsionles:, par- 
ameter p%’ is small : Ir‘l cc I Taking into consideration 
that it generally is a complex one. WC’ put x2 = Iz31c\ ““. 
Since Im A’, < 0. it may be assumed that 0 < I/I 6 n. To 
positive A2\. there corresponds the \,alue of I// = 0. while 
the value of@ = n corresponds to nqative ,A: 

A solution of equation (25) is readily obtained using 
the Laplace method. A full set of linearly independent 
solutions is si\,en by the integrals 

Each of the possible paths of‘ integrations C’,> in the plane 
of a complex variable 1 must be such that the functicm 

takes. at its ends. equal values (or. for ;I closed path, II 

returns to the original value when the path is traced 
around). It is easy to see that the function %(I) --j 0 when 
I// + -L in the following sector\: 

where /I is an arbitrary whole number. In Fig. 2 these 
sectors are shaded. Moreover. Z(r) --t 0 il‘ f --, 0 proceeds 
SO that Re I < 0 (say. dong the nrgati\s semi-ii?ci\ 01 
the real 0. From these consideration:, it follows that the 
solutions of equation (25) are the integral5 (16). pro\idcd 
that one of the contours C’,. C‘>. . (‘- are chosen as the 
path of integration, as shown in Fig. 7. Since there exist 
only four linearly independent solutions. these solutions 
involve three relationships that are reatiil!~ csrablished 
from the pattern 
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Fig. 2. The possible paths of integration in formula (26) 

A general solution is the linear superposition of any four 
linearly independent functions Fk. 

The particular form of this superposition is determined 
by boundary conditions which must be satisfied by the 
solution in an asymptotically distant region, formally 
when : -+ + ccl. For the solution of interest, these con- 
ditions can be formulated as follows. Firstly. this must be 
a bounded solution. This means that growing asymptotic 
representations must be absent in the opacity regions of 
both the large-scale and small-scale waves. Secondly. in 
the transmission region of the small-scale mode its asymp- 
totic representation must be a wave that carries the energy 
from the resonance region (i.e. its group velocity must be 
directed from the toroidal surface to infinity). From the 
physical point of view, this signifies that, on the one hand, 
the kinetic wave is generated in the neighbourhood of the 
resonance surface as a result of the transformation of the 
large-scale mode. On the other hand, there are no kinetic 
waves that bring the energy from infinity, that is, waves 
generated by some external sources. These conditions fix 
the desired solution up to an arbitrary factor which is 
determined by the amplitude of the incident large-scale 
wave. 

It appears that the conditions formulated are satisfied 
by the solution F,(I). To verify this, we consider the 
asymptotic representations of the function F,(z). Omit- 
ting standard calculations based on the saddle-point 
method (see Budden. 1961), we give the final result as 

F,(Z) = (-~)-‘~exp 1 
+(-~)i;exp[-~(cos~+isin~)(-~~’ 

+ig-if . 
I 

z + -x (27) 

-i2+i * 1 4 4’ 
Z’%. (28) 

Here it is designated as ,D = /XI’ -’ = jA,%l’ ‘/\ ‘;irv. From 
these asymptotic representations it is evident that the typi- 
cal wavelength in the variable I for the large-scale mode 
is unity. and for the small-scale mode it equals the value 
of il. In terms of the initial variable .Y’ they are. respec- 
tively, E.,, and s, = ,LL~.,, = IAvI’ ‘/k,‘. Incidentally, the 
last assertion holds only for the sufficient smallness of the 
damping. For the large-scale wave this smallness implies 
Ed,,, << 1. For the small-scale wave the condition is more 
rigorous 

lf, however, the inverse inequalities cT,) >> 1 and 6,, >; 1 
are satisfied. then expressions (27) and (28) are inap- 
plicable, and the typical scale of the oscillation is deter- 
mined by dissipative parameters (see below). 

From formulas (27) and (28) it follows that in the 
transmission region of the large-scale mode (1 < 0) this is 
a wave running toward the resonance surface, and the 
reflected wave is absent. The result of our previous paper 
is thereby reproduced, with the only difference being that 
the large-scale wave is now not absorbed on the toroidal 
surface but is transformed into the kinetic Alfven wave. 

The transformation effect is manifested most distinctly 
in the absence of the dissipation, that is, when ;‘, = 0 and 
at real values of Ai. For positive values of Ai. that is. 
when I,// = 0, from (27) and (2X) we have 

Fl(=)=(-Z)m’4exp -2i(_3)‘J_,4 1 .72 I 

and for Ai < 0. that is, when $ = n, we obtain 

F,(Z) = (-~)~‘~exp -2i(-:)“_i$ 1 

F,(z) = z ’ ‘exp(-2:’ ‘) 
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Let us demonstrate that the transformation of the large- 
scale wave into ;I small-scale wave is a complete one, that 
is, the energy flux carried by the small-scale wave is equal 
to the energy flux brought by the large-scale wave. For 
this purpose. WC use the expression for transverse com- 
ponents of the Poynting flux vector s(i = 1,2) obtained 
by Leonovich and Mazur (1993). A little manipulation on 
1 he formulas obtained in that paper yields 

Let us consider the case At > 0. According to the for- 
mulas from the cited paper. in the transmission region of 
the large-scale mode 

and from (30) we have 

Hence 

In the transmission region of the small-scale mode 

Whence 

Similar calculations can also be made for Ai, --c 0. In 
this case the transmission regions for the large- and small- 
scale waves coincide. Their phase velocities have the same 
sense of direction : toward the toroidal surface. However. 
when A’\ < 0 the group velocity of the small-scale wave is 
directed opposite to the phase velocity, it carries the 
energy away from the resonance surface. Qualitatively the 
structure of the mode on coordinate .Y’ is presented in 
Fig. 3. 

