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ABSTRACT

The mean electromotive force and α effect are computed for a forced turbulent flow using
a simple non-linear dynamical model. The results are used to check the applicability of two
basic analytic ansätze of mean-field magnetohydrodynamics – the second-order correlation
approximation (SOCA) and the τ approximation. In the numerical simulations the effective
Reynolds number Re is 2–20, while the magnetic Prandtl number Pm varies from 0.1 to 107.
We present evidence that the τ approximation may be appropriate in dynamical regimes where
there is a small-scale dynamo. Catastrophic quenching of the α effect is found for high Pm. Our
results indicate that for high Pm SOCA gives a very large value of the α coefficient compared
with the ‘exact’ solution. The discrepancy depends on the properties of the random force that
drives the flow, with a larger difference occurring for δ-correlated force compared with that
for a steady random force.
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1 IN T RO D U C T I O N

It is widely believed that magnetic field generation in cosmic bod-
ies is governed by turbulent motions of electrically conducting
fluids (Moffatt 1978; Parker 1979; Weiss 1994; Brandenburg &
Subramanian 2005). One of the most important outstanding prob-
lems of astrophysical magnetohydrodynamics is to explain the phe-
nomenon of large-scale magnetic activity which is observed in a
wide range of astrophysical objects e.g. the Sun and late-type stars,
galaxies, accretion discs etc. In these cases the spatial and temporal
scales of the generated magnetic fields can greatly exceed those of
the turbulent fluctuating velocity and magnetic fields. According
to mean-field magnetohydrodynamics (Moffatt 1978; Parker 1979;
Krause & Rädler 1980) the evolution of the large-scale magnetic
field B in turbulent highly conducting fluid with mean velocity U
is governed by

∂B

∂t
= ∇ × E + ∇ × (U × B) + η∇2 B, (1)

where the mean electromotive force, E = 〈u × b〉 is given by
the correlation between the fluctuating components of the velocity
field of the plasma, u, and the fluctuating magnetic fields, b. We
can expect a linear relationship between the mean electromotive
force and the local large-scale magnetic field, if the assumption of
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scale-separation holds (Moffatt 1978; Proctor 2003):

E i = (∇ × 〈u × b〉)i = αijBj + βijk

∂Bi

∂xj

+ · · · , (2)

where α and β are tensors which are usually evaluated by consider-
ing the dynamic equations for the small-scale velocity and magnetic
fields. If we suppose that U = 0, and magnetic field induction is
scaled as B/

√
μρ → B, b/

√
μρ → b (where density is constant),

these equations are

∂b

∂t
= ∇ (

u × b − 〈u × b〉 + u × B
) + η∇2b, (3)

∂u

∂t
= ν∇2u − ∇

[
p + b2

2
+ (b·B)

]
(4)

+ ∇i(bbi − uui) + (B · ∇)b + f ,

where p is the fluctuating pressure, f is the random force driving
the turbulence and η, ν are the molecular diffusivity and viscosity,
respectively.

We could also self-consistently include the effects of rotation,
since the Coriolis force is linear; this enhancement is left for a
future paper.

It is known that the symmetric part of α and antisymmetric part
of β in (2) give the source and diffusion terms of the mean magnetic
field in (1), respectively. The antisymmetric part of α is usually in-
terpreted as the mean pumping velocity and the symmetric part of
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β may contain the additional source term B (e.g. Rädler’s, �× J
effect; Rädler 1969). For the solar dynamo the symmetric part of α

(or simply α effect) is a key ingredient of most mean-fields mod-
els which claim to explain the large-scale magnetic activity of the
Sun.

There are currently two basic analytic methods for the approx-
imate evaluation of E and tensor coefficients in (2) on the basis
of (3) and (4). The most usual method is the second-order cor-
relation approximation (SOCA; Krause & Rädler 1980) which
is also known as first-order smoothing approximation (FOSA;
Moffatt 1978). In this approximation, all the non-linear contribu-
tions of the fluctuating velocity and fluctuating magnetic fields in
(3) and (4) are neglected. This approximation has well-known limits
to its accurate application. It is good either for poorly conducting
plasma (low Rm) or for the weak turbulence case (low Strouhal num-
ber). Neither limit is very appropriate in astrophysics where we have
highly conducting strongly turbulent fluid. On the other hand, the τ

approximation (see e.g. Blackman & Field 2002; Rädler, Kleeorin
& Rogachevskii 2003; Brandenburg & Subramanian 2005), which
uses a higher order momentum closure and could be relevant for
exploring many common astrophysical situations, has no well de-
fined mathematically formulated limits. The particular variant of
the τ approximation that is used in the paper will be described
below.

