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Abstract

The structure of the slow mode coupled with Alfvén mode in the axially symmetric magnetosphere is studied in the paper. Due to the

coupling, the slow magnetosonic wave gets dispersion across magnetic shells and becomes not strictly guided. The slow mode is found to

be captured between the resonant and cutoff surfaces, where the wave vector radial component goes to infinity and to zero, accordingly.

The resonant surface is farther from the Earth than the cutoff surface. The slow mode resonance frequency is much lower than the Alfvén

resonance frequency due to small value of the sound velocity near the equator. The maximum of the slow mode amplitude expressed in

terms of the parallel magnetic field is concentrated near the equator, but expressed in hydromagnetic terms is concentrated near the

ionospheres.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Space plasmas is a natural medium for the propagation
of a vast number of various kinds of waves. In the ULF
range (wave frequency is much lower than ion cyclotron
frequency), a prevalent mode is the Alfvén mode, because it
demands only plasma and magnetic field. This is a guided
wave, since its group velocity is directed along magnetic
field lines. In finite pressure plasma, another guided wave
can propagate under some conditions: the slow magneto-
sonic mode. With this mode some Pi2 (Saka et al., 1999)
and Pc5 (Nishida et al., 1997) pulsations have been
identified in the terrestrial magnetosphere and several wave
events in the magnetosheath and the boundary layer
(Gleaves and Southwood, 1991; Stasiewicz, 2004).

The field line curvature causes the coupling of the Alfvén
and slow modes (Southwood, 1977; Walker, 1987; Cheng

and Chance, 1986; Klimushkin, 1998; Erkaev et al., 2005).
The physical mechanism of this coupling was elucidated by
Southwood and Saunders (1985) and Ohtani et al. (1989a).
By now much attention has been given to spectra and field-
aligned structure of the slow modes (Taylor and Walker,
1987; Ohtani et al., 1989b; Cheng et al., 1993; Lui and
Cheng, 2001; Cheng, 2003; Cheremnykh et al., 2004;
Parnowski, 2007). The structure across magnetic shells
has almost escaped the attention of the researchers, with
only few exceptions (Yumoto, 1985; Klimushkin, 1998;
Leonovich et al., 2006). For example, Klimushkin (1998)
(hereinafter, Paper 1) showed that due to the coupling the
slow mode becomes not strictly guided any more, since the
dispersion across magnetic shells appears; the slow mode
analogy of the poloidal surface had been found.
These studies revealed some contradictions. For exam-

ple, according to Leonovich et al. (2006) there is only one
kind of slow mode transverse dispersion, the one caused by
the coupling with the fast mode. The field-aligned mode
structure is also a subject of some controversy: it is not
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clear whether the amplitude maximum is situated near the
ionospheres (Cheremnykh et al., 2004; Parnowski, 2007) or
near the equator (Leonovich et al., 2006). Then, no other
paper has found a slow mode analogy of the poloidal
surface. So, the spatial structure of the slow modes in the
space plasmas is not clear yet. However, at the moment the
problem of the mode spatial structure becomes rather
urgent in the context of the Cluster mission with its
possibility to separate in the spacecraft reference system the
spatial structure from the temporal evolution of the wave.
Thus, it is the time to study these issues anew, in as simple
terms as possible.

Similar to a number of previous studies (e.g. Klimush-
kin, 1998; Klimushkin et al., 2004; Erkaev et al., 2005;
Cheremnykh et al., 2004; Parnowski, 2007), the present
paper is concerned with transversally small-scale waves. In
the Earth’s magnetosphere, such are the waves with high
azimuthal wave numbers (mb1) often observed with
Cluster (Eriksson et al., 2006; Schäfer et al., 2007). In the
magnetosheath plasmas, these are the pulsations with the
wave vector approximately perpendicular to an ambient
magnetic field (Denton, 2000; Shevyrev et al., 2006). The
convenience of the transversally small-scale approximation
is caused by the possibility of using the WKB approxima-
tion and also by the fact that only two MHD modes can
propagate in plasma in this case, the Alfvén mode and the
slow magnetosonic mode; the third MHD mode, the fast
magnetosonic wave, cannot propagate in this limit (e.g.
Leonovich and Mazur, 2001).