If the weak dissipation on the ionosphere is taken into 
account, then the amplitudes of the running waves 
decrease in the course of their propagation. By confining 
ourselves to the case At > 0 and retaining only the leading 
asymptotic representations. from (30) we obtain 

F,(z) = 

I \ 

Fig. 3. Spatial structure of the potential CD \erxus coordinate .v’. 
Solid line presents large-scale mode and shaded line small-scale 
mode and envelopes of amplitude. C;IW (;I) corresponds to 
A’, > 0 and case (h) to A: < 0 

The typical attenuation length of the small-scale wa\‘e 
.s,/C5t - (A2\:/\)(,0J2 /;bk). albeit much larger than the 
wavelength s \. is. however. much smaller (at realistic 
values of parameters) than the distance between the polo- 
idal and toroidal surfaces. Thus. after having been trans- 
formed into the small-scale mode. the Alfven wave is 
dissipated in a small vicinity of the roroidul surface. 

If the parameter A:. is essentially complex such that the 
value of I,// is rather far from the values of 11 = 0 and 7r. 
then ~-as is apparent from (27) and (2X) the typical scale 
of attenuation of the small-scale mode coincides with its 
wavelength .Y \. 

The full spatial structure of the wave field is determined 
by the potential 

@ = CF T eli ,’ = I \ 

c +i+, )I.,(.Y’./)~“” (33) 

Here we have passed (as in the paper of Leonovich and 
Mazur (1993)) from the i‘unction T, to the function 
I’,\ = (pt, A)’ ‘T1 with the advantage that it is dimen- 
sionless and. on the order of magnitude. unity. The con- 
stant C’ is determined by the amplitude of the incident 
large-scale wave. By comparing expression (33) with the 
corresponding expression from the cited paper in the 
region i-, , K l-i, -.\-I << A.Y\. we obtain 
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Here, as before, the “cap” denotes the physical value of a 
corresponding quantity (say. f,,. = Jg, i.,,,.), and the sub- 
script “zero” refers to its equatorial value. For an expla- 
nation of the other symbols. the reader is referred to the 
cited paper. 

From (33) and (34) we readily obtain the expressions 
for physical components of the wave’s electric field : 

x F; I’\ 

x F, (35) 

The ratio of these components, on the order of magnitude. 
is 

As far as the ratio F;/F, is concerned, its representative 
value near the toroidal surface depends on the relative 
role of the effects of the small-scale dispersion and dissi- 
pation. If the former effect has a more important role, 
then-as follows from (3 1 )+F'/F - 1 ;‘/i. If the dissipation 
is more important. then F'iF - I/E-,,~ (see our previous 
paper). By comparing these quantities, we arrive at the 
conclusion that if 

(36) 

then the dispersion effect is more important; otherwise, 
the dissipation effect in the ionosphere predominates. 
Under conditions of the Earth’s magnetosphere either 
case can occur on different magnetic shells (for more 
details, see Leonovich and Mazur (1989)). If condition 
(36) is satisfied, then 

with the inverse inequality 

being satisfied. In either case the oscillation is a toroidal 
one: I!?, 2 E2. 

4. Conclusions 

Let us formulate the results obtained in this study. 

(I) We have obtained a partial differential equation 
that defines the spatial structure of a monochromatic azi- 
muthally small-scale (111 >> 1) Alfven wave in the axi- 
symmetric magnetosphere (equation (8)). It is a gen- 
eralization to the analogous equation from our previous 
paper which includes kinetic dispersion effects of Allken 
waves. 

(7) Based on this partial difl‘erential equation. near the 
toroidal surface, precisely where the kinetic dispersion is 
essential only, we have obtained an ordinary differential 
equation that describes the wave field structure in the 
direction normal to the magnetic shells (equation ( 1 I)). 

(3) By solving this equation, we have obtained t’or- 
mulas that fully define the spatial structure of a standing 
monochromatic Alfven wave near the toroidal surface 
(formulas (33)- (35)). 

(4) From these formulas it follows that a relatively 
large-scale Alfven wave. generated by external sources in 
the neighbourhood of the poloidal surface and trans- 
ferred, as a consequence of the curvilinear dispersion, 
toward the toroidal surface, undergoes in its vicinity a 
linear transformation into a small-scale kinetic Alfven 
wave. The transformation is a complete one : the reflected 
large-scale wave is absent. and the energy flux that is 
brought by the large-scale wave to the toroidal surface. is 
equal to the energy flux carried by the small-scale wave 
away from this surface. As ;I consequence 01‘ the Ohmic 
dissipation on the ionospheric terminations the kinetic 
Alfven wave attenuates slowly in the process of its propa- 
gation across the magnetic shells. The attenuation length 
is much larger than the transverse wavelength but is much 
smaller than the distance between the poloidal and toro- 
idal surfaces. One is led to conclude that Alfven waves. 
after having transformed into the kinetic mode, are 
dissipated in the immediate vicinity of the toroidal 
surface. 

.1(,~11011./(‘~!(/(~111(111/. We are grateful to Mr V. G. Mikhalkovsky 
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