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The mean electromotive force (MEMF) in a rotating stratified magnetohydrodynamical
turbulence is studied. Our study is based on the mean-field magnetohydrodynamics framework
and � approximation. We compute the effects of the large-scale magnetic fields (LSMF),
global rotation and large-scale shear flow on the different parts of the MEMF (such as
�-effect, turbulent diffusion, turbulent transport, etc.) in an explicit form. The influence of
the helical magnetic fluctuations which stem from the small-scale dynamo is taken into account,
as well. In the article, we derive the equation governing the current helicity evolution.
It is shown that the joint effect of the differential rotation and magnetic fluctuations in the
stratified media can be responsible for the generation, maintenance and redistribution of the
current helicity. The implication of the obtained results to astrophysical dynamos is considered.

Keywords: Mean electro-motive force; Current helicity; Magnetic fluctuations

1. Introduction

The mean-field magnetohydrodynamics presents one of the most powerful tools for
exploring the nature of the large-scale magnetic activity in cosmic bodies (Moffatt
1978, Parker 1979, Krause and Rädler 1980). It is widely believed that there magnetic
field generation is governed by interplay between turbulent motions of electrically
conductive fluids and global rotation. The growth and evolution of the large-scale
magnetic fields (LSMF) in cosmic plasma depends on the mean electromotive force,
E ¼ u� bh i, which is given by the correlation between the fluctuating components of
the velocity field of plasma, u, and the fluctuating magnetic fields, b.

The global rotation, stratification and the strong LSMF can substantially modify the
structure and amplitude of the mean electromotive force (hereafter, MEMF) leading to
the rich variety of the turbulence effects driving the evolution of the LSMF in cosmic
bodies, e.g., the �-effect (Roberts and Soward 1975, Moffatt 1978, Krause and
Rädler 1980, Parker 1979, Rüdiger and Kichatinov 1993), the rotationally-induced
anisotropy of turbulent diffusion and effective drift of LSMF (Roberts and Soward
1975, Krause and Rädler 1980, Kichatinov et al. 1994), etc. Broadly speaking,
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the nonlinear effects of the small-scale Lorentz forces on the MEMF and LSMF
evolution stem from two sources. One is driven by perturbations of the LSMF due
to turbulent motions and another is due to magnetic fluctuations, which stem from
the small-scale dynamo. For the time being, the role of the small-scale dynamo in the
LSMF evolution is poorly understood. Numerous contributions to this subject can
be found in the modern literature, (e.g., Moffatt 1978, Frisch et al. 1975, Pouquet
et al. 1975, Brandenburg and Subramanian 2005). According to the mentioned studies
the most important effect of the growing magnetic fluctuations on the LSMF
evolution is caused by the helical part of magnetic fluctuations. The magnetic helicity
conservation law, if applied to the mean-field magnetohydrodynamics, requires that
the amount of helicity contained in the LSMF (controlled mostly by �-effect) should
be roughly the same and opposite in sign to its counterpart in the small scales,
(see Kleeorin and Ruzmaikin 1982). In this way the helical part of magnetic fluctua-
tions, which is excited both due to shredding the LSMF by turbulent motions
and due to small-scale dynamo, effectively saturates the generation of the LSMF by
�-effect (Vainshtein and Kitchatinov 1983, Brandenburg 2001, Field and Blackman
2002, Blackman and Brandenburg 2002). Further discussions on this subject can be
found in above cited articles. Their main lesson is that the construction of the
realistic mean-field dynamo theory requires the evolution of the small-scale magnetic
(or current-) helicity to be taken into account.

Currently, there are two basic schemes for computing the MEMF of turbulent fields.
One is the quasi-linear approximation (the same approximation is called the FOSA
or SOCA in literature). A comprehensive discussion about its applicability and validity
in astrophysics can be found in (Moffatt 1978, Parker 1979, Krause and Rädler 1980
and Brandenburg and Subramanian 2005). This scheme remains one of the main
tools of the mean-field magnetohydrodynamics. However, one of unfortunate problem
of SOCA is that the contribution of the magnetic fluctuations (and the corresponding
magnetic helicity) driven by the small-scale dynamo is hardly possible to include in the
theory in self-consistent way. The third order closure scheme based on �-approximation
(Orszag 1970, Vainshtein and Kitchatinov 1983, Rädler et al. 2003, Brandenburg and
Subramanian 2005) gives a chance to consider, roughly, the effects of the
small-scale dynamo on the MEMF. Following Brandenburg and Subramanian (2005)
(hereafter BS05), I will call it MTA (minimal tau approximation). Different kinds
of this approximation are used in the literature, see (Vainshtein 1983, Vainshtein and
Kitchatinov 1983, Rädler et al. 2003, Brandenburg and Subramanian 2005,
Rogachevskii and Kleeorin 2003, Blackman and Field 2002, Field and
Blackman 2002). In the article we follow teh procedure described in BS05.
Furthermore, the variant of tau approximation with a scale-independent relaxation
time, �, is applied. For this reason, some results obtained in the article can be different
form those given in Rogachevskii and Kleeorin (2003, 2004b,a), Rädler et al. (2003).

The main purpose of this article is to compute the MEMF via MTA taking
into account the influence of the global rotation and LSMF on the turbulence.
The stratification of the medium and the large-scale shear are taken into account as
well. The influence of rotation, LSMF and uniform shear on the different parts
of the MEMF (such as �-effect, turbulent diffusion, turbulent transport and etc.)
is explicitly defined via factors describing the efficiency of rotational and LSMF
feedback on the turbulent flows. The influence of rotation is measured by the
Coriolis number, �� ¼ 2��c, where � is the solid body angular velocity and �c – the

22 V. V. Pipin
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typical correlation time of turbulent flows. The influence of LSMF is measured by
� ¼ �B= uc

ffiffiffiffiffiffi
��

p� �
, where �B is the strength of the LSMF, uc is a typical rms velocity of

turbulent flows and �, � are the magnetic permeability and the density of the media,
respectively. Following the basic approach developed in above cited articles we derive
the equations governing the evolution of the current helicity both in rotating and in
magnetized turbulent flows with imposed uniform shear.

The article is structured as follows. In the next section we shortly outline the basic
equations, assumptions and the computational scheme for derivation of the MEMF
and the evolutionary equation for current helicity. Section 3 is devoted to the results
of calculations of the MEMF for different situations (slow rotation, strong LSMF,
vice versa and etc.). In section 4 we derive the evolutionary equation for current helicity.
In section 5 we summarize the main results of the article.

2. Basic equations

In the spirit of the mean-field magnetohydrodynamics, we split the physical
quantities of the turbulent conducting fluid into the mean and randomly fluctuating
part with the mean part defined as the ensemble average of the random fields. One
assumes the validity of the Reynolds rules. The magnetic field B and velocity of motions
V are decomposed as follows: B ¼ Bþ b, V ¼ Vþ u. Hereafter, everywhere, we use the
small letters for the fluctuating part of the fields and capital letters with a bar above for
the mean fields. The angle brackets are used for the ensemble average of products.
Following the lines of two-scale approximation (Roberts and Soward 1975, Krause
and Rädler 1980) we assume that the mean fields vary over the much larger scales
(both in time and in space) than the fluctuating fields. The average effect of the
MHD-turbulence on the LSMF evolution is described by the MEMF, E ¼ u� bh i.
The governing equations for fluctuating magnetic field and velocity are written in a
rotating coordinate system as follows:

@b

@t
¼ r � u� Bþ V� b

� �
þ �r2bþG, ð1Þ

@mi

@t
þ 2 :�mð Þi ¼ �ri p�

2

3
G �mð Þ�þ

b � B
� �
2�

 !
þ ��mi þ � G � rð Þmi

þ
1

�
rj Bjbi þ Bibj
� �

� rj Vjmi þ Vimj

� �
þ fi þ Fi, ð2Þ

where G,F are nonlinear contributions of fluctuating fields, m ¼ ��u, G ¼ r log �� is the
density stratification scale of the media, p is the fluctuating pressure, : is the angular
velocity responsible for the Coriolis force, V is mean flow which is a weakly variable in
space, f is the random force driving the turbulence.