The current study is based on the system of equation for
the coupled modes obtained in Paper 1. This system will be
presented in Section 1. Section 2 is devoted to the study of
the wave structure across magnetic shells by application of
the two-dimensional version of the WKB-approximation
developed by Leonovich and Mazur (1993) and the
perturbation theory; the small parameter is a ratio of the
eigenfrequencies of the slow and Alfvén modes. The field-
aligned structure of the slow modes will be studied in
Section 3.

2. Basic equations

A curvilinear orthogonal coordinate system fx1;x2;x3g is
used, where the field lines play the role of the coordinate
lines x3, the stream lines are the coordinate lines x2, and the
surfaces of constant pressure (magnetic shells) are coordi-
nate surfaces x1 ¼ const. The coordinates x1 and x2 have
the role of the radial and azimuthal coordinates. The
components of the metric tensor are designated as gi.
The determinant of the metric tensor is g ¼ g1g2g3. The
equilibrium magnetic field B, pressure P, and current J are
related by the equilibrium condition rP ¼ ð4pÞ�1~J � ~B
(here current is defined as ~J ¼ ~r � ~B). The field line
curvature radius is denoted as R.

In the axisymmetric model all perturbed quantities can
be specified in the form e�iotþik2x2

, where k2 is the
azimuthal component of the wave vector. If the azimuthal

angle j is used as the coordinate x2, then k2 ¼ m, where m

is the azimuthal wave number.
Within the approximation of infinite plasma conductiv-

ity, the longitudinal component of the wave’s electric field
~E is zero. A two-dimensional field ~E can be split into the
sum of the potential and vortical components:

~E ¼ �r?Fþr? �~ekC, (1)

where ~ek ¼ ~B=B. As the third field variable, the quantity

Y ¼
ffiffiffiffiffiffiffiffiffiffiffi
4pgP
p

ck2
r �~x (2)

is used, where ~x is the plasma displacement. Large value of
the azimuthal wave number m allows using the WKB
approximation with respect to the radial coordinate, when
the functions F and Y can be written as

F

Y

� �
¼

F ðx3;x1Þ

Hðx3;x1Þ

 !
� exp i

Z
k1ðx

1Þdx1,

where k1 is the radial component of the wave vector.
Let us designate s ¼

ffiffiffiffiffiffiffiffiffiffiffi
gP=r

p
, A ¼ B=

ffiffiffiffiffiffiffiffi
4pr
p

, and vs ¼

sA=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ A2

p
as the sound speed, Alfvén speed, and slow

magnetosonic speed, accordingly. The operators

L̂T ðoÞ ¼ q3
g2ffiffiffi

g
p q3 þ

ffiffiffi
g
p

g1

o2

A2

and

L̂PðoÞ ¼ q3
g1ffiffiffi

g
p q3 þ

ffiffiffi
g
p

g2

o2

A2
�

ffiffiffi
g
p

g2

2J

BR

are referred to, respectively, as the toroidal and poloidal
ones. The operator

L̂SðoÞ ¼
ffiffiffi
g
p

s2
o2

v 2
s

þ q3 s2
ffiffiffi
g
p

g3

q3

is called the slow mode operator. The parameter

a ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
4pgP

p ffiffiffiffiffiffiffiffiffi
g1g3
p

BR

is responsible for coupling of the Alfvén and slow modes
(here R is the curvature radius of a field line).
As was shown in the Paper 1, in the mb1 limit, the

functions F and H are related by the equations

L̂SðoÞH ¼ aoF (3)

and

k2
1L̂T ðoÞF þ k2

2L̂PðoÞF ¼ k2
2aoH. (4)

These equations are the principal equations of this paper.
In the homogeneous plasma, system (3), (4) yields the
dispersion equations of the slow mode s2ðo2 � k2

kv
2
s Þ ¼ 0

and Alfvén mode k2
?ðo

2 � k2
kA

2Þ ¼ 0. Therefore, we will
call (3) and (4) as the slow and Alfvén mode equations,
respectively, and the system describes slow and Alfvén
modes coupled due to the field line curvature.
It should be noted that the slow mode dispersion relation

in the transversally small-scale limit, o2 ¼ k2
kv

2
s , contains
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no wave vector transverse component, that is, the
transverse dispersion of the wave is absent. The same
situation is valid also for the Alfvén mode in a
homogeneous plasma, but the transverse dispersion ap-
pears due to the field line curvature (Leonovich and Mazur,
1993; Klimushkin et al., 2004). Klimushkin (1998) came to
the same conclusion with respect to the slow mode. We are
to prove this conclusion in the present paper.

