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Abstract. There is no ground-based magnetic station 

or observatory that guarantees the quality of information 

received and transmitted to it. Data gaps, outliers, and 

anomalies are a common problem affecting virtually 

any ground-based magnetometer network, creating addi-

tional obstacles to efficient processing and analysis of 

experimental data. It is possible to monitor the reliabil-

ity and improve the quality of the hardware and soft-

ware modules included in magnetic stations by develop-

ing their virtual models or so-called digital twins. 

In this paper, using a network of high-latitude 

IMAGE magnetometers as an example, we consider one 

of the possible approaches to creating such models. It 

has been substantiated that the use of digital twins of 

magnetic stations can minimize a number of problems 

and limitations associated with the presence of emis-

sions and missing values in time series of geomagnetic 

data, and also provides the possibility of retrospective 

forecasting of geomagnetic field parameters with a mean 

square error (MSE) in the auroral zone up to 11.5 nT. Inte-

gration of digital twins into the processes of collecting 

and registering geomagnetic data makes the automatic 

identification and replacement of missing and abnormal 

values possible, thus increasing, due to the redundancy 

effect, the fault tolerance of the magnetic station as a 

data source object. 

By the example of the digital twin of the station 

“Kilpisjärvi” (Finland), it is shown that the proposed 

approach implements recovery of 99.55 % of annual in-

formation, while 86.73 % with MSE not exceeding 12 nT. 

Keywords: digital twins, time series reconstruction, 

statistical analysis, geomagnetic data, magnetic stations. 

 

 

INTRODUCTION 

Nowadays, magnetic observatories and variation sta-

tions are one of the main instruments for observing the 

geomagnetic field (GMF) and its variations. Today, 

there are over 300 ground-based magnetic stations ca-

pable of recording and publishing information on GMF 

parameters in real (pseudoreal) time mode. Magnetic 

stations are generally integrated into networks (usually 

according to geographic location), which, for users, are 

specialized web services that provide access to geomag-

netic data and have necessary software and hardware 

modules for its search, preview, and download. As at 

the beginning of 2021, there are over 20 networks of 

magnetic stations, the largest of which are 

INTERMAGNET, IMAGE, CARISMA, MACCS, 

MAGDAS, etc. 

A widespread and still unsolved problem that hin-

ders geophysical data processing is outliers, noise, and 

gaps in time series of geomagnetic data. Even for 

INTERMAGNET magnetic observatories [Love, 2013, 

Khomutov, 2018] maintaining the highest quality stand-

ards, missing fragments occupy a fairly wide range and 

vary both in time and from station to station. For exam-

ple, for the station Alma Ata (AAA) in 2015, the per-

centage of missing values was 36 % of annual infor-

mation; for Dalat (DLT), over 12 %; for Sodankylä 

(SOD), 0.4 %, etc. [Vorobev, Vorobeva, 2018a].  

Multiple outliers and missing values, besides the neg-

ative impact on the effectiveness of the approach to moni-

toring GMF, preclude the application of the mathematical 

apparatus to such data, which requires the continuity con-

dition of information signal (derivation, Fourier trans-

form, wavelet transform, etc.) be satisfied. Furthermore, 

missing values create serious problems in both modeling 

spatial distribution of GMF variations [Vorobev et al., 

2020; Reich, Roussanova, 2013] and their related high-

level experimental information (geomagnetic activity 

indices, perturbation maps, magnetic keograms, etc.) 

[Gvishiani et al., 2019]. 
Until recently, GMF observational results have been 

reconstructed using linear or spline interpolation, which 
is generally suitable for elimination of single gaps, but 
is entirely unsuitable for imputation of large fragments. 
More complex approaches to reconstructing such time 
series are currently known which are mainly based on 
the analytical processing of information signal in the 
vicinity of missing fragments, on the analysis of period-
ic and seasonal components, as well as on the study of 
the Fourier and wavelet spectra of information signal 
[Vorobev Vorobeva, 2018b; Gvishiani et al., 2011; 
Mandrikova, Solovyev, 2012; Kondrashov et al., 2010; 
Mandrikova, et al., 2018]. They all, as a rule, require the 
fulfillment of a fairly large number of conditions limit-
ing their effective use, have a methodological error up 
to 15 %, need significant computational capability, di-
rect human involvement, and, consequently, are inappli-
cable to large volumes of data. Thus, processing and 
analysis of the information collected directly from the 
magnetic stations involve a number of difficulties and 
limitations strongly impeding further research. 