To compute E it is convenient to write equations (1) and (2) in Fourier space:

@

@t
þ �z2

� �
b̂j ¼ izl

Z bmjðz� qÞ
B̂l

�

� �
ðqÞ � bmlðz� qÞ

B̂j

�

� �
ðqÞ

" #
dq

þ izl

Z bblðz� qÞV̂jðqÞ � bbjðz� qÞV̂lðqÞ
h i

dqþ bGj, ð3Þ

Mean EMF and current helicity 23
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@

@t
þ �z2 þ i� G � zð Þ

� �
m̂i ¼ f̂i þ F̂i � 2 : � ẑð Þ ẑ� m̂ð Þi

� i�ifðzÞzl

Z bmlðz� qÞV̂fðqÞ þ bmfðz� qÞV̂lðqÞ
h i

dq

þ
i

�
�ifðzÞzl

Z bblðz� qÞB̂f qð Þ þ bbfðz� qÞB̂l qð Þ

h i
dq, ð4Þ

where the turbulent pressure was excluded from (2) by convolution with the projection
tensor �ijðzÞ ¼ 	ij � ẑiẑj, 	ij is the Kronecker symbol and ẑ is a unit wave vector.
The equations for the second-order moments which make contributions to the
MEMF can be found from (3,4). As the preliminary step we write the equations for
the second-order products of the fluctuating fields, and make the ensemble averaging
of them:

@

@t
m̂i zð Þb̂j z

0ð Þ

D E
¼ Th{ij ðz, z

0Þ � �z02 þ �z2 þ i� G � zð Þ
� �

m̂i zð Þb̂j z
0ð Þ

D E
� iz0l

Z
m̂i zð Þm̂jðz

0 � qÞ
� � B̂l

�

� �
ðqÞ

"
� m̂i zð Þm̂lðz

0 � qÞ
� � B̂j

�

� �
ðqÞ

#
dq

� 2 : � ẑð Þ"ilnẑl m̂nðzÞb̂jðz
0Þ

D E
þ iz0l

Z
m̂i zð Þbblðz0 � qÞ
D E

V̂jðqÞ
h

� m̂i zð Þbbjðz0 � qÞ
D E

V̂lðqÞ
i
dq

� i�ifðzÞzl

Z bmlðz� qÞb̂j z
0ð Þ

D E
V̂fðqÞ þ bmfðz� qÞb̂j z

0ð Þ

D E
V̂lðqÞ

h i
dq

þ
i

�
zl�ifðzÞ

Z bblðz� qÞb̂j z
0ð Þ

D E
Bf qð Þ þ bbfðz� qÞb̂j z

0ð Þ

D E
Bl qð Þ

h i
dq, ð5Þ

@

@t
m̂i zð Þm̂j z

0ð Þ
� �

¼ �2 : � ẑð Þ"ilnẑl m̂nðzÞm̂jðz
0Þ

� �
� 2 : � ẑ0ð Þ"jlnẑ0l m̂iðzÞm̂nðz

0Þ
� �

� i�ifðzÞzl

Z bmlðz� qÞm̂j z
0ð Þ

� �
V̂fðqÞ þ bmfðz� qÞm̂j z

0ð Þ
� �

V̂lðqÞ
h i

dq

� i�jfðz
0Þz0l

Z
m̂i zð Þbmlðz� qÞ
� �

V̂fðqÞ þ m̂i zð Þbmfðz� qÞ
� �

V̂lðqÞ
h i

dq

þ
i

�
�if zð Þzl

Z bblðz� qÞm̂j z
0ð Þ

D E
B̂f qð Þ þ bbfðz� qÞm̂j z

0ð Þ

D E
B̂l qð Þ

h i
dq

þ
i

�
�jfðz

0Þz0l

Z
m̂i zð Þbblðz� qÞ
D E

B̂f qð Þ þ m̂i zð Þbbfðz� qÞ
D E

B̂l qð Þ

h i
dq

þ Thvijðz, z
0Þ � � z02 þ z2 þ i Gzð Þ þ i Gz0ð Þ

� �
m̂i zð Þm̂j z

0ð Þ
� �

, ð6Þ

@

@t
b̂i zð Þb̂j z

0ð Þ

D E
¼ Thhijðz, z

0Þ � �z02 þ �z2
� �

b̂i zð Þb̂j z
0ð Þ

D E
þ iz0l

Z
b̂i zð Þm̂jðz

0 � qÞ
D E B̂l

�

� �
ðqÞ � b̂i zð Þm̂lðz

0 � qÞ
D E B̂j

�

� �
ðqÞ

" #
dq

þ izl

Z
m̂iðz� qÞb̂j z

0ð Þ

D E B̂l

�

� �
ðqÞ � m̂lðz� qÞb̂j z

0ð Þ

D E B̂i

�

� �
ðqÞ

" #
dq
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Z
b̂i zð Þbblðz0 � qÞ
D E

V̂jðqÞ � b̂i zð Þbbjðz0 � qÞ
D E

V̂lðqÞ
h i

dq

þ izl

Z
b̂l z� qð Þbbjðz0ÞD E

V̂iðqÞ � b̂i z� qð Þbbjðz0ÞD E
V̂lðqÞ

h i
dq, ð7Þ

where, the terms Th
ð{, v, hÞ
ij involve the third-order moments of fluctuating fields and

second-order moments of them with the forcing term.
To proceed further, it is convenient to introduce some notations which are used in

the literature. The double Fourier transformation of an ensemble average of two
fluctuating quantities, say f and g, taken at equal times and at the different positions
x, x0, is given by

f xð Þg x0ð Þ
� �

¼

Z Z
f̂ zð Þĝ z0ð Þ

D E
ei z�xþz0�x0ð Þd3zd3z0: ð8Þ

Let us define the ‘‘fast’’ spatial variable r by the relative difference of x, x0 coordinates,
r ¼ x� x0. The ‘‘slow’’ spatial variable R is R ¼ xþ x0ð Þ=2. Then, equation (8) can be
written in the form

f xð Þg x0ð Þ
� �

¼

Z Z
f̂ kþ

1

2
K

� �
ĝ �kþ

1

2
K

� �� 	
ei K�Rþk�rð Þd3Kd3k, ð9Þ

where I have introduced two wave vectors: k ¼ z� z0ð Þ=2 and K ¼ zþ z0. Following
BS05, we define the correlation function of f̂ and ĝ obtained from (7) by integration
with respect to K:

� f̂, ĝ, k,R

 �

¼

Z
f̂ kþ

1

2
K

� �
ĝ �kþ

1

2
K

� �� 	
ei K�Rð Þd3K: ð10Þ

For further convenience I introduce the following notations for the second order
correlations of momentum density, magnetic fluctuations and the cross-correlations
of momentum and magnetic fluctuations,

v̂ij k,Rð Þ ¼ �ðm̂i, m̂j, k,RÞ, ��
2 u2
� �

Rð Þ ¼

Z
v̂ii k,Rð Þd3k, ð11Þ

ĥij k,Rð Þ ¼ �ðb̂i, b̂j, k,RÞ, b
2

� �
Rð Þ ¼

Z
ĥii k,Rð Þd3k, ð12Þ

{̂ ij k,Rð Þ ¼ �ðm̂i, b̂j, k,RÞ, ��Ei Rð Þ ¼ "ijk

Z
{̂ jk k,Rð Þd3k: ð13Þ

Let us now return to equations (5)–(7). As the first step, we approximate the Th
ð{, v, hÞ
ij

terms by the corresponding � relaxation terms of the second-order contributions,

Th
ð{Þ

ij ! �
m̂i zð Þb̂j z

0ð Þ

D E
�c

, ð14Þ

Mean EMF and current helicity 25
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ðvÞ
ij ! �

m̂i zð Þm̂j z
0ð Þ

� �
� m̂i zð Þm̂j z

0ð Þ
� � 0ð Þ

�c
, ð15Þ

Th
ðhÞ
ij ! �

b̂i zð Þb̂j z
0ð Þ

D E
� b̂i zð Þb̂j z

0ð Þ

D Eð0Þ
�c

, ð16Þ

where the superscript (0) denotes the moments of the background turbulence. Here, �c is
independent on k and it is independent on the mean fields as well. Furthermore, for the
sake of simplicity, we restrict ourselves to the high Reynolds numbers limit and
discard the microscopic diffusion terms. As the next step we make the Taylor expansion
with respect to the ‘‘slow’’ variables and take the Fourier transformation, (10), about
them. The details of this procedure can be found in BS05. In result, we obtain equations
for the second order correlations of momentum density, magnetic fluctuations and the
cross-correlations of momentum and magnetic fluctuations,