We will use the so-called ‘hard’ boundary conditions,
where the ionosphere is supposed as an ideally conducting
fixed surface, where all perturbed quantities go to zero:

F ðx3;x1Þ;Hðx3; x1Þjx3¼x3
�
¼ 0. (5)

Here x3
� stands for the intersection points of a field line

with the upper ionospheric boundary.
As for the variable C, it yields the longitudinal

component of the wave magnetic field as

b3 ¼
ic

o
g3ffiffiffi

g
p q1

g2ffiffiffi
g
p q1 þ q2

g1ffiffiffi
g
p q2

� �
C,

which is expressed through F and Y as

b3 ¼
ck2

o
g3ffiffiffi

g
p

ffiffiffiffiffi
g

g3

r
s2B

A2

offiffiffiffiffiffiffiffiffiffiffi
4pgP
p Y�

ffiffiffiffiffi
g1

p J

B
F

� �
. (6)

The perturbation of the plasma pressure dP ¼ �~x � rP�

gPr �~x is expressed in terms of F and Y as

dP ¼ �
ck2

o
gP

offiffiffiffiffiffiffiffiffiffiffi
4pgP
p Y�

J

4p
ffiffiffiffiffi
g2
p F

� �
. (7)

Comparing it with the previous equation we get

dPþ
Bb3

4p
ffiffiffiffiffi
g3
p ¼ 0, (8)

that is, the perturbation of the total pressure (plasma plus
magnetic pressure) is zero.

3. Slow mode localization region

As system (3), (4) involves the large parameter mb1, to
solve it we can use the WKB approximation in the radial
coordinate x1, a two-dimensional analogue of which was
developed by Leonovich and Mazur (1993).

When the frequency o is fixed, the solution of the
problem (3), (4), (5) yields the eigenfunctions HNðx

3;x1Þ

and FN ðx
3;x1Þ, describing the field-aligned structure of the

oscillation (N is the harmonic wave number); these
functions depend also on the radial coordinate x1 as on
parameter. The eigenvalue is k1 ¼ k1Nðx

1;oÞ. It describes
the main features of the radial structure of the wave field.
The most important are surfaces where k1 goes to infinity
(resonance surfaces) and to zero (cutoff surfaces).

In order to compensate the large value of the k2
1 term in

Eq. (4), the factor at this term must go to zero. There are
two possibilities to arrange it. The first of them takes place
when the function F is nonvanishing. Then, the product
L̂T F must go to zero. Thus, Alfvén or toroidal resonance is

familiar, defined by the solution of the problem

L̂T ðoÞTðx3; x1Þ ¼ 0; Tðx3
�Þ ¼ 0. (9)

The solution (toroidal eigenfunction) is designated as TN

and the eigenfrequency as OTN ðx
1Þ. The toroidal eigenfunc-

tions are conveniently normalized in the following manner:ffiffiffi
g
p

g1

TNTN 0

A2

� �
¼ dNN 0 (10)

(here the angle brackets designate integration along a field
line between the ionospheres, h. . .i ¼

R x3
þ

x3
�

ð. . .Þdx3). The
resonance (which is called the Alfvén, or toroidal
resonance) takes place on the surface x1

TN where the
equality o ¼ OTN ðx

1Þ is satisfied. As itself, it is beyond the
scope of our present work, but the functions TN and
eigenfrequencies OTN will be useful for other needs.
The other possibility for the resonance takes place when

the function F in Eq. (4) is going to zero itself. Then, from
Eq. (3) it is seen that it is possible when the product L̂SH

goes to zero. Let us call this case the slow mode resonance.
Thus, this resonance is defined as a solution of the problem

L̂SðoÞSðx3;x1Þ ¼ 0; Sðx3
�Þ ¼ 0. (11)

The eigenfunction is designated as SN . Its amplitude is
fixed by the normalization condition

s2

v2s

ffiffiffi
g
p

SNSN 0

� �
¼ dNN 0 . (12)

The slow mode eigenfrequency is designated as OSN ðx
1Þ.