A promising approach to solving this problem may 
be creation and integration of problem-oriented digital 
twins of magnetic stations, which allow, in an approxi-
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mation, to simulate the behavior of their physical proto-
types, into acquisition of geomagnetic data. Implement-
ing the proposed concept may significantly improve the 
efficiency of quality control of the output information 
from individual magnetometers and bring processing, 
analysis, and prediction of geomagnetic perturbations 
(GMP) to the next level. 

 

1. ASSESSMENT AND ANALYSIS 
OF RELIABILITY INDEX  

OF GROUND-BASED MAGNETIC 
STATIONS 

Consider minute data from the magnetometer network 

IMAGE [https://space.fmi.fi/image; Tanskanen, 2009] for 

2015 as an example, i.e. the period corresponding to the 

maximum of solar cycle 24 (January 2009 – May 2020) 

[https://space.fmi.fi/image/www/index.php?page =user_ 

defined]. Table 1 lists estimates of the completeness of 

time series from 36 stations, where the appearance of a 

missing value is regarded as a failure of a technical object, 

i.e. transition to disabled state [GOST 27.002-2015, 2016]. 

The total time of disabled state TF corresponding to the 

number of missing values in a time series, is found as 

follows: 

F W ,T T T       (1) 

where T is the operation time; TW is the number of infor- 

 

Table 1 

Estimated reliability indices of IMAGE magnetic stations (by the example of geomagnetic data for 2015) 

IAGA 

code 

Coordinates 
TW TF 

NF 
<T2R> 

[min] 

<T2F> 

[min] 

GEO CGM 

LAT, 

[deg] 

LON, 

[deg] 

LAT, 

[deg] 

LON, 

[deg] 
[min] [%] [min] [%] 