In the paper by Courvoisier, Hughes & Tobias (2006) the authors
attempted to evaluate some components of E numerically. Their
results indicate a non-trivial dependence of the α effect on the ba-
sic parameters of the turbulent flow, such as the correlation time,
magnetic Reynolds number and the helicity of the flow. Here we
develop a kind of shell model to explore some properties of mean-
electromotive force and especially the α effect in a wide range of
turbulent regimes. The model is useful for checking the basic ap-
proximations of mean-field magnetohydrodynamics as well, since
it is simple enough to allow the rapid calculation of different cases
over a wide parameter range while maintaining many properties of
the full problem.

The shell-model approach has been widely used in turbulence
modelling (Gledser, Dolzhanskij & Obuhov 1981; Bohr et al. 1998).
A combination of the mean-field dynamo with a shell model was
explored in Sokoloff & Frick (2003). There a dynamical system
based on the shell model was invoked to describe the dynamics
of the small-scale fluctuating velocity and magnetic fields. Here,
we utilize a similar idea but with a different purpose. Consider a
velocity field with the Fourier representation:

u(x) =
N∑

n=0

{
û(n)ei[k(n) ·x] + ˜̂u(n)

e−i[k(n)·x]
}

.

Let N = 6 and the wavevectors form a tetrahedron as shown in
Fig. 1. This formulation is the one with the minimum number of

Figure 1. The geometry of the model.

wavevectors that retains the isotropy of the original system, and
allows for the important resonant triad interactions which are dom-
inant at small to moderate values of the magnetic Reynolds number
Rm. Without loss of generality the wavevectors may be taken to
have unit modulus. The orientation of the tetrahedron with respect
to the coordinate system can be chosen arbitrarily. The choice we
make is computationally convenient. We suppose that the fluctuating
magnetic field has the same representation, and that the non-linear
coupling terms only project on to this same set of vectors. It may
be shown that the resulting closed non-linear system obeys all the
usual conservation laws in the absence of diffusion; this is because
of the identity, where P denotes the projection operator, N denotes
any non-linear coupling term and q denotes any vector on the lattice:
q · P(N) ≡ q · N , where the overline denotes an average over all
space.

It is important to understand the limitations of the procedure de-
scribed above. Clearly the reduced system cannot properly describe
processes such as flux expulsion, which results in the generation
of length scales that are not given by wavevectors on the shell.
Thus we cannot expect that results for large values of the mag-
netic Reynolds number will be qualitatively accurate. However, for
moderate values of Rm we can expect that the various non-linear
processes are represented reasonably well in a qualitative sense.
The SOCA and τ approximations are, one might hope, valid if at all
for these moderate values of Rm and so this reduced system would
seem a useful test bed for examining the accuracy of the various
approximations.

Projecting equations (3) and (4) on to the given Fourier compo-
nents we get equations for the modes:

∂t ′ b̂
(l) = −P −1

m b̂
(l) + i

[
B · k(1)

]
û(1)+ν−1

[
M(l)−M(l)

]
, (5)

∂t ′ û
(l) = −û(l) + i

[
B · k(1)

]
b̂

(1)

+ ν−1π (l) ◦
[
N (l) − N (l)

]
+ ν−1π (l) ◦ f (l), (6)

where the superscript (l) means the number of the mode, π (l)
ij = δij −

k(l)
i k(l)

j , where k2 = 1, the time was rescaled with tν → t′ , and
the large-scale magnetic field is further rescaled via ν−1 B → B.
The non-linear contributions are given in terms of the tensors
M(l) and π (l) ◦ N (l) which are shown in Appendix A. We sup-
pose for simplicity that ∇ · b = ∇ · u = 0 so that each modal
equation has all its terms perpendicular to k(l). Equations (5) and
(6) will be solved numerically. The FOSA solutions correspond
to the case where all non-linear contributions in (5) and (6) are
neglected.

To formulate the variant of the τ approximation which is relevant
for the given model we need equations for the second-order products
of the fluctuating fields averaged over the ensemble of fluctuations.
Starting from (5) and (6) we get

∂t ′

[
b̂i

(l)˜̂
b

(l)

j

]
= −2P −1

m b̂i

(l)˜̂
b

(l)

j + ν−1

[
M̃(l)

j b̂
(l)
i + M(l)

i
˜̂
b

(l)

j

]

+ i
[

B · k(1)
][

ûi
(l)˜̂

b
(l)

j − b̂i

(l)˜̂u(l)

j

]
, (7)
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∂t ′

[
ûi

(l)˜̂u(l)

j

]
= −2ûi

(l)˜̂u(l)

j

− i
[

B · k(1)
][

ûi
(l)˜̂

b
(l)

j − b̂i

(l)˜̂u(l)

j

]

+ ν−1

[
Ñ (l)

j û
(l)
i + N (l)

i
˜̂u(l)

j

+ f̃ (s)
(l)

j û
(l)
i + f

(s)(l)
i

˜̂u(l)

j

]
, (8)