This value was shown to be much lower than the toroidal
eigenfrequency (Cheng et al., 1993; Lui and Cheng, 2001;
Cheng, 2003; Cheremnykh et al., 2004; Parnowski, 2007).
The resonance (which is called the slow mode resonance)
takes place on the surface x1

SN where the equality o ¼
OSN ðx

1Þ is satisfied.
We are going to find the k2

1Nðx
1;oÞ dependence near the

slow resonance surface. To do it, let us use the perturbation
method putting

H ¼ SN þ h, (13)

where h is a small correction. Notice that near the
resonance, where k2

1bk2
2, Eq. (4) comes to the form

k2
1L̂T ðoÞF ¼ k2

2aoSN , (14)

where we used SN for H. We find the solution in the form

F ¼
1

k2
1N

X
N 0

aN 0TN 0 , (15)

where aN 0 are the coefficients yet to be defined. Then we
substitute F into (14), multiply by TN 0 and integrate along
a field line. Using the Hermitian character of the operator
L̂T and the normalization (10) we obtain after some
algebra an expression defining aN 0 :

aN 0 ðO
2
SN � O2

TN 0 Þ ¼ k2
2OSNhaSNTN 0 i.
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Hence, if OSN5OTN 0 for any N 0;N, we find

F ¼ �
k2
2

k2
1N

X
N 0

OSN

O2
TN 0
haSNTN 0 iTN 0 . (16)

This expression is valid for low slow mode harmonics.
Then we come back to Eq. (3). Substituting it in (13) and

(16), multiplying by SN and integrating along a field line,
taking into account the Hermitian character of the
operator L̂S, equality (11) and normalization (12), we
obtain after some algebra:

k2
1Nðo; x

1Þ ¼ �
k2
2

o2 � O2
SN ðx

1Þ

X
N 0

OSN

OTN 0

� �2

haSNTN 0 i
2.

(17)

It is important to notice that positive signs of k2
1

correspond to frequencies ooOSN . It means that if OSN

decreases with distance from the Earth, then the propagat-
ing region (where k2

140) is situated inside the resonant
surface. Using Eqs. (16) and (17) we can check our premise:
the function F goes in the vicinity of the slow resonance to
zero as F�½o2 � O2

SN ðx
1Þ�.

Now we consider cutoff surfaces. Let us designate a
frequency corresponding to k1 ¼ 0 as OCN . This frequency
appears as an eigenfunction of the problem

L̂SðOCN ÞH ¼ aOCN F (18)

and

L̂PðOCN ÞF ¼ aOCN H, (19)

with the boundary condition (5). Since this system is
equivalent to fourth-order equation with respect to the
longitudinal coordinate, any N-number corresponds to two
cutoff frequencies, one of which is close to the toroidal
frequency and the other to the resonant SMS frequency.
The first of them will be called the poloidal frequency and
designated as OPN . The emphasis is on the second one,
which will be called simply the cutoff frequency. The
coordinate of the cutoff surface is determined as a solution
of the equation o ¼ OCN ðx

1Þ.
To determine OCN ðx

1Þ, we express F through H by means
of (14). To do it, let us introduce the ‘‘poloidal’’
eigenfunction determined as a solution of the problem

L̂PðoÞPðx3;x1Þ ¼ 0; Pðx3
�;x

1Þ ¼ 0. (20)

As a normalization condition, the expression

ffiffiffi
g
p

g2

PNPN 0

A2

� �
¼ dNN 0 (21)

will be used.
Let us decompose the function F in terms of the poloidal

eigenfunctions PN :

F ¼
X
N 0

bN 0PN 0 , (22)

where bN 0 are the coefficients yet to be defined. Proceeding
in the same manner as in the derivation of (16), we get:

F ¼
X
N 0

OCN

O2
CN � O2

PN 0
haHNPN 0 iPN 0 . (23)

Substituting this expression into (18) yields the integro-
differential equation for the function H:

L̂SðOCN ÞH ¼ a
X
N 0

OCN

O2
CN � O2

PN 0
haHPN 0 iPN 0 . (24)

Let us suppose that the values OCN and OSN are close to
each other. Then, the perturbation theory can be applied
for the solution of Eq. (24). To do it, the function H and
the frequency OCN can be represented as

H ¼ SN þ s, (25)

OCN ¼ OSN þ e, (26)

where s and e are small additions. The right-hand side of
(24) is supposed to be small in view of the assumed
inequality O2

PN=O
2
CN51. Then the further equation is

obtained for these additions:

L̂SðOCN Þsþ
ffiffiffi
g
p s2

v2s
eSN ¼ �

X
N 0

O2
SN

O2
PN 0
haSNPN 0 iaPN 0 .