NAL 78.92 11.95 76.57 109.96 509551 96.947 16049 3.053 20 802.45 25477.55 

LYR 78.20 15.82 75.64 111.03 506314 96.331 19286 3.669 11 1753.27 46028.55 

HOR 77.00 15.60 74.52 108.72 466554 88.766 59046 11.234 4 14761.5 116638.5 

HOP 76.51 25.01 73.53 114.59 492524 93.707 33076 6.293 49 675.02 10051.51 

BJN 74.50 19.20 71.89 107.71 525523 99.985 77 0.015 7 11 75074.71 

NOR 71.09 25.79 68.19 109.28 519087 98.761 6513 1.239 144 45.23 3604.77 

SOR 70.54 22.22 67.80 106.04 523740 99.646 1860 0.354 43 43.26 12180.0 

KEV 69.76 27.01 66.82 109.22 525569 99.994 31 0.006 11 2.82 47779.0 

TRO 69.66 18.94 67.07 102.77 524713 99.831 887 0.169 15 59.13 34980.87 

MAS 69.46 23.70 66.65 106.36 524144 99.723 1456 0.277 73 19.95 7180.05 

AND 69.30 16.03 66.86 100.22 525284 99.94 316 0.06 6 52.67 87547.33 

KIL 69.06 20.77 66.37 103.75 523732 99.645 1868 0.355 33 56.61 15870.67 

IVA 68.56 27.29 65.60 108.61 486940 92.645 38660 7.355 6 6443.33 81156.67 

ABK 68.35 18.82 65.74 101.70 525600 100 0 0 0 – – 

MUO 68.02 23.53 65.19 105.23 492390 93.682 33210 6.318 359 92.51 1371.56 

KIR 67.84 20.42 65.14 102.62 525577 99.996 23 0.004 13 1.77 40429.0 

SOD 67.37 26.63 64.41 107.33 524905 99.868 695 0.132 12 57.92 43742.08 

PEL 66.90 24.08 64.03 104.97 491992 93.606 33608 6.394 8 4201.0 61499.0 

JCK 66.40 16.98 63.82 98.94 516366 98.243 9234 1.757 36 256.5 14343.5 

DON 66.11 12.50 63.75 95.19 511710 97.357 13890 2.643 19 731.05 26932.11 

RAN 65.90 26.41 62.92 106.30 519118 98.767 6482 1.233 130 49.86 3993.22 

RVK 64.94 10.98 62.61 93.27 513440 97.686 12160 2.314 61 199.34 8417.05 

LYC 64.61 18.75 61.87 99.33 525600 100 0 0 0 – – 

OUJ 64.52 27.23 61.47 106.27 525304 99.944 296 0.056 11 26.91 47754.91 

MEK 62.77 30.97 59.57 108.66 511795 97.373 13805 2.627 23 600.22 22251.96 

HAN 62.25 26.60 59.12 104.72 520619 99.052 4981 0.948 381 13.07 1366.45 

DOB 62.07 9.11 59.64 90.19 524128 99.72 1472 0.28 19 77.47 27585.68 

SOL 61.08 4.84 58.82 86.25 512471 97.502 13129 2.498 31 423.52 16531.32 

NUR 60.50 24.65 57.32 102.35 525540 99.989 60 0.011 2 30.0 262770.0 

UPS 59.90 17.35 56.88 95.95 525600 100 0 0 0 – – 

KAR 59.21 5.24 56.70 85.69 524637 99.817 963 0.183 41 23.49 12796.02 

TAR 58.26 26.46 54.88 103.11 525137 99.912 463 0.088 12 38.58 43761.42 

BRZ 56.17 24.86 52.66 100.97 523584 99.616 2016 0.384 3 672.0 174528.0 

SUW 54.01 23.18 50.21 98.95 487904 92.828 37696 7.172 20 1884.8 24395.2 

WNG 53.74 9.07 50.15 86.75 525577 99.996 23 0.004 19 1.21 27661.95 

NGK 52.07 12.68 48.03 89.28 525600 100 0 0 0 – – 

Note: GEO — geographic coordinate system; CGM (Corrected GeoMagnetic) — geomagnetic coordinate system; gray color 

indicates magnetic stations of the auroral cluster 

https://space.fmi.fi/image
https://space.fmi.fi/image/www/index.php?page%20=user_%20defined
https://space.fmi.fi/image/www/index.php?page%20=user_%20defined
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mative values (the total time of operable state) over the 

time period T. 

The mean time to return to operation (equivalent to 

the expected value of missing fragment size) and the 

mean operation time to failure of the system (equivalent 

to the mean fragment size without gaps) can be deter-

mined from expressions (2) and (3) respectively. 

R
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N

i

i
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T R T R

N N

   (2) 
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  (3) 

 

where T2Ri and T2Fi are the times to the ith recovery of 

the system after a failure and before the ith failure re-

spectively; NF and NW are the number of failures of the 

system and the number of recoveries after the failure 

respectively; k=1 or k=0 if at the beginning of observa-

tion the system was serviceable or unserviceable respec-

tively. 

Analysis of gaps in IMAGE time series has shown 

that in 50 % of magnetic stations the expected value of 

missing fragment size exceeds 58.5 min. The missing 

fragment size averaged over all stations is 1066 min. 

The expected value of number of failures with recovery 

for all the stations exceeds 45 per year. At the same 

time, 50 % of the stations experience more than 17 fail-

ures per year. In extreme cases, the total amount of 

missing fragments in one station may exceed 11.2 % 

(over 41 days) of the total annual data, with a mean re-

covery time to 10 days or more. 

The results indicate that the use of well-known ap-

proaches to reconstruct time series (linear interpolation, 

spline interpolation, and the methods described in 

[Gvishiani et al., 2011; Mandrikova, Solovyev, 2012; 

Vorobev, Vorobeva, 2018b; Kondrashov et al., 2010; 

Mandrikova et al., 2018]), for most fragments of miss-

ing values of the sources we examine (mainly due to the 

missing fragment size) may appear to be ineffective. In 

addition, in the context of large amount of information 

(observation of GMF parameters for 1 year and more), 

the application of the methods that require human par-

ticipation also becomes very difficult. 

