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In a recent paper (Leonovich and Mazur. 1993) we have 
presented a theory of monochromatic standing Alfven 
u’aves with large azimuthal wave numbers (nz >> 1) in 
an axisymmetrical magnetosphere. It was found that an 
oscillation with a given frequency (11 and wave number 777. 

being a standing wave along the geomagnetic field. is a 
slowly running propagating wave across magnetic shells 
as a consequence of a specific weak dispersion caused by 
the curvature of the geomagnetic field lines. The oscil- 
I:ltion is generated by external sources on a poloidal res- 
onance surface. on which the frequency of poloidal oscil- 
lations Qp, (.I’ = I. 2, is the harmonic number) 
coincides with frequency CO and is totally absorbed on the 
toroidal resonance surface. on which the toroidal fre- 
quency R,, is equal to the oscillation frequency CI). While 
travelling between the resonance surfaces, the wave is 
slowly transformed from poloidal to toroidal. 

The picture described here occurs if the frequencies R,, 
;Ind 0, \ vary monotonically with a radial coordinate as 
i; the cast in most of the magnetosphere. But never 
cstreme of the functions QpY and Q,, the situation can be 
quite different. It is the goal of this paper to investigate 
\uch cases. It is a direct extension of the cited paper by 
these authors. and we shall be using the notations and 
symbols introduced previously without giving further 
ctxplanations to them here. 

Figure I is a schematic representation of the plots of 
I he functions Qp ,J I’) and R r ,,(.\‘I) which qualitatively rep- 
resent their variation in the dayside part of the magneto- 
hphere. Points of intersection of each of the horizontal 
htraight lines on this plot with curves CI,,V(.u’) and C&,,(.\-‘) 
defme the coordinates of the turning point of the mode of a 
corresponding frequency. and the intersection with curve 
Q,,,,(s’) and with curve R,V(.\-‘) specifies, respectively, a 
regular (poloidal) and singular (toroidal) turning point. 
fhe transparency’ region of the mode is defined by the 
Inequality Q,,( \-‘) < (I) < C&,(.X-‘). Based on these con- 

siderations it is easy to analyse qualitati\,ely the possi- 
bilities that present themselves. 

The most typical case is the one when the transparency 
region of the mode is bounded. on the one hand, by a 
regular turning point s$,, and. on the other, by a singular 
turning point .Y:~. If R,,.(.Y’) and Q-, ,(.\-‘) decrease, as is 
the case with most of the magnetosphere. then vi, > 
~6,. It is this possibility (cases I in the figure correspond 
to it) that has been investigated in detail in Leonoiich and 
Mazur (1993). 

There exist also fundamentally different possibilities. 
however. To case 9 there corresponds the solution. whose 
transparency region is bounded on both sides by regular 
turning points. Since in this case the singular turning 

Fig. I. Schematic plots of the functions Q’; = I&,,(.\-‘) and 
QT. z RT,(_\-’ ). The role of the coordinate .\-I is played by the 
McIlwain parameter L. Extrema of these function5 occur at 
L - I .3 as well as on the inner and outer edges of plasmapausc 
(L - 4+5). Points of intersection of the curves with the hori- 
zontal straight lines determine the position of the poloidal and 
toroidal resonance surfaces for a gi\,en frequency CU. In case 1 the 
transparency region lies between the poloidal and the toroidal 
turning points. In case ? an Alfven resonator takes place. In case 
3 the presence of two toroidal turning points makes the existence 
of an oGllation impossible 
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If it is assumed that extraneous currents in the iono- 
sphere are absent, i.e. the right-hand side of equation 
(4) is zero. then together with the requirement for the 
boundedness of the solution for < ---) i ‘X , ST arrive at 
the well-known problem for eigenvalues for a quantum 
oscillator. Its solutions are 

where 

J’,, = 7c ’ J2-‘s ‘(n!) ’ ‘H,,([)exp(-<‘.2) 