@{̂ ij

@t
¼ �i B � k

� � v̂ij
�
�
ĥij
�

 !
þ

B � r
� �

2

v̂ij
�
þ
ĥij
�

 !
þ

B � k
� �
2�

Gs
@v̂ij
@ks

�
G � B
� �
2�

v̂ij

þ
1

�
Glv̂ilBj þ

ĥljBi,l

�
�
v̂ilBj,l

�
�
klBl,f

2

@

@kf

v̂ij
�
þ
ĥij
�

" #
�

2

�
k̂ik̂fBf,lĥlj

þ Vj,l{̂ il � Vi,l{̂ lj þ 2k̂ik̂f{̂ ljVf,l þ klVf,l
@{̂ ij

@kf
�
{̂ ij

�c
� 2 : � k̂


 �
k̂p"ipl{̂ lj

� 2
i

k
: � k̂

 �

k̂p"ipl k̂ � r


 �
{̂ lj þ

i

k
"ipl : � k̂


 �
rp{̂ lj þ k̂p : � rð Þ{̂ lj


 �
, ð17Þ

@v̂ij
@t

¼ �2 : � k̂

 �

k̂p "iplv̂lj þ "jplv̂il
� �

�
v̂ij � v̂

ð0Þ
ij

�c
� v̂ljVi,l � v̂ilVj,l þ 2k̂fVf,l k̂iv̂lj þ k̂jv̂il


 �
þ klVf,l

@v̂ij
@kf

� i B � k
� �

{̂ ij � {̂
�
ji


 �
þ
1

2
Bl {̂ ij, l þ {̂

�
ji, l


 �
þ Bi,l{̂

�
jl þ Bj,l{̂ i,l

� 2k̂fBf,l k̂i{̂
�
jl þ k̂j{̂ i,l


 �
�
Bl,f

2
kl
@

@kf
{̂ ij þ {̂

�
ji


 �
þ

i

k
"ipl k̂p : � rð Þ � 2 : � k̂


 �
k̂r

 �
 �

þ : � k̂

 �

rp

h i
"iplv̂lj � "jplv̂il
� �

, ð18Þ

@ĥij
@t

¼ �
ĥij � ĥ

ð0Þ
ij

�c
þ ĥilVj,l þ ĥljVi,l þ klVf,l

@ĥij
@kf

þ
i B � k
� �
�

{̂ ij � {̂
�
ji


 �
þ

B � r
� �
2�

�
B �G
� �
2�

( )
{̂ ij þ {̂

�
ji


 �
�

Bj

�

� �
, l

{̂
�
li �

Bi

�

� �
, l

{̂ lj

�
1

2

Bl

�

� �
, f

kl
@ {̂ ij þ {̂

�
ji


 �
@kf

, ð19Þ

where {̂
�
ji ¼ �ðb̂j, m̂i, k,RÞ, k̂ is the unit wave vector, the indexes behind the comma

stand for the spatial derivatives. Equations (17)–(19) are in agreement with those
considered in the paper by Rogachevskii and Kleeorin (2004a).
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To solve (17)–(19) we neglect the time derivatives at the left-hand-side of equations
and apply the perturbation method with respect to the large-scale field inhomogeneities
(associated with nonuniform LSMF and shear) and stratification scales of turbulence.
We shall not reproduce explicitly the rather bulky derivations which are explained
elsewhere: (Rogachevskii and Kleeorin 2003, 2004b). The solution of (17)–(19) will
be given for two specific cases. In the first case we apply no restriction to the
angular velocity (the Coriolis number, �� ¼ 2��c, is arbitrary) and LSMF is assumed
to be weak. In the second case we keep the linear terms in angular velocity and solve
equation (17)–(19) for the case of arbitrary � ¼ �B= uc

ffiffiffiffiffiffi
��

p� �
, where �B is the strength

of the LSMF. In all derivations we keep contributions which are the first order
in the shear. Furthermore, for the contributions involving the shear we make two
additional simplifications. The first one is that we neglect the density stratification,
but leave the contributions of the turbulence intensity stratification. Additionally,
we discard the joint effect of the Coriolis force and the shear to the MEMF. In the
present study I consider an intermediate nonlinearity which implies that effect of
the mean magnetic field and global rotation is not enough strong in order to affect
the correlation time of turbulent velocity field.

For integration in k-space I adopt the quasi-isotropic form of the spectra
(Roberts and Soward 1975, Rüdiger and Kichatinov 1993) for the background
turbulence. Additionally, the background magnetic fluctuations are helical, while
there is no prescribed kinetic helicity in the background turbulence:

v̂
ð0Þ
ij ¼ �ij kð Þ þ

i

2k2
kirj � kjri

� �� 
�2E k,Rð Þ

8�k2
, ð20Þ

ĥ
ð0Þ
ij ¼ �ij kð Þ þ

i

2k2
kirj � kjri

� �� �
B k,Rð Þ

8�k2
� i"ijpkp

N k,Rð Þ

8�k4

� 
, ð21Þ

where, the spectral functions Eðk,RÞ,Bðk,RÞ,Nðk,RÞ define, respectively, the intensity
of the velocity fluctuations, the intensity of the magnetic fluctuations and the amount of
current helicity in the background turbulence. They are defined via

uð0Þ2
� �

¼

Z
E k,Rð Þ

4�k2
d3k, bð0Þ2

� �
¼

Z
B k,Rð Þ

4�k2
d3k, h

0ð Þ

C ¼
1

��

Z
N k,Rð Þ

4�k2
d3k, ð22Þ

where h
0ð Þ

C
¼ b 0ð Þ � r � b 0ð Þ
� �

= ��ð Þ. In final results we use the relation between intensities
of magnetic and kinetic fluctuations which is defined via B k,Rð Þ ¼ "� ��E k,Rð Þ.
The state with "¼ 1 means equipartition between energies of magnetic and kinetic
fluctuations in the background turbulence. The point to note is that inconsistency
between (20) and (21) does not influence the final results. The general structure
of the mean electromotive force vector obtained within the given framework are in
agreement with the known results from the literature (Rädler, et al. 2003;
Rogachevskii and Kleeorin 2003). We keep the current helicity contribution in the
background turbulence to investigate the nonlinear saturation phase of the helical
large-scale dynamo.

The final remarks in this section concern with discussion given in the article by
Rädler and Rheinhardt (2006). There, authors argue that � approximation may
lead to results which are in conflict with those of SOCA. One difference is apparent
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between the two approaches: there is no overlap in applicability limits of SOCA and
� approximation. The given scheme to obtain (17)–(19) is hardly justified for small
hydrodynamic Reynolds numbers. The same is true in a highly conductivity limit,
where SOCA can be valid only for the small Strouhal numbers. Currently, the range
of � approximation validity is purely understood. This problem requires further careful
study.

There is another reason for difference between results presented in the article
and those of SOCA. In the given variant of � approximation the relaxation time �c
is independent of k. This issue is especially important in computing effects of the
nonuniform LSMF and shear. Perhaps, the spectral �-approximation can correct
this defect. For more detail, see (Rädler et al. 2003, Rogachevskii and
Kleeorin 2007). Hense, in confronting MTA and SOCA, it is of some use to simplify
the expressions obtained within SOCA by applying the mixing-length approximation.
The transition from SOCA to MLT can be done by replacing the spectrum of turbulent
fields by the single-scaled function of the form 	 k� ‘�1

c

� �
	 !ð Þ, and applying

�k2 ¼ �k2 ¼ ��1
c , here ‘c is the correlation length of the turbulence. For more details,

see Kichatinov (1991) and Kichatinov et al. (1994).