 

2. CONCEPT OF DIGITAL  

TWIN OF MAGNETIC 

STATION 

By a digital twin is usually meant a dynamic virtual 

representation of a physical object (process or system) 

during its life cycle with the use of real-time data to 

study and delve into [Parmar et al., 2020; Zongyan, 

2020]. 

There are the following digital twins (DT): digital 

twin prototypes (DTP) containing information required 

for description and creation of physical versions of ob-

ject instances; digital twin instances (DTI) describing a 

specific physical instance of an object with which the 

twin remains connected during the whole period of op-

eration, and digital twin aggregates (DTA) representing 

an information system for monitoring physical instances 

of a family of objects, which also has access to all their 

digital twins [Grieves, 2014]. 

Figure 1, a presents the DTI concept in which, in 

terms of the problem addressed, a physical prototype of 

the system is a magnetic observatory or a variation sta-

tion, and the information environment is a geomagnetic 

database, algorithmic and mathematical support.  

Figure 1, b shows a model of integration of DTI into 

collection and publication of geomagnetic data. Accord-

ing to the proposed scheme, the perturbation effect x(t) 

applies to a physical prototype of magnetic station 

(block 1) and a number of reference data sources (block 

2) whose information is used in DT models and algo-

rithms (block 3) and is included in its information envi-

ronment (Figure 1, a).  

Depending on the number n of reference sources 

available at the time t, from test data we choose a DT 

model able to synthesize y
*
(t) with a minimum error 

with respect to y(t) — an expected value at the output of 

the prototype station (block 1). 

Then, the data corresponding to GMF conditions at t 

from the output of DT and its physical prototype arrives 

at the compare facility (block 4) which, by analyzing 

these values, for example, based on Expression (4), 

takes a decision on publication, as a measurement result, 

of either data from the prototype station (the condition 

is satisfied) or its DTI (the condition is not satisfied). 

 

Figure 1. General concept of DT (a) and model of DTI in-

tegration into collection and publication of geomagnetic data 

(b): 1 — prototype magnetic station; 2 — reference data 

sources (magnetic stations); 3 — mathematical and algorith-

mic support of DTI (1); 4 — compare facility; 5 — output 

buffer; 6 — geomagnetic database; 7 — system for correcting 

weight coefficients  

a 

b 
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If condition (4) is not satisfied, the value from the out-

put of the prototype magnetic station is also saved, but 

flagged as abnormal. If there is no signal from the out-

put of a magnetic station, as a measurement result a 

corresponding value from the DT output is published. 

The verified values stored in the geomagnetic database 

(block 6) are structured as response and regressor vec-

tors and are used to update and adjust vectors of coef-

ficients of DT models (block 7). 

3t ty y     

or 

  
2

1

1
3 ,

1

m

t t i i

i

y y y y y
m

 


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
  (4) 

where σ is the standard deviation; yt
*
 and yt are values at 

the output of a digital twin and its physical prototype 

respectively, at time t; m is the size of test data. 

 

3. SYNTHESIS, MODIFICATION, 

AND VALIDATION OF 

FUNDAMENTAL DIGITAL TWIN 

MODELS  

Take as a physical prototype of DT a magnetometric 

module recording the northern component (X compo-

nent) of GMF vector at the station Kilpisjärvi (KIL) and 

perform a spatial clustering of all magnetic stations to 

identify reference data sources for further modeling of 

this parameter. 
Estimating spatial homogeneity of geographic ob-

jects by the Moran index on the basis of geographical 
proximity in metric [Demyanov, Savelyeva, 2010] has 
revealed a positive spatial correlation between some 
stations located between 66 and 71° N (see Table 1), 
which suggests that these stations belong to the same 
cluster as KIL (hereinafter, the auroral cluster). 

Comparative analysis of correlations between the 

northern (X) component of GMD vector of KIL and 

analogous parameters of other stations of the auroral 

cluster (Table 2), as well as a number of additional stud-

ies [Vorobev, Vorobeva, 2018c] confirm the validity of 

this assumption and indicate the possibility of using the 

data as predicates for modeling the parameter XKIL.  