∂t ′

[
ûi

(l)˜̂
b

(l)

j

]
=−

(
1 + P −1

m

)
ûi

(l)˜̂
b

(l)

j + ν−1f
(s)(l)
i

˜̂
b

(l)

j

+ i
[

B · k(1)
][

b̂i

(l)˜̂
b

(l)

j − ûi
(l)˜̂u(l)

j

]

+ν−1

[
M̃(l)

j û
(l)
i + N (l)

i
˜̂
b

(l)

j

]
, (9)

where the tilde above physical quantities means the complex con-
jugate and averaging over the ensemble of fluctuations is denoted
by an overbar. In the τ approximation (see e.g. Rogachevskii &
Kleeorin 2003; Brandenburg & Subramanian 2005) we replace the
third order contributions in (7)–(9) by the corresponding relaxation
terms of the second-order contributions. For example, in (9) we set

ν−1

[
M̃(l)

j û
(l)
i + N (l)

i
˜̂
b

(l)

j

]
= −τ−1ûi

(l)˜̂
b

(l)

j , (10)

where τ denotes the typical relaxation time of the fluctuating terms.
In this formulation τ is an external parameter of this approximation.
We do not need to solve equations (7)–(9). Instead we will use the
left-hand part of (10) to find the mean electromotive force obtained
with the τ approximation.

As discussed above, while the model (5) and (6) is clearly a good
one when the diffusivities are large since the non-linear coupling
terms are insignificant in that case, it will not give any better results
than the other truncations when the diffusivities are small. None
the less it does provide a useful simplification in mid-ranges and
permits the testing of the various approximations. Plainly a major
simplification is that the fields are monochromatic. This could and
should be remedied by increasing the number of shells, but this has
not yet been attempted.

2 TH E M O D E L D E S I G N

Equations (5) and (6) were solved numerically using a second-order
time integration scheme. Time is measured by the typical diffusion
time and the random force is normalized with ν as well, f → f /ν.

The evolution of the small-scale velocity and magnetic fields
depends on the typical correlation time of the random force. The
time-step is 0.003 (in dimensionless units). We will consider two
different cases. Case 1 is that of zero correlation time: the force is
updated at each time-step. In Case 2, which has finite correlation
time, the force was updated each 50th time-step. In what follows
we drop the prime on t’, so that the dimensionless time is denoted
by t.

The effective Reynolds number is given by Re = uc �c/ν. In
computations presented below we use ν = 0.05 and 0.01. We define
the random driving force by writing f l = w(l) + ik(l) × w(l), and
similar for initial velocity and magnetic fields. For each lw(l) is a

random vector whose components vary between ±0.5. The term
ik(l) × w(l) is introduced to force positive helicity in the system.
The initial velocity field is given helicity of the same sign. The
electromotive force associated with the (l)-mode reads

E (l)
i = εijq û

(l)
j

˜̂
b

(l)

q + c.c. = εijqχ
(l)
jq , (11)

where tilde means the complex conjugate. Suppose the mean mag-
netic field has fixed direction, B = exBx . The important component
of the mean electromotive force is Ex , and so we define the α effect
via α = Ex/Bx . The mean electromotive force E is found by sum-
mation over all modes and in averaging over the long-time interval
equal to about 3000 diffusion times of the system (here M is the
total number of time-steps):

E i = εijq

1

M

m=M∑
m=0

(l)∑
χ

(l)
jq . (12)

Typical realizations of Ex = εijq

∑(l)
χn

jq for case Pm = ∞ and
Pm = 1 are shown on the Fig. 2. The averaging was done over
16 such realizations. For the purpose of comparison we also solve
equations (5) and (6) using the FOSA, in which the tensors M, N
are set to zero. To test the τ approximation we evaluate the third-
order moments (see explanations above):

χ
(l), τ
ij = ν−1

[
M̃

(l)
j û

(l)
i + N (l)

i
˜̂
b

(l)

j

]
. (13)

First, we give a detailed description of results for the case ν =
0.05. The results depend very much on whether there is a small-
scale dynamo – that is whether a small-scale field can exist in the
absence of the imposed large-scale field. The value of Pm affects
both the threshold and intensity of the small-scale dynamo. The

Figure 2. Electromotive force in x direction for the low (top) and high
(bottom) Pm, B = 0.1.
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Figure 3. Relation between the energy of the small-scale velocity and mag-
netic fields. Squares are for Case 1 and circles are for Case 2.

relation between Pm and the amplitude of the small-scale magnetic
field fluctuations for B = 0 is shown in Fig. 3. For Case 1 there is
a small-scale dynamo if Pm ≥ 10. Furthermore, as may be verified
directly from the equations, the amplitude of the mean electromotive
force tends to zero if Pm approaches infinity. This is illustrated in
Fig. 5 for the case B/ν = 1. The typical Reynolds number is Re ≈
2.2 for Case 1 and Re ≈ 4.8 for Case 2.