3. Results

3.1. Weak LSMF, arbitrary Coriolis number

3.1.1. Spatially uniform LSMF. I decompose the electromotive force into
different contributions, in particular, E ðaÞ contains the effects of stratification, and
E ðsÞ gives contributions due to shear, which are computed only in slow rotation limit.
We find the following expression for E ðaÞ:

E ðaÞ
¼ "� 1ð Þ f

ðaÞ
2 U�B
� �

þ f
ðaÞ
1 e � B
� �

e�Uð Þ


 �
þ f

ðaÞ
3 G� B
� �n

þ f
ðaÞ
1 e �Gð Þ e� B

� �
þ "� 2ð Þ e � B

� �
e�Gð Þ

� �
þ f

ðaÞ
4 e e � B

� �
e �Uð Þ þ f

ðaÞ
11 B e �Uð Þ þ f

ðaÞ
5 e e � B

� �
e �Gð Þ

þ f
ðaÞ
8 e B �U

� �
þU e � B

� �� �
þ f

ðaÞ
6 e B �G

� �
þG e � B

� �� �
þ f

ðaÞ
10 B e �Gð Þ

þ f
ðaÞ
9 e B �U

� �
�U e � B

� �� �
þ f

ðaÞ
7 e B �G

� �
�G e � B

� �� �o
uð0Þ2
� �

�c

þ 2 f
ðaÞ
2 B� f

ðaÞ
1 e e � B

� �n o
�ch

0ð Þ

C
, ð23Þ

where functions f
ðaÞ
fng ¼ f

ðaÞ
fng ��, "ð Þ (and all which are used below) are given in Appendix

A, U ¼ r loghuð0Þ2i is a scale of the turbulence intensity stratification, e ¼ :=j�j is a
unit vector in direction of global rotation. For the slow rotation limit (�� ! 0) we get

E ðaÞ
j��!0 ¼ � � Bþ uð0Þ2

� �
�c

ð"� 1Þ

6
U� B
� �

þ
"

6
G� B
� �� 

þ uð0Þ2
� �

�c
��

12
"þ 2ð Þ G� eð Þ � B

� �� �
þ "þ 1ð Þ U� eð Þ � B

� �� �� �
, ð24Þ
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8 �ij ¼ 	ij�c uð0Þ2
� � 2" e �Uð Þ þ e �Gð Þð Þ��

15
�
2 e �Uð Þ��

5
�
4 e �Gð Þ��

5

� 
þ
h
ð0Þ
C

3

 !

þ �c u
ð0Þ2

� ���

20
eiGj þ ejGi

� �
"þ 4ð Þ þ eiUj þ ejUi

� �
"þ

11

3

� �� 
, ð25Þ

where only linear terms in � are kept. Except contributions due to G equations (24) and
(25) are in agreement with results by Rädler et al. (2003) and Brandenburg
and Subramanian (2005). The mean transport of the LSMF due to stratification of
turbulence is given by second term in (24). They are in agreement with the mixing-
length expressions obtained by Kichatinov (1991). Note that, additional components
of the turbulent transport may be excited due to the antisymmetric part of a-tensor
in (25).

For the fast rotation limit (�� ! 1) of (23) we get

E ðaÞ
j��!1 !

��c
2

h
0ð Þ

C

2��
� uð0Þ2
� � e �Uð Þ

2
þ e �Gð Þ

� � !
B� e e � B

� �� �
, ð26Þ

where for the current helicity we also retain the terms of one higher order with respect
to ��. The reason for this will be clarified below in section 4. Except the helicity term,
equation (26) is in identical agreement with the mixing-length approximation results
obtained by Rüdiger and Kichatinov (1993) within SOCA.

In the case of the spatially uniform LSMF the shear contributions to the mean
electromotive force are expressed as follows

E
ðsÞ
i ¼ z"inm A4UkBnVm,kþA2BkVn,kUmþA3 B �U

� �
Vm,nþA1Vk, nBkUm

� �
uð0Þ2
� �

þ �2c
h

0ð Þ

C

2
W� B
� �

i
�
13

30
�2c h

0ð Þ

C
Vn,i þ Vi,n

� �
Bn, ð27Þ

where W ¼ r � V, we assume that ðU � rÞV ¼ 0 and A1 ¼ 2"� 1ð Þ�2c=15,
A2 ¼ � 3"þ 1ð Þ�2c=15, A3 ¼ "þ 1ð Þ�2c=6, A4 ¼ �A3. Coefficients A1�3 correspond to
those from Rüdiger and Kichatinov (2006) (hereafter RK06) and A4 is corresponding
to their A5. Recently, similar contributions of the large-scale shear were calculated
within SOCA by Rädler and Stepanov (2006) (RS06), as well. We have to note that
both the RK06 and RS06 results are related with the case "¼ 0. The (27) differs with
results obtained in RK06 and RS06 articles. For example, after applying the mixing-
length relations �k2 ¼ �k2 ¼ ��1

c to expressions given by RK06 we get A1 ¼ �2c=3
(in our case ��2c=15) and A2 ¼ ��2c=60 (compare to our ��2c=15). Unfortunately
RK06 did not give the results for other coefficients. The comparison with RS06 is
given in Appendix B. The difference between the given results and those by RK06
and RS06 can be explained, in part, by the crudeness of the given version of tau approx-
imation. Here, we assume that �c is independent of k. This especially influences
the accuracy of calculations of the contributions due to shear because they involve
the derivatives in k space.

According to (27) the joint effect of current helicity and shear contributes to pumping
of LSMF. The interpretation of the effect is difficult to illustrate. To show the general
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idea we invoke an auxiliary illustration of effect for the helical turbulent motions. It is
shown in figure 1.

3.1.2. Anisotropic diffusion, the :� J and shear-current effects. In rotating
turbulence the magnetic diffusivity become anisotropic (Kichatinov et al. 1994).
The corresponding part of the MEMF reads,

E
ðd Þ
i ¼ f

ðd Þ
1 enBn,i þ f

ðd Þ
2 "inmBm,n þ "f

ðd Þ
3 eienemBm,n

n
þ f

ðaÞ
1 "inmenel 2"Bl,m � "þ 1ð ÞBm,l

� �
þ "f ðd Þ4 enBi,n

o
uð0Þ2
� �

�c, ð28Þ

where functions f
ðd Þ
fng ¼ f

ðd Þ
fng ��ð Þ are given in Appendix A. If we put the magnetic

fluctuations in background turbulence equal to zero in (28) ("¼ 0), we return to results
obtained by Kichatinov et al. (1994). The magnetic fluctuation contributions in (28)
give rise to the :� J effect (terms related with enBn,i and enBi,n) and to additions in
anisotropic diffusion. In the slow-rotation limit equation (28) can be reduced to

E
ðd Þ
i j��!0 ¼ en "þ 5ð ÞBn,i þ 6"Bi,n

� ���

10
� "inmBm,n

� 
uð0Þ2
� �

�c

3
: ð29Þ

Equation (29) corresponds to results by Subramanian (2005). Note, only magnetic
fluctuations contribute to the induction term e � rð ÞB. The :� J effect was proposed
originally by Rädler (1969) (see, also Krause and Rädler 1980, Rädler et al. 2003,
Kichatinov 2003).

The physical interpretation of this effect is shown in figure 2. Lets consider the
situation in disk geometry and the rotating media penetrated by the inhomogeneous
toroidal LSMF. For simplicity, we assume that LSMF is nonuniform along the
axis of rotation. Let the direction of LSMF will be opposite to direction of

Figure 1. The modification of standard �-effect (cf. Krarad and Rädler 1980) due to shear. The helical
motions (denoted with u � r � uh i) go up, drag and twist the LSMF BT, where index T denotes the toroidal
component of LSMF. The shear,�VT, additionally, folds the loop in direction of large-scale flow. The effect
is equivalent to inducing the transversal large-scale electromotive force, EP (here index P denotes the poloidal
component of the MEMF), and the magnetic field, B0

T parallel to original one. Direction of the induced field
depends on the sign of the helicity. For the situation given on the picture, the induced field B

0
T quenches the

original LSMF in direction of the gradient of the mean flow. This means that the LSMF is effectively pumped
in opposite direction.
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rotating plasma. If the loop of the small-scale fluctuating magnetic field comprises
LSMF, it induces fluctuation of velocity in azimuthal direction. The influence of the
Coriolis force declines the velocities in radial direction. The effective electromotive
force is co-lined with original LSMF and is proportional to b2

� �
: � rð ÞB, see figure 2.