Estimated determination coefficient (R
2
=0.999) has 

shown that in terms of the problem to be solved the ap-

proach based on the method of multiple linear regres-

sion is the best. The linear regression equation allowing 

us to restore the desired parameter f(x,) from known 

values of x1, ..., xk has the form 

1 1 2 2

1

ˆ( , ) ... ,
k

T

k k j j

j

f x x x x x x


           (5)

Table 2 
Correlations between XKIL and analogous parameter of other stations 

Magnetic station included in the auroral cluster 

NOR SOR KEV TRO MAS AND IVA ABK MUO KIR SOD PEL JCK DON 

0.872 0.933 0.978 0.985 0.99 0.987 0.975 0.986 0.957 0.958 0.909 0.875 0.845 0.820 

Magnetic stations outside the auroral cluster  

NAL LYR HOR HOP BJN RAN RVK LYC OUJ MEK HAN DOB SOL NUR 

–0.164 –0.129 0.015 0.015 0.427 0.053 0.694 0.642 0.617 0.432 0.384 0.363 0.262 0.274 

UPS KAR TAR BRZ SUW WNG NGK 

0.218 0.142 0.176 0.098 –0.045 –0.017 –0.044 

 
where x

T
=(x1,x2, ...,xk) is the regressor vector; 

 1 2
ˆ , , ...,

T

k      is the column-vector of coeffi-

cients; k is the number of indicators of the model. 

Taking into account the data from Table 2, write 

Equation (5) as follows: 

KIL 1 NOR 2 SOR 3 KEV 4 TRO

5 MAS 6 AND 7 IVA 8 ABK 9 MUO

10 KIR 11 SOD 12 PEL 13 JCK 14 DON ,

X X X X X

X X X X X

X X X X X

       

     

    

 (6)figure 2 

where α=418 nT is the displacement along the Y-axis; 

β1, β2, ..., β14 are the coefficients calculated by the 

method of least squares: 

β1=–0.0511992; β2=–0.0791793; β3=0.011932; 

β4=0.5858979; β5=–0.2199333; β6=–0.203925; 

β7=0.1138129; β8=0.6873423; β9=0.0020214; 

β1 0=–0.2845333; β11=0.0170759; β12=0.0152406; 

β13=0.0037965; β14=–0.0263773. 

The mean square error (MSE) of model (6), calcu-

lated from the test data of volume 20 % of the initial 

(annual) data array under the cross-validation procedure 

was 11.5 nT, which is 0.51 % of the range of values of 

the parameter XKIL for 2015. The Pearson correlation 

coefficient (r=0.999) and the results of Student's t-test 

(statistic is approximately equal to zero; the p value is of 

the order of 1) indicate that the initial (XKIL) and synthe-

sized (X
*

KIL) data is statistically indistinguishable and 

belongs to the same sample. The probability of reliable 

operation of model (6) is, however, limited by the prob-

ability of failure of at least one of the stations included 

in the auroral cluster (see Table 1) and, according to the 

data available for 2015, is 77.4 %. 

The DT reliability may be improved by modifying 

model (6), for example, through the use of the LASSO 

method in estimating its coefficients [She, 2010; Hoerl, 

2020], which involves introducing restriction on the 

vector norm of model coefficients ̂ . This makes some 

of its coefficients vanish, i.e. leads to the exclusion of 

one or more stations from Equation (6). In this regard, 

an important positive effect arising from the use of the 
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LASSO method is improvement of stability and inter-

pretability of the model because eventually we can se-

lect features that have the greatest impact on the re-

sponse vector. From (7) it follows that at zero value of 

the regularization parameter λ the LASSO regression 

reduces to the ordinary method of least squares (MLS), 

and as it increases the model developed becomes ever 

more concise until it degenerates into a zero model giv-

ing at the output the same result for all possible inputs 

[Tokmakova, Strizhov, 2012]. 