For Case 2 the threshold is about Pm ≈ 1. We can see that for
large Pm there is approximate equipartition between the energies of
the fluctuating velocity and magnetic field.

As well as examining the accuracy of FOSA, we will explore
the usefulness of the τ approximation. The approximation relies
on knowledge of the typical relaxation times τ (m), τ (h) of magnetic
and hydrodynamic fluctuations. These quantities were found from
autocorrelation functions; for example, τ (h) is found as the solution
of the equation

I (h)
[
τ (h)

]
=

∫
u

(l)
i [t + τ (h)]u(l)

i (t) dt∫
u

(l)
i (t)u(l)

i (t) dt
= e−1,
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Figure 4. Correlation time. Left – hydrodynamic; right – magnetic. Upper panel: Case 1; lower panel: Case 2.

and similarly for τ (m). Both τ (h) and τ (m) are functions of B and
Pm, as shown in Fig. 4. In Case 1 we find that, except for the low
Pm range, the dependence of τ (h) on B resembles that for τ (m). In
Case 2, for the low Pm range, both τ (h) and τ (m) decrease when
the field strength increases. They do not show significant variations
with the field strength at high Pm. To estimate the accuracy of the τ

approximation we take τ = [τ (h) + τ (m)]/2.
The dependence of the calculated mean electromotive force on Pm

for a fixed strength of B is shown in Fig. 5. The maxima are at values
of Pm that are close to the thresholds for the small-scale dynamo.
For high Pm, E fluctuates strongly about zero. The dependence of
the magnitude of the mean electromotive force on Pm is not easily
determined for small values of B because of strong fluctuations.

To investigate the quenching of the α effect we need to examine
the dependence of Ex on Bx . We approximate this with the following
fitting functions, depending on three parameters A1, A2, A3:

A1B

1 + A2BA3
. (14)

Examples of these fits for the different cases are shown in Fig. 6. The
fit (14) does not work well for high Pm as the mean electromotive
force tends to zero and is highly fluctuating. However, the limiting
behaviour for strong magnetic fields is approximated quite well.
The deviation of the FOSA from the exact solution is clearly seen
for high conductivity and Case 2. In the same way we can say
that the τ approximation gives the amplitude much closer to exact
solution than FOSA for those parameter values. However, it fails to
describe the functional dependence on the magnetic field strength
at high Pm. This is confirmed by the results shown in Fig. 7, where
we show variations of A1–3 with Pm.

Several features are quite well seen in Fig. 7. First, in Case 1 the τ

approximation seems bad. Even the sign of the effect is opposite to
that for the exact solution. On the other hand, a significant difference
between the exact solution and FOSA is easily seen for high Pm.
Second, ‘catastrophic quenching’, when A2 ∼ Rm, is found for the
high-conducting case. This phenomenon is more pronounced for
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Figure 5. E versus Pm, B/ν = 0.1. Left: Case 1. The FOSA solution is shown by circles, the exact solution by stars and the τ approximation by squares. The
right-hand graph shows the same data for Case 2.
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Figure 6. Ex versus B/ν. The top row shows comparisons between the full solution of the model and the approximations for Case 1. At left – the case Pm =
1; at right – Pm = 102. The FOSA solution is shown by circles, the full solution by stars and the τ approximation by squares. The bottom shows the same data
for Case 2.

FOSA than for the τ approximation and the full solution. Third, in
Case 1 for FOSA the power A3 of quenching function is about 1.8
in the whole range while for Case 2 it is slightly higher – 2. The
quenching power of the exact and FOSA solutions are close.

Plots of the amplitude of Ex and the α quenching as functions of
Pm and magnetic field strength B/ν are shown in Fig. 8. Again we
see that ‘catastrophic’ quenching occurs for high Pm.

A formula that is widely quoted and has been justified by use
of the τ approximation is the simple relation between kinetic and
current helicities in turbulent flows and the α effect, α ∼ τ (hC −
hK), where hC = μ−1〈b · ∇ × b〉 and hK = 〈u · ∇ × u〉 (Moffatt
1978; Krause & Rädler 1980; Brandenburg & Subramanian 2005;

Kuzanyan, Pipin & Seehafer 2006). In Fig. 9 we show the α effect
and residual helicity cτ (h)(hC −hK) (with τ (h) as given in Fig. 4) for
two cases of the random force driving the turbulence. The coefficient
was approximately chosen to match the maximum magnitude of the
α, we put c = 1/3 both for Case 1 and for Case 2. Clearly, there
is no unique relation between α and residual helicity on the whole
range of Pm. Though there is correspondence in sign.

Next we consider some results for a somewhat higher