The shear-current effect discussed by Rogachevskii and Kleeorin (2003) (hereafter
RK03) is of similar nature, because the large-scale vorticity W ¼ r � V and the
Coriolis force act on the turbulent motions in a like manner. The additional contribu-
tions due to shear in the diffusion part of the mean electromotive force are expressed as
follows,

E
ðV Þ

i ¼ "inm C2Bn, lVm, l þ C1Vl,mBn, l þ C3Vl,mBl, n þ C4Bl, nVm, l

� �
uð0Þ2
� �

, ð30Þ

where C1 ¼ "� 3=5ð Þ�2c=6, C2 ¼ "� 1ð Þ�2c=5, C3 ¼ 1þ "ð Þ�2c=15, C4 ¼ � 7"þ 11ð Þ�2c=30.
Coefficients C1�4 correspond to those from RK06. After applying the mixing-length
approximation to RK06’s results we get C1 ¼ �2�2c=5, C2 ¼ �4�2c=15, C3 ¼ 0,
C4 ¼ ��2c=5. In confronting these coefficients to ours, we see the difference. It can be
explained, in part, by the crudeness of the given version of tau approximation.
The comparison with RS06 is given in Appendix B. The given results are in agreement
with those given in (Rogachevskii and Kleeorin 2007). As shown in the paper cited
earlier, the spectral � approximation is capable to give result in closer agreement with
those of SOCA.

In the commonly accepted scheme of the solar �–� dynamo, the poloidal LSMF of
the Sun is produced from the large-scale toroidal magnetic field via the alpha effect.
Expressions (28,30) give contributions which are capable to induce the MEMF along
the LSMF. Therefore, these terms are potentially very important for the solar
dynamo, because they provides additional induction sources of the large-scale poloidal
magnetic field of the Sun. subsequently, I consider the efficiency of induction effect
along the nonuniform LSMF due to global rotation and shear. In (28,30) we leave
only those terms that capable to induce the toroidal MEMF and skip the usual
contributions due to turbulent diffusion.

Figure 2. An illustration of :� J effect in disk geometry. Direction of rotation is marked by :, the
large-scale toroidal field has opposite direction to rotational velocity and it is marked by �, what means
that LSMF is perpendicular to the figure’s plane and it is directed to the reader. The loop of fluctuating
magnetic field, b0, comprises LSMF that is nonuniform along the axis of rotation. Its direction is marked by
double arrows. The small-scale Lorentz forces induce the azimuthal fluctuations of velocity, u0 � b

0
�r

� �
B.

They are marked by dashed lines ending with arrows. The Coriolis force deflects these fluctuations to radial
direction (this is marked by dotted lines). The resulting electromotive force has the same direction as the
original LSMF and it is proportional to b02

� �
: � rð ÞB.
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For the sake of simplicity we restrict consideration to the axisymmetric LSMF,
B ¼ Be
 þ r Ae


� �
, in the Keplerian disk. We assume that toroidal LSMF exceeds its

poloidal counterpart, B � Be
. Suppose that a rotating frame of reference is defined
by angular velocity �0 in a given point r ¼ r0. The mean velocity in this rotating
frame is V ¼ r	�ðrÞe
, where 	�ðrÞ ¼ ð�ðrÞ ��0Þ and �ðrÞ ¼ �0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr0=rÞ

3
q

. Computing
(22) in cylindrical coordinates r,
, zð Þ at the point r ¼ r0 we get

E
ðV Þ


 ¼ C3r
@�

@r
þ ðC3 � C4Þ	�

� �
@B

@z
huð0Þ2i ¼ �

3

2
�0C3

@B

@z
huð0Þ2i: ð31Þ

Combining the given result with one from (21) we get,

E
 � �� ð3"� 1Þ

20
huð0Þ2i�c

@B

@z
, ð32Þ

where �� ¼ 2�0�c. If " > 1=3 and provided the LSMF is concentrated to the plane of
the disk, then in the upper half plane of the disk the induced MEMF will be in direction
of the LSMF.

3.2. Slow rotation, arbitrary LSMF

3.2.1. Spatially uniform LSMF. In this part of the article we consider results obtained
for the slow rotation limit. In what follows, no restriction is applied to the strength of
the LSMF. The MEMF, that is induced due to influence of rotation and stratification
on the turbulence, is described with expression

E ðaÞ
¼ uð0Þ2
� �

�c ’
ðaÞ
1 G� B
� �

þ ’ ðaÞ
2 U� B
� �

þ �c : � B
� �

’ ðaÞ
4 Gþ ’ ðaÞ

10 U

 �n

þ �cB ’ ðaÞ

6 : �Gð Þ þ ’ ðaÞ

8 : �Uð Þ


 �
þ �c: ’ ðaÞ

5 B �G
� �

þ ’ ðaÞ
9 B �U
� �
 �

þ �c
: � B
� �

B

B
2

’ ðaÞ

3 B �G
� �

þ ’ ðaÞ

7 B �U
� �
 �)

þ �ch
ð0Þ
C
’ðhÞ1 B, ð33Þ

where ’ að Þ
n are functions of � defined in the appendix. This formula generalizes the

similar results by Rüdiger and Kichatinov (1993), Kichatinov and Rüdiger (1992)
taking the density stratification, magnetic fluctuations and current helicity into account.
The nonlinear MEMF of helical MHD turbulence was considered by Rogachevskii and
Kleeorin (2004a), as well. For the strong LSMF limit we obtain

E ðaÞ
j�!1 ¼

�c
8

"þ 1ð Þ B �U
� �

þ
3 3"þ 5ð Þ

8
B �G
� �� �

:�
: � B
� �

B

B
2

 !(

þ
3"þ 1

64
G� B
� ��

�
uð0Þ2
� �

�c: ð34Þ

The results by Rüdiger and Kichatinov (1993) can be recovered from (34), if we put
G¼ 0 and "¼ 0. Following to arguments given in the article cited above, we conclude
that the MEMF like (34) does not produce a dynamo.
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The first term at the upper line of (33) describes the so-called ‘‘turbulent buoyancy’’
(Kichatinov and Rüdiger 1992). The expression (34) shows that the transport of LSMF
is downward for the strong magnetic field limit. For the case of the weak field we get
’ ðaÞ
1 � "=6þ 6"� 8�2

� �
=15. Then, if we neglect contributions due to small-scale

magnetic fluctuations, we obtain that for the weak field transport is upward
(opposite to direction of G). In this case the effective drift velocity is proportional
to the LSMF’s pressure (Kichatinov and Rüdiger 1992). In this aspect it is similar to
the usual buoyancy of magnetic flux tubes (Parker 1979). Furthermore, we find that
the large-scale inhomogeneity of magnetic fluctuations provide the downward drift of
LSMF in the whole range of magnetic field strength.

The quenching functions for the isotropic components of �-effect are shown in
figure 3. There, for comparison, the dash-dotted line indicates the curve corresponding
to quenching of isotropic components of the � effect obtained within SOCA in (Rüdiger
and Kichatinov 1993).

In the strong LSMF limit we found that �-effect is quenched as ��2 which is different
from results by Rüdiger and Kichatinov (1993) and similar to findings by Rogachevskii
and Kleeorin (2004a). Though, as seen from the figure, the numerical difference
between the quenching curves obtained within SOCA (dash-dotted line) and MTA
(dashed line) is within a few percents.

The nonlinear electromotive force induced by shear is expressed as follows,

E
ðsÞ
i ¼ "inm ’ ðsÞ

1

BlBk

B
2

Vl,kUnBm þ ’ ðsÞ
2 BlVl,mUn þ ’

ðsÞ
3 ðU � BÞ

BlBm

B
2

ðVl,n � Vn,lÞ

�
þ ’ ðsÞ

4 UlVn,lBm þ ’ ðsÞ
5 UnVl,mBl

o
huð0Þ2i�2c

þ �2c h
ð0Þ
C

’ðhÞ4 Vm,n
BmBn

B
2

Bi þ ’
ðhÞ
3 ðVn,i þ Vi,nÞBn þ ’

ðhÞ
2 W� B
� �

i

� 
: ð35Þ

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.1 1 10

b

j6
(a) (e=1)

j8
(a) (e=1)

j1
(h)

RK1993

Figure 3. The quenching functions for isotropic components of �-effect.
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From (35) we can find that the terms with ’ ðsÞ
2, 3, 5 and the second term in brackets with

’ð5Þ5 have components along the LSMF. Therefore, their effect to the MEMF is similar
to the � effect. The term with ’ðhÞ2 and ’ ðsÞ

1,4 provide the pumping of LSMF. Surprisingly,
the �-effect like terms survive even in the limit of the strong magnetic field. In this case
we get

E
ðsÞ
i j�!1 ¼ "inm

3

4
ð"� 1Þ

BlBk

B
2

Vl,kUnBm � BlVl,mUn

� ��
þ ð"þ 1ÞðU � BÞ

BlBm

B
2

ðVl,n � Vn,lÞ


�

16�
uð0Þ2
� �

�2c

þ
3�

64�
�2c h

ð0Þ
C

Vm,n
BmBn

B
2

Bi � ðVn,i þ Vi,nÞBn þ W� B
� �

i

� 
: ð36Þ

According to (27) and (36) the pumping of the LSMF due to joint effect of current
helicity and shear have the same sign for the weak and strong LSMF.