2

LASSO

1 1

ˆ arg min ,
n k

i j ij

i j

y x
  

  
            

   (7) 

where y is the expected response of the model; λ is the 

regularization parameter. 

When λ=1, we can reduce Equation (6) by three 

components (β3=β9=β12=0), thereby increasing the 

probability of model operation to 86.3 % with virtually 

no loss in accuracy (MSE~12 nT) and with parameters 

of correlation and statistical homogeneity of the original 

and synthesized data kept at the level of model (5). 

Even more significant is to increase the probability of 

operation of the model, excluding, where possible, the 

maximum number of terms from (6), monitoring the 

constancy of the correlation parameter and Student's t -

test results, as well as holding MSE in an acceptable 

range, e.g., MSE≤30 nT. 

Nonetheless, as evidenced by practice, the imple-

mentation of this operation by simply increasing the 

parameter λ is inefficient and leads to a significant in-

crease in modeling error at a relatively small reduction 

in the number of its terms. In other words, further use of 

the computer-aided optimization methods (including 

Ridge Regression and Elastic-Net [Zou, Hastie, 2005]) 

is impractical, the number of indicators should be fur-

ther minimized manually, for example, through pairwise 

comparative analysis of statistics of available predi-

cates. For this purpose, according to Expression (8), 

exclude the median from time series of each station, 

normalize the histogram, and, on the basis of Kolmogo-

rov–Smirnov tests for |ΔX|, select a function that best 

approximates distribution of its values. This function, in 

turn, in addition to the homogeneity of statistical popu-

lation may indicate the uniformity of physical mecha-

nisms responsible for the occurrence of perturbations at 

points of their observation [Vorobev, Vorobeva, 2019]. 

 Me ,ij ij jX X X    (8) 

where Xij is the ith value per the jth day of the X compo-

nent at this station; Me(Xj) is the median of X per the jth 

day; i and j correspond to serial numbers of minute in 

the day (from 1 to 1440) and day in the year (from 1 to 

365) respectively.  

Analysis of distribution of absolute values of the 

perturbed GMF X component at the KIL station (|ΔX|KIL) 

has shown that most values of the sample (~95 %) are 

distributed according to the lognormal law (Figure 2, c). 

From the 95th percentile there is, however, an exponen-

tial tail indicating that the variance of the value under 

study is mainly determined by rare intense (but not fre-

quent small) deviations occurring obviously due to sub-

storm activity in this case. Follow-up studies have 

shown that |ΔX|TRO, |ΔX|MAS, and |ΔX|ABK , i.e. absolute 

values of perturbed components of GMF X at the sta-

tions Tromsø (TRO), Masi (MAS), and Abisko (ABK) 

respectively, are statistically the closest to |ΔX|KIL. 

 

 

 

 

Figure 2. GMD statistics: red and blue solid (dashed) lines 

show density functions of the probability (survival) of 

lognormal and exponential distribution laws respectively; 

black solid line indicates the empirical survival function 

a 

b 

c 

d 
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In this case, virtually the only difference is the sample 

percentile corresponding to the beginning of the expo-

nential tail and likely resulting from latitudinal position 

of a particular station (Figure 2, Table 1). 
Besides, analysis of the level of correlation between the 

regional IL index (intensity of the westward auroral elec-
trojet) and the X component in the four stations considered 
(Figure 2) has revealed the proportionality of these correla-
tions (in each case the Pearson correlation coefficient is 
~0.7), which again suggests that these stations are equally 
affected by the same external factors. Thus, the error in 
modeling the parameter XKIL on the basis of minimum sets 
of reference data sources can be minimized by including 
the TRO, MAS, and ABK stations in these sets. Then, Ex-
pression (6) can be reduced to the following: 

KIL 4 TRO 5 MAS 8 ABK ,X X X X       (9) 

where α=250 nT; β4=0.2924148; β5=0.2850315; 
β8=0.4408421. 

Figure 3, a presents magnetograms of time series 
initial and reconstructed from regression model (9), 
which covers one of the most powerful magnetic storms 
observed over the past few years. The variance of simu-
lation results and the difference between empirical and 
synthesized data can be estimated from Figure 3, b, c 
respectively. The probability of operation of DT based 
on model (9) is 99.5 %, and MSE˂30 nT (Table 3). 