Then we multiply this expression by SN and integrate along
the field line. We get

O2
CN ¼ O2

SN �
X
N 0

O2
SN

O2
PN 0
haSNPN 0 i

2. (27)

Hence, it follows that the cutoff frequency is always less
than the slow mode resonant eigenfrequency. Conse-
quently, if the resonant eigenfrequency grows with the
radial coordinate, then the cutoff surfaces is closer to the
Earth than the resonant surface. It corresponds to the
above-mentioned property: k2

140 at x1ox1
SN .

4. Slow mode field-aligned structure and eigenfrequencies in

longitudinal WKB approximation

In order to clarify the field-aligned structure and
eigenfrequencies of the slow magnetosonic waves, let us
apply the WKB approximation with respect to the long-
itudinal coordinate, which is valid for relatively high N

numbers. In this approximation, the required function can
be presented as S ¼ eic0þic1 , where c0 and c1 describe the
leading and the first term, accordingly. The covariant and
‘physical’ components of the longitudinal wave vector are
determined as q3c0 ¼ k3 and kk ¼ k3=

ffiffiffiffiffi
g3
p

. Then, the
leading order of system (3), (4) yields the algebraic
equation

o2 � k2
kv

2
s ¼

k2
y

k2
?

4o2v2s
R2

ðo2 � k2
kA

2Þ �
k2

y

k2
?

2P0

rR

" #�1
. (28)

Here, ky ¼ k2=
ffiffiffiffiffi
g2
p

, the prime means differentiating with
respect to the radial coordinate, and the transverse wave
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vector is defined as k2
? ¼ ðk

2
1=g1Þ þ ðk

2
2=g2Þ. This equation

can be considered as a local dispersion relation for the
coupled Alfvén and slow modes. It is the same expression
as derived by Mikhailovskii and Skovoroda (2002).

First, it is clearly seen that the transverse wave vector
approaches infinity (k? ! 1) under either of two condi-
tions: (i) o2 � k2

kA
2 ¼ 0 or (ii) o2 � k2

kv
2
s ¼ 0. It confirms

the existence of two resonances: (i) the Alfvén resonance
and (ii) the slow resonance.

The field-aligned structure of the slow resonance is
defined by Eq. (11). In the leading order of the WKB
approximation, the parallel wave number is

k3 ¼
o
vs

ffiffiffiffiffi
g3

p
. (29)

The next order of the WKB approximation (function c1)
defines the wave amplitude. It is determined from the
equation

s2
ffiffiffi
g
p

g3

� �0
þ s2

ffiffiffi
g
p

g3

ðik03 � 2k3c1Þ ¼ 0.

Here, prime means the differentiation with respect to the x3

coordinate. Thus, we get the solution of the equation
L̂SS ¼ 0:

S ¼ Q sin

Z x3

x3
�

k3ðx
30Þdx30, (30)

where Q is the wave amplitude and

ts ¼

Z x3
þ

x3
�

dx3

ffiffiffiffiffi
g3
p

vs

is the travel time along a field line with the local slow
magnetosonic speed. The eigenfrequency becomes

OSN ¼
pN

ts

. (31)

It is clearly seen that the small value of the slow
magnetosonic resonant frequency is caused by the travel
time ts of large value due to small value of the speed
velocity near the equator.

Using the normalization condition (12), we find the
amplitude:

Q ¼
o
ts

s2
ffiffiffi
g
p

g3

k3

� ��1=2
. (32)

Taking into account that due to condition r � ~B ¼ 0 the
term B

ffiffiffiffiffiffi
g?
p

does not depend on the longitudinal coordinate
and Eq. (29), we can also find the dependence of the wave
amplitude on the length along a field line:

Q / B2 r
P

	 
1=4
. (33)

The magnetic field B and density r increases away from the
equator, and the pressure P is constant along a field line.
Hence, if the slow magnetosonic function is determined in
the hydromagnetic terms (through the divergence of the
plasma displacement according to Eq. (2)), the maximum

of the wave amplitude must be located near the ionosphere.
This result is in agreement with previous studies (Cher-
emnykh et al., 2004; Parnowski, 2007).
It is easy also to find the behavior of the longitudinal

magnetic field of the wave determined by Eq. (6). In this
expression, the function F can be neglected because near
the slow mode resonance surface it behaves as F / ðo2 �

O2
SN ðx

1ÞÞ (see expressions (16) and (17)) and it is much
smaller than Y. Then it yields

jbkj / A�1=2.