3.2.2. Diffusion,:� J and shear current effect. The results for nonlinear turbulent dif-
fusion are similar to those found within SOCA by Kichatinov et al. (1994). We have

E dð Þ
¼ ’3r � Bþ ’2

r � B
� �

� B
� �

B
2

þ ’1r log
B
2

2

 ! !
� B

( )
uð0Þ2
� �

�c þ EðwÞ, ð37Þ

where EðwÞ stands for the contributions due to rotation. The corresponding quenching
functions are given in figure 4.
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Figure 4. Functions defining the nonlinear turbulent diffusion of LSMF (see equation (29)).
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The next formula generalizes the results for the nonlinear diffusion of LSMF to the
case of the slowly rotating media:

E
ðwÞ
i ¼ ’ðwÞ8 ri : � B

� �
þ ’ðwÞ1

: � B
� �

2
ri log B

2

 �

þ ’ðwÞ4 Bi

B � r
� �

: � B
� �
B
2

(

þ ’ðwÞ5 �i

B � r
� �

2
log B

2

 �

þ ’ðwÞ3 Bi

: � B
� �
B
2

B � r
� �

2
log B

2

 �

þ ’ðwÞ6

: � B
� �
B
2

B � r
� �

Bi þ ’
ðwÞ
2 Bi

: � rð Þ

2
log B

2

 �

þ ’ðwÞ7 : � rð ÞBi

)
uð0Þ2
� �

�2c : ð38Þ

The last two terms at the third line in (38) are related with the induction of MEMF
along the direction of LSMF. The corresponding functions ’ðwÞ2 and ’ðwÞ7 are shown in
figure 5. As can be seen there, in the absence of the background magnetic fluctuations
("¼ 0) the MEMF induction along the LSMF due to :� J-effect exists only in
nonlinear regime.

If �>1, functions ’ðwÞ2 and ’ðwÞ7 have opposite signs everywhere. Note, while the term
: � rð ÞBi induces MEMF in direction of LSMF’s gradients along axis of rotation,
and the term Bi : � rð ÞlogðB

2
Þ induces MEMF in opposite direction. Formally, the

latter effect is similar to �-effect. The only difference with the standard � is that instead
stratification parameters of turbulence we have a parameter which is related with
nonuniform distribution of the LSMF’s energy. For the solar magnetic fields the
effect is antisymmetric about equator. Below, it is shown that in the strong LSMF
this � is quenched by factor ��1 which is lesser than for the standard �-effect.
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Figure 5. The quenching functions for ‘‘:� J’’ generation effect for different parameters.
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For the limit of the strong LSMF we get

E
ðwÞ
i j�!1 ¼ 17"þ 47ð Þ ri : � B

� �
�

: � B
� �

2
ri log B

2

 � !(

� 21"þ 43ð Þ �i

B � r
� �

2
log B

2

 �

þ Bi

B � r
� �

: � B
� �
B
2

þ
: � B
� �
B
2

B � r
� �

Bi

 !

þ 3 21"þ 43ð Þ
: � B
� �

B � r
� �

2B
2

log B
2


 �
Bi

� 37"þ 27ð Þ Bi
: � rð Þ

2
log B

2

 �

� : � rð ÞBi

� �
�

512�
uð0Þ2
� �

�2c : ð39Þ

From there we find that :� J-effect (terms in the first and in the last line of (39))
maintain the induction of the MEMF along direction of the LSMF even for the
strong magnetic fields. The amplitude of effect tends to constant as the strength of
LSMF is increased. It is hardly possible to make a definite conclusion about the
dynamo effect in this case, because the generation part of (39) is contributed by
terms with opposite signs.

The MEMF’s contributions due to shear are defined by

E
ðV Þ

i ¼ uð0Þ2
� �

�2c "inm ’ðV Þ

1 Vn,lBl,m þ
Bl

B
2
Vl,kð’

ðV Þ

2 BmBk, n þ ’
ðV Þ

3 BnBk,mÞ

�
þ ð’ðV Þ

4 Vn,l þ ’
ðV Þ

5 Vl,nÞBm,l þ ’
ðV Þ

6

BlBn

B
2

Vl,kBm,k þ ’
ðV Þ

7

BkBl

B
2

Vl,kBm,n

þ ’ðV Þ

8

BkBl

B
2

Vm,nBl,k þ ’
ðV Þ

9 Vl,nBl,m þ
BkBl

B
2

Vl,nð’
ðV Þ

10 Bk,m þ ’ðV Þ

11 Bm,kÞ


, ð40Þ

where, for the sake of simplicity, we leave only the largest contributions and those
which are important for the solar-type dynamo models, where the strength of LSMF
component along direction of the large-scale flow dominates components directed
along the shear. Reader can find the expressions for ’ðV Þ

n in Appendix A. The full
expression has a much more complicated tensorial structure than (40). In the case of
the strong LSMF we get

E
ðV Þ

i j�!1 ¼
�2c
6

uð0Þ2
� �

"inm
"þ 15

20
Vn,l �

"

5
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Bm,l þ ð"þ 1Þ

BlBn
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2

Vl,kBm,k

�
�
3"þ 13

20
Vn,lBl,m �

"þ 3
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BlBm

B
2

Vl,kBk,m þ
"þ 1
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Vl,nBl,m

þ
BkBl

B
2

Vl,n ð"þ 1ÞBm,k �
"þ 3

4
Bk,m

� �
, ð41Þ
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Now, we would like to consider efficiency of induction effect along the nonuniform
LSMF due to global rotation and shear in nonlinear regimes for the Keplerian discs.
As before, we assume a disc penetrated by the large-scale toroidal magnetic field that
is nonuniform along the axis of rotation. From (39) and (40) we get

E
 �
��

2
uð0Þ2
� �

�c’
ðwV Þ@B

@z
, ð42Þ

where the quenching function is ’ðwV Þ ¼ ’ðwÞ2 þ ’ðwÞ7 þ 1:5ð’ðV Þ

9 þ ’ðV Þ

10 Þ. Here,
�� ¼ 2�0�c and the MEMF is computed at r ¼ r0 in a rotating frame of reference
which is defined by angular velocity �0 in a given point r ¼ r0. Note, equation (42)
transforms to equation (32) in limit �! 0. The dependence of ’ðwV Þ on the LSMF’s
strength is shown in the figure 6.

Results given in the figuere 6 show that the ’ðwV Þ is positive for �<1 and negative for
�>1 for all ". This result supports an idea about the change of dynamo type in passing
from linear to non-linear regime of the LSMF’s generation by :� J and shear-current
effects. Previously we found that the induction term due to :� J effect tends to con-
stant when �! 1 (equation (39)) while the induction term due to shear-current effect
is growing under �! 1 (equation (41)). Therefore, the primary nonlinear generation
effect in the differentially rotating uniform MHD turbulence penetrated by the nonuni-
form toroidal LSMF may be due to shear-current effect. The same nonlinear depen-
dence of shear-current effect was discovered in the article by Rogachevskii and
Kleeorin (2004a) for the different kind of MTA. In the next section I show that the
given sources of the MEMF ultimately result in current helicity generation.
Therefore, the effect considered above is saturated dynamically due to magnetic helicity
conservation law.
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Figure 6. The dependence of induction effect along the nonuniform toroidal LSMF on the strength of
magnetic field.
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4. The current helicity evolution

As we have seen, the current helicity contributes to the different kind of MEMF’s
action, not only to the �-effect. The recent articles (Subramanian and Brandenburg
2004) show that the magnetic helicity conservation law can be described in terms
of the current helicity evolution if the assumption of the scale separation is fulfilled.
For the time being the redistribution of current helicity over the space scales is not
satisfactorily understood. One attempt to describe the helicity evolution in turbulent
media penetrated by LSMF was given in the articles by Brandenburg and
Subramanian (2005); Subramanian and Brandenburg (2004). Here, we will follow
their results and obtain the explicit evolutionary equation for the current helicity.
The equation in question can be derived from (3) and (4). After integration over the
large-scale variables we can get the general equation for the current helicity in the
following form