and H,J<) are the Hermitian polynomials. The functions 
J;,(C) satisfy the orthonormalization condition : 

l 

I 

>-u(i) .I’,, (2 di’ = h,,, 
i 

The solution (5) defines the eigenmodes and eigen- 
frequencies of the Alfvenic resonator: 

point, at which a total absorption of the wave energy 
occurs, is absent, eigen-oscillations are possible, i.e. oscil- 
lations without sources. Frequencies of such eigen-oscil- 
lations are determined by the relevant quantization con- 
dition. If the WKB approximation is applicable, then 
it represents the well-known Bohrsommerfeld quantum 
condition 

where II = 0, 1,2, . . is the transverse wave number. The 
domain where there exist solutions locked in coordinate 
s’ by the turning points and in longitudinal coordinate by 
the ionospheric ends can be called the Alfvenic resonator. 
The quantum condition determines the spectrum of its 
frequencies (11 = c~-),~,, that depend on two wave numbers. 
N and II. In the presence of a source. a forced oscillation 
with arbitrary frequency (u is possible. Note that the possi- 
bility that such a resonator for fast magnetosonic waves 
can exist in the magnetosphere, is rather well established 
to date (Gul’elmi. 1970. 1972 ; Zhu and Kivelson, 1989). 
The possibility of such a resonator for Alfven waves was 
discussed for the first time by Gul’elmi and Polyakov 
(1983) and Leonovich er al. ( 1983). 

We shall now obtain explicit formulas for Alfvenic res- 
onator oscillations, whose frequencies are close to the 
minimum of the function Q,,,(.Y’). Near this minimum we 

Put 

Consider the oscillations with frequencies that satisfy the 
condition cr) -ii,,v << AR,,. These oscillations are close to 
the poloidal mode throughout the region of their local- 
ization, and to describe them. it is possible to use equation 
(82) of the work of Leonovich and Mazur ( 1993) : 

W’;,VfUv+ki[((I.,+il’,\)‘-n~,~]~,~ = /i;I,. (3) 

Introduce the dimensionless variable 

by defining the constant ?,,,, by the equality 

- Wf,U,,\ ’ -I 
/’ .P.L = 

( 1 &,,’ 

This constant represents the typical scale of the solution in 
coordinates’. On the order of magnitude, ?l,v - ,’ ‘~/nr’ ?. 
For a minimum on the inner plasmapause edge and for the 
wave with N = 1 and III = 20-50, a numerical estimation 
yields I,, w 500-1000 km. Using the new variable equa- 
tion (3) can be represented as 

where 

(4) 

(‘J = (~).,,i-i;~\.. (6) 

Note that the eigenfrequencies in (6) can be obtained from 
the quantum condition ( I ). and even for small tt - I. a 
well-known fact for a quantum oscillator. 

It is easy to obtain the solution of the inhomogeneous 
equation (4) with the help of Green’s function by its left- 
hand side : 

which satisfies the equation 

d’G 
F; +(rr-{‘)G = 6(;-[‘). 

i 

We have 

where 

The solution represents a superposition of eigenmodes of 
the Alfvenic resonator. If frequency cc) is close to one of 
the eigenfrequencies (I),~,, so that the difference (J)-(I),,,, in 
absolute value is much smaller than the splitting of the 
eigenfrequencies (;i!.y/a,?Y)fii,,v. and the damping dec- 
rement ;‘,v is also much smaller than this splitting, then 
one term corresponding to the resonance eigenfrequency 
will be dominant in the sum (7). 

As far as cases 3 in Fig. I are concerned. however. 
simple considerations show that there exist no cor- 
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responding solutions. Indeed. transparency regions of 
such solutions would be bounded on both sides by singular 
turning points. We know that, in the presence of a singular 
turning point, the solution that is bounded in the opacity 
region, is a wave travelling toward that point. But a wave 
tr:ivelling toward two opposite turning points cannot 
exist. 
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