Note that an alternative and in some cases the only 
approach to creating DT may be methods based on geo-
spatial interpolation. For example, according to the in-
verse distance weighting method [Isaaks, Mohan, 1989], 
the interpolated parameter at a given point of geograph-
ic space is defined by the sum of the weighted mean 
values in its vicinity. In the case of Shepard modifica-
tion [Isaaks, Mohan, 1989], the level of influence of the 
determinate point on the desired value is specified by 
the power p and with distance away from the polygon 
vertex containing reference data sources its influence on 
the interpolated value decreases. For the case of interest, 
the analytical form of the IDW method is as follows 

KIL

1 1

1 1
/ ,

m m

ip p
i ii i

X X
d d



 

   (10) 

where m is the number of stations in the auroral cluster, 
Xi is the X component in the ith station, d is the distance 
between KIL and the ith station of the auroral cluster, p 
is the weighting factor. 

The main drawback of the IDW method in inter-
polating GMF parameters is its inherent assumption 
about perturbation field isotropism, although it is 
known that latitude and longitude scales of most 
GMDs differ significantly. Studies have shown that 
in terms of the problem addressed the mean square 
error in the DT model relying on the IDW method 
monotonically increases with decreasing p, which 
indicates that the desired parameter is mainly deter-
mined by data from the stations closest to the simu-
lated object. As a result, the error in modeling on the 
basis of (10) is slightly higher than MSE of the pre-
viously considered regression models (Table 3). That 
said, geospatial interpolation methods may be useful in 
situations when there is no physical prototype of a station. 

 

 

 

Figure 3. Verification of the digital twin of the station 

Kilpisjärvi (KIL) 

 

4. DIGITAL TWIN VERIFICATION   

IN THE FREQUENCY DOMAIN  

OF INFORMATION SIGNAL 

GMF variations in the range 2–12 min, despite their 

being less intensive than global GMDs (magnetic 

storms and substorms), are extremely important. Pertur-

bations in this frequency range (Pi3, Ps6 pulsations, Pc5 

waves, substorm onsets) generate the most powerful 

bursts of geomagnetically induced currents (GIC) in 

electric power transmission lines. Therefore, an im-

portant aspect in DT operation is to identify and store 

information about these perturbations. Identify the 2–12 

min variation range, using the Butterworth high pass 

filter in XKIL and X
*
KIL, and compare wavelet spectro-

grams of the filtered information signal recorded by the 

KIL station (Figure 4, a) with the time series generated 

by its DT during the same period (Figure 4, b). 

a 

b 

c 
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Table 3 

Validation parameters of KIL digital twin models  

                     Parameter  

 Model 
MSE, 

[nT] 

MSE, 

[%] 
r 

Student's T -test  TW, 

[min] 

TF, 

[min] 

PW, 

[%] statistic p value 

Exp. (6) + MLS 11.5 0.51 0.999 ~0 ~1 406936 118664 77.423 

Exp. (6) + LASSO (λ=1) 12.0 0.54 0.999 ~0 ~1 453819 71781 86.343 

Exp. (9) + MLS 29.5 1.27 0.999 ~0 ~1 523257 2343 99.554 

Exp. (10), IDW (p=3) 114.1 4.94 0.995 ~0 ~1 406936 118664 77.423 

Note: PW is the expected probability of model operation. 

 

Thus, as follows from Figure 4 and from a number of 

similar tests for other time series fragments, in the ultra low 

frequency range (2–12 min periods), there are minor (with-

in the error presented in Table 3) amplitude deviations, 

with spatial localization of frequency packages remaining 

virtually unchanged. 

 
5. DISCUSSION OF RESULTS 

AND PROSPECTS 

OF THEIR APPLICATION 

Using KIL DTI allows us to recover 99.55 % of data 

for 2015, with the mean square error in 86.73 % of re-

covered values not exceeding 12 nT. The entire local 

system of collecting and recording geomagnetic data 

(see Figure 1, b) fails when there is no signal at the out-

put of the magnetic station and its DT (blocks 1 and 3 in 

Figure 1 respectively). For the KIL station, the estimat-

ed probability of occurrence of such an event is less 

than 0.0016 %, which corresponds to eight missing val-

ues per year, which in turn can be restored by linear or 

spline interpolation methods. 