@hC
@t

¼ �
hC
�h

þ
2

��
"plm

Z
k2{̂ lp

Bm

�
� i{̂ lp k � rð Þ

Bm

�

� �
�

i

2
k � rð Þ {̂ lp

Bm

�

� ��

þ ikprn {̂ ln
Bm

�

� �
þ
1

2
Vl,n ikp �

1

2
rp

� �
ĥmn � ĥnm


 �
�
1

2
Vl,mrnĥnp

�
dk: ð43Þ

The third order moments were replaced by �hC=�h, where �h is a relaxation time for the
current helicity. This is a rather rough way because the triple correlations may give
important contribution for the helicity redistribution over the space scales (Frisch
et al. 1975, Kleeorin and Ruzmaikin 1982, Kleeorin and Rogachevskii 1999). Because
of the very rough assumptions used in derivation of (43), it should be considered
with caution. In spite of the latter, the equation (43) provides a useful tool for
investigation the nonlinear saturation in helical mean-field dynamo (Brandenburg
and Subramanian 2004). Except for contributions due to density stratification and
shear, equation (43) can be reproduced from results of BS05 after substiuation identity
"ijk"ipq"qlm ¼ "lmk	jp � "lmj	kp in equation (10.71) of BS05. Inspection of (43) shows
that if we replace k2 ! ‘�2

c and use (12), we can write the evolutionary equation in
the following form,

@hC
@t

¼ �
2 E � B
� �
��‘2c

�
hC
�h

þ
2

��
"plm

Z
�i{̂ lpk

nrn
Bm

�

� �
�

i

2
k � rð Þ {̂ lp

Bm

�

� ��

þ ikprn {̂ ln
Bm

�

� �
þ
1

2
Vl,n ikp �

1

2
rp

� �
ĥmn � ĥnm


 �
�
1

2
Vl,mrnĥnp

�
dk: ð44Þ

According to Frisch et al. (1975) Kleeorin and Ruzmaikin (1982), Vainshtein (1983),
Brandenburg (2001), and Vishniac and Cho (2001) the first term in (44) is responsible
for helicity generation in turbulent medium. The rest part of equation can be interpreted
as the helicity fluxes (Vishniac and Cho 2001, Subramanian and Brandenburg 2004,
2005). The given expression for helicity fluxes is incomplete because the contribution
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of the third order moments is dropped in (44). As the first step we consider the case of
the weak LSMF. From (44) and (18,17,19) we get

@hC
@t

þ
1

�h
hC ¼ �

2

��‘2c
E � B
� �

þ
"� 1ð Þ

���c
2f

ðaÞ
1 e � B
� �

e � U� B
� �� �n

þ
e�Gð Þ

3
f
ðd Þ
4 B

2
þ f

ðd Þ
3 e � B
� �2
 �

þ 2f
ðaÞ
2 B � r � B

� �� �
þ e � B
� � 1

3
f
ðd Þ
4 B �G
� �

þ
4f

ðaÞ
9

"þ 1ð Þ
B �U
� � !

� f
ðd Þ
4

e � rð Þ

6
B
2

�
4

3
f
ðaÞ
1 e � B
� �

e � r � B
� �� �

� f
ðd Þ
3

e � rð Þ

6
e � B
� �2

�f
ðd Þ
4

B � rð Þ

3
e � B
� �

, ð45Þ

where substitution uð0Þ2
� �

‘�2
c ! ��2

c was used, and e ¼ :=j�j . Here, we dropped the
contributions due to shear because their effect to the mean electromotive force was
computed only to the zero order terms about angular velocity. Furthermore, in (45)
we kept only those contributions which could be the most interesting from the stellar
dynamo applications standpoint. Note, for the equipartition case, "¼ 1, helicity
evolution satisfies the simple equation

@hC
@t

þ
1

�h
hC ¼ �

2 E � B
� �
��‘2c

: ð46Þ

It is in accordance with equation for the magnetic helicity density obtained by
Subramanian and Brandenburg (2005). As an example of application of (46) to
the problem of the nonlinear saturation of alpha-effect, consider the �2 dynamo in
the fast rotation limit. For the sake of simplicity we restrict ourselves only with the
isotropic components of �-effect and neglect the helicity loss due to hC=�h. From (46)
and (26) we get

@hC
@t

¼
��2

4�c
2 uð0Þ2
� �

�� e �Gð Þ � hC
� �

, ð47Þ

where we keep the contributions of order ���1 for the current helicity, and drop
the terms which are due to nonuniform LSMF. If L is the typical spatial scale of
the LSMF then the equation (47) is justified when LG�� 	 1 and
�� hCj j 	 B � r � B

� ��� ��. The point to note that in (47) we implicitly assume that
h

0ð Þ

C

 hC. It is a shortcoming of the theory. However, this procedure is widely used in

the literature (Kleeorin and Ruzmaikin 1982, Vainshtein and Kitchatinov 1983,
Vishniac and Cho 2001, Kleeorin et al. 2003, Brandenburg and Subramanian 2004).
With initial condition, t ¼ 0, hC ¼ 0, we write, similar to Vainshtein (1983), the solution
of equation (47) is as follows,

hC ¼ 2�� uð0Þ2
� �

e �Gð Þ 1� exp �
�

4�c

Z t

0

�2dt

� �� �
: ð48Þ

The given solution shows that under t ! 1 we get hC ! 2�� uð0Þ2
� �

e �Gð Þ�c. On this
basis, and in taking into account (26), we can conclude that �-effect will saturates
exponentially under the increase of the LSMF strength. Furthermore, this conclusion
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was confirmed with numerical dynamo model which is considered by author in the
separate article (Pipin 2007).

Next, we consider the equation for the current helicity evolution for the slow rotation
limit. No restriction is applied to the strength of LSMF. The contribution of shear to
the transport and generation part of equation is described with a quite bulky tensor
expressions and we decide to restrict ourselves with terms which have either a finite
limit under �! 0 or the amplitude functions that are greater than 0.1. We write the
evolutionary equation for the current helicity as follows

@hC
@t

þ
1

�h
hC ¼ �

2

��‘2c
E � B
� �

þ  1
BmBp

B
2

Vp,mhC þ  2Gþ  3Uð Þ �W uð0Þ2
� �

þ
1

��
r �  5r � Bþ  4 U� B

� �� �
B � V
� �

þ  6WB
2


 �
þ "� 1ð Þ . . .f g, ð49Þ

where W ¼ r � V. Quenching functions  nf g are given in Appendix A. Symbol . . .f g

denotes those terms which are not important in the case "¼ 1. Taking the Taylor
expansion of (49) for the case B ! 0 (keeping B

2
terms) we get

@hC
@t

þ
1

�h
hC ¼ �

2

��‘2c
E � B
� �

�
4

15

BmBp

�� uð0Þ2
� �Vp,mhC �

G �Wð Þ

6
uð0Þ2
� �

� r � F ð50Þ

F ¼
1

6
uð0Þ2
� �

þ
2

15

B
2

��

 !
Wþ

2

15��
r � B� U� B

� �� �
B � V
� �� �

, ð51Þ

where we apply the equipartition condition, "¼ 1, as well. The direction of the helicity
flux due to the first contribution in (51), FW ¼ uð0Þ2

� �
=6þ 2B

2
= 15��ð Þ


 �
W, depends on

distribution of the large-scale vorticity solely. The second term depends on details of the
dynamo action. To estimate the direction of the helicity transport due to FW on the Sun
we compute the vector field of the large-scale vorticity W. In the spherical coordinate
system we have W ¼ erðsin �@�=@� þ cos �	�Þ � sin �e�ðr@�=@rþ 2	�Þ, where r, � are
the radial distance and the polar angle, respectively, and 	� ¼ ���0, where �0 is
the equatorial angular velocity of the Sun at the surface. The distribution of the angular
velocity is taken as an analytical fit given by Belvedere et al. (2000). It is shown at the
left side figure 7. The computed vector field of the large-scale vorticity is shown at the
right side figure 7.