But Alfvén speed A increases away from the equator.
Hence, the wave parallel magnetic field is concentrated
near the equator, as was found by Leonovich et al. (2006).
Thus, the contradiction with regard to the field-aligned
wave structure disappears: different authors simply used
different definitions of the slow mode: hydromagnetic
(Cheremnykh et al., 2004; Parnowski, 2007) or electro-
dynamic (Leonovich et al., 2006).
Now we turn to the surfaces where the perpendicular

wave vector equals zero, k? ¼ 0. Since Eq. (28) is of the
fourth order with respect to the frequency, there are two
solutions for the frequency. The first solution is more close
to the toroidal eigenfrequency. It is the familiar Alfvén
poloidal eigenfrequency. The second one is more close to
the slow mode resonance frequency. It is the slow mode
cutoff frequency, which we are going to study in more
detail.
The slow mode cutoff frequency OCN can be found in

terms of the perturbation theory (in addition to the WKB
approximation). The local value of the parallel wave vector
can be searched in the form k2

k ¼ ðo
2 þ dÞ=v2s , where d is the

small addition yet to be determined. Let us suppose the
right-hand side of Eq. (28) to be small, which is possible
provided that the condition b=ðkkRÞ

2
51 is satisfied. By

means of the perturbation method we find

k2
k ¼

o2

v2s
þ

4

R2

v2s

A2
.

The frequency can be found from the quantization
condition

H
kk dlk ¼ 2pN (the integration is performed

along the field line between ionospheres ‘there and back’).
Using the perturbation method one more time, we get

OCN ¼
pN

ts

�
1

pN

I
dlk

R2

v3s

A2
. (34)

In accordance with Eq. (27) from the previous section, the
cutoff frequency is smaller than the resonance frequency,
OCNoOSN .

5. Conclusions

Thus, we get the following conclusion: due to the
coupling with the Alfvén mode, the slow magnetosonic
wave gets dispersion across magnetic shells. The wave
vector radial component goes to infinity when the wave
frequency equals slow magnetosonic resonance frequency
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OSN ðx
1Þ, and it goes to zero when the frequency equals the

cutoff eigenfrequency OCN ðx
1Þ (Fig. 1). Since both eigen-

frequencies depend on the radial coordinate, two selected
magnetic surfaces can be introduced, resonant and cutoff
surfaces, defined as solutions of the equations o ¼ OSN ðx

1Þ

and o ¼ OCN ðx
1Þ, accordingly. The mode is enclosed

between these two magnetic surfaces. This resembles the
structure of the Alfvén wave (Leonovich and Mazur, 1993;
Klimushkin et al., 2004). As the inequality OCNoOSN

holds and these functions typically decrease with the radial
coordinate, the resonant surface is farther from the Earth
than the cutoff surface. The slow mode resonance
frequency OSN is much lower than the Alfvén resonance
frequency due to small value of the sound velocity near the
equator.

The reasons for the appearance of the slow mode cutoff
surface (the second cutoff surface in addition to the
poloidal surface, which is a cutoff surface for the Alfvén
mode) is that the system of two second-order equations (3),
(4) is equivalent to one fourth-order equation, which has
two solutions for the frequency squared, corresponded to
any chosen k? value. Thus, the choice k? ¼ 0 leads to a
couple of cutoff frequencies, one is the poloidal Alfvén
frequency and the other is the slow mode cutoff frequency.
This is clearly confirmed by the study performed in the
longitudinal WKB approximation. Moreover, the disper-
sion relation for the coupled Alfvén and slow modes
coincides with that found in the independent study
(Mikhailovskii and Skovoroda, 2002).

These results confirm the conclusions of Paper 1. The
disagreement between the present study and the work of
Leonovich et al. (2006) is fictitious since it is caused by the
difference in the assumptions made in these studies:
Leonovich et al. (2006) considered such low wave
frequencies that the coupling between the Alfvén and slow
modes can be neglected, but they did not limit the m

numbers, so the fast mode must be taken into account;
while we did not limit the frequency, the coupling between
the Alfvén and slow modes is essential, but considered only

high m numbers, which allowed us to neglect the fast mode.
So, the assumptions are quite opposite.
The disagreement between the longitudinal mode struc-

ture revealed in different studies is also found to be
fictitious. Near the magnetosonic resonance surface, the
parallel magnetic field is concentrated near the magnetic
equator, but the plasma displacement is concentrated near
the ionospheres.
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