Thus, the integration of magnetic station DTs into 

process of geomagnetic data collection and registration 

due to the redundancy effect can (at the consumer level) 

significantly improve the reliability and fault tolerance 

of some magnetic stations, as well as reduce complexity 

of certain processes of geomagnetic data preprocessing 

such as search and identification of outliers in time series. 

However, in the implementation of this approach we 

should take into account limitations of its effective use, 

defined primarily by spatial anisotropy of GMF parame-

ters. Thus, DTI MSE of each specific magnetic station 

directly depends on the geographical location of its 

physical prototype as well as on the number, distance, 

and relative position of nearby magnetic stations. 

A logical direction of development of virtual mag-

netic stations is integration of satellite GMD observa-

tions into the information environment of DT (e.g., 

SWARM mission, CHAMP, etc.). We may assume that 

the implementation of this approach, in addition to ag-

gregating supplementary information required for cali-

bration (model setup) of magnetic station DTs, can also 

ease some methodological limitations associated, e.g., 

with the absence of nearby magnetic stations.  

As for promise of application of magnetic station 

DTs, we should highlight the following tasks:  

 restoration and reconstruction of time series of 

geomagnetic data; 

 

 

 

Figure 4. Verification of the magnetic station Kilpisjärvi 

(KIL) DT in the frequency range 1–7 MHz 

 automated search and identification of outliers in 

time series of geomagnetic data; 

 acquisition of geomagnetic data under conditions 

where the use of physical magnetic stations is unac-

ceptable or ineffective, for example, in the immediate 

vicinity of the objects exerting a strong noise effect on 

magnetic sensors and primary detectors (pipelines, elec-

tric power transmission lines, railway and oil-and-gas 

infrastructure, etc.); 

 information support of directional deep-well 

drilling in the arctic zone of the Russian Federation 

[Gvishiani, Lukyanova, 2015, 2018]. 

It should also be noted here that DTIs have the poten-

tial for being used in problems of machine search and iden-

tification of localized GMF perturbations such as MPE 

(magnetic perturbation events) representing isolated bursts 

of field intensity lasting for 5–15 min at night [Engebretson 

et al., 2019], which may be responsible for the intense 

bursts of GIC in electric power transmission lines [Datcu, 

a 

b 
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et al., 2020]. The horizontal scale of perturbations of this 

type is ~200–300 km, and they are usually detected by one 

or two stations of the network. Thus, DTs can automatize 

this process by identifying perturbations sharply differing 

from model values. 

 

CONCLUSIONS 

By the example of the magnetic station KIL, we 

have shown that magnetic station DTs, constructed 

based on the LASSO regression, can provide retro-

spective forecast and reconstruction of the GMF vec-

tor X component in the auroral zone with a mean 

square error from 11.5 (in 77.4 % of cases) to 29.5 nT 

(in 99.6 % of cases), depending on the number of 

reference stations in use. 

Comparative analysis of wavelet spectrograms of 
data on DT of the magnetic station and its physical pro-
totype in the time range 2–12 min (Pi3, Ps6 pulsation, 
Pc5 wave, substorm onsets) has revealed that there are 
minor differences, proportional to modeling error, in the 
amplitude range of information signal, but the spatial 
localization of frequency packages remain virtually un-
changed. 

In the absence of the physical prototype of a magnet-
ic station, which defines training data response vector, 
DT may be implemented through spatial interpolation, 
e.g., by the IDW method; in this case, however, we 
should expect a somewhat larger modeling error as 
compared to the regression approach. 

The main factors limiting the effectiveness of the 
proposed approach are the geographical location of a 
specific physical prototype, the number, distance, and 
relative position of nearby magnetic stations. Their ef-
fect may be minimized by expanding the information 
environment of DT, for example, through aggregation 
of satellite GMF observations.  
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