The given figure shows the possibility of the outward helicity flux from the dynamo
region due to shear. Note that one component of the helicity flux FW is due to the
small-scale dynamo, uð0Þ2

� �
W=6, and another is due to the LSMF, 2B

2
W= 15��ð Þ.

Among two, the contribution of the small-scale dynamo is likely to be dominated in
the depth of convection zone. While the flux due to the LSMF may be important
at near the surface level. The latter effect may produce the significant outward flux
of helicity only with the open boundaries ((Brandenburg and Subramanian 2004,
Subramanian and Brandenburg 2005). At the near surface level the amplitude of
the large-scale vorticity, Wj j � 4� 10�8s�1 � 1:5� 10�5day�1. The magnitude of the
surface magnetic flux change during the solar cycle is about 1024Mx (Schrijver and
Harvey 1984). Then the magnitude of the helicity outflow from 2B

2
W= 15��ð Þ is

about 1043Mx2day�1. It is compatible with estimations given by (DeVore 2000).

40 V. V. Pipin



D
ow

nl
oa

de
d 

B
y:

 [N
E

IC
O

N
 C

on
so

rti
um

] A
t: 

03
:4

5 
4 

M
ay

 2
00

8 

We have estimated only one part of the helicity flux. The numerical dynamo
model based on the given results would help to get a more definite conclusions about
this subject.

5. Summary

In this article, the mean electromotive force of turbulent flows and magnetic fields is
computed analytically using the framework of mean-field dynamo theory and MTA
(minimal � approximation). There is an overlap in results obtained with SOCA and
with MTA approximation. The two approximations give qualitatively the same results
about nonlinear dependence of mean electromotive force on the strength of LSMF or
on the Coriolis number. Also, there is a difference between predictions of SOCA and
MTA for mean-electromotive force expressions if the shear is taken into account.
This difference can be explained, in part, by the crudeness of the given version of tau
approximation. The deficient accuracy of calculations of shear contribution is due to
an assumption about the scale-independent �. In whole, the accuracy of the theory
presented in the article is comparable with the mixing-length approximation. This
theory has no firm grounds and should be considered with caution.

Finally, I would like to focus on the new findings of the article. In this study it is
shown that the new interesting component of transport of LSMF appears due to
joint contribution of current helicity and shear. The effect does not disappear in the
strong LSMF limit, �	 1. It may be important near the base of solar CZ where
the influence of rotation and shear on the turbulence is quite strong. Furthermore,
the analysis, which we carried out for the current helicity evolution, suggests that the
shear and rotation may redistribute the helicity in solar CZ amplifying it (in amplitude)
at the near equatorial regions in agreement with observations. Beside, the effect of
rotation and stratification on the hC evolution is calculated explicitly. Basically,
the equation for current helicity is obtained using the same approach as for the mean
electromotive force and on the base of quantities which are explicitly gauge invariants.

W

0.71 0.96

Ω

Figure 7. The isolines of the angular velocity distribution (left) and the corresponding vector field of the
large-scale vorticity (right).

Mean EMF and current helicity 41



D
ow

nl
oa

de
d 

B
y:

 [N
E

IC
O

N
 C

on
so

rti
um

] A
t: 

03
:4

5 
4 

M
ay

 2
00

8 

Therefore, we can expect that the dynamo model based on the above approach could be
capable for meeting the requirements of both solar and stellar dynamo simulations.
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Appendix

Appendix A

This part of appendix gives the functions of the Coriolis number defining the depen-
dence of the turbulent transport generation and diffusivities on the angular velocity.

f
ðaÞ
1 ¼

1

4�� 2
�� 2 þ 3
� � arctan��

��
� 3

� �
,

f
ðaÞ
2 ¼

1

4�� 2
�� 2 þ 1
� � arctan��

��
� 1

� �
,

f
ðaÞ
3 ¼

1

4�� 2
"� 1ð Þ�� 2 þ "� 3

� � arctan��

��
þ 3� "

� �
,

f
ðaÞ
4 ¼

1

6�� 3
3 ��4 þ 6"��2 þ 10"� 5
� � arctan��

��
� ð8"þ 5Þ��2 þ 30"� 15
� �� �

,
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:

The dependence of turbulent diffusivities on the Coriolis number (equation (28)) is
given by

f
ðd Þ
1 ¼
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� �
:

The magnetic quenching functions of the generation and transport effects in
equation (33) are

’ ðaÞ
1 ¼

1

64�2
4 3"þ 1ð Þ�2 � 17"þ 21
� � arctan 2�ð Þ
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þ
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The nonlinear turbulent diffusion of the LSMF in (37) is expressed with help of the
following functions

’1 ¼
"� 1ð Þ

16�2
3
arctan 2�ð Þ

�
� 2

8�2 þ 3
� �
4�2 þ 1ð Þ

� �
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4�2 þ 3
� � arctan 2�ð Þ

�
� 3

� �
,

’3 ¼
1

8�2
arctan 2�ð Þ

�
� 2

� �
:

The effect of slow rotation and nonuniform LSMF on the MEMF (equation (38)) is
expressed with help of the following functions
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6144�4
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The quenching functions of the current helicity effects obtained in the article are
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The magnetic quenching functions for the shear-current effects are
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The magnetic quenching functions for the current helicity evolution equation:
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Appendix B. Comparison with some of results given in the article by Rädler and
Stepanov (2006)

This part of the article contains the comparison of some of our results with those from
RS06. We apply the mixing-length (MLT) approximation to expressions obtained in
RS06. In this procedure we replace the spectrum of turbulent fields by the single-
scaled function of the form 	 k� ‘�1

c

� �
	 !ð Þ, where ‘c is the correlation length of the

turbulence and put �k2 ¼ �k2 ¼ ��1
c (Kichatinov 1991).

The effect of stratification and shear. The structure of the electromotive force obtained
by RS06 can be reproduced if we decompose the gradient of the large-scale flow Vi,j into
symmetric and antisymmetric parts via

Vi,j ¼ Dij �
1

2
"ijnWn, ð52Þ
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where Wi ¼ "inmVm,n is the large-scale vorticity and Dij ¼ Vi,j þ Vj,i

� �
=2 is the rate of

strain tensor. After substitution (55) to (27) we obtain
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h
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5
DikBk
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Using (53) we find

��2
c ~�ðWÞ

1 ¼
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2
��2
c A1 � A2ð Þ ¼ 0, ð54Þ

��2
c ~�ðWÞ

2 ¼ �
1

2
��2
c A3 þ

1

2
A1 � A2ð Þ

� �
¼ �

1

12
, ð55Þ

��2
c ~�ðWÞ ¼ �

1

2
��2
c A3 þ A4 þ

1

2
A1 � A2ð Þ

� �
¼ 0, ð56Þ

��2
c ~�ðDÞ ¼

1

2
��2
c 3A4 � A1 � A2ð Þ ¼ �

11

60
, ð57Þ

��2
c ~�ðDÞ ¼

1

2
��2
c A4 � A1 � A2ð Þ ¼ �

1

60
, ð58Þ

where we put "¼ 0. After applying the MLT to results obtained in RS06 we find
��2
c e�ðWÞ

1 ¼ 19=120, ��2
c e�ðWÞ

2 ¼ �7=240, ��2
c e�ðWÞ ¼ �1=48, ��2

c e�ðDÞ ¼ �39=120,
��2
c e�ðDÞ ¼ �21=120.

The effect of nonuniform LSMF and shear. For the shear-current effect, after substitu-
tion of (55) to (22) we arrive to the following representation of E

ðV Þ

i ,

E
ðV Þ

i ¼
C3 � C4

2
W � rð ÞBi þ

C1 � C2

2
ri W�B
� �� 

uð0Þ2
� �

þ "inm C1 þ C2ð ÞBn,l þ C3 þ C4ð ÞBl,l, n

� �
Dml u

ð0Þ2
� �

: ð60Þ

Using this formula we obtain

��2
c

~	ðWÞ ¼
1

4
��2
c C3 � C4 � C1 þ C2ð Þ ¼

1

12
, ð61Þ

��2
c ~ðWÞ ¼

1

2
��2
c C4 þ C2 � C1 � C3ð Þ ¼ �

4

15
, ð62Þ

��2
c ~ðDÞ ¼ �

1

2
��2
c C1 þ C2 þ C3 þ C4ð Þ ¼

3

10
, ð63Þ

��2
c

~�ðDÞ ¼ �
1

2
��2
c C1 þ C2 � C3 � C4ð Þ ¼ 0, ð64Þ

where we put "¼ 0 in C1�4. After applying the MLT to results in RS06 we find
��2
c

~	ðWÞ ¼ 1=12, ��2
c ~ðWÞ ¼ �1=30, ��2

c ~ðDÞ ¼ 13=30 and ��2
c

~�ðDÞ ¼ 7=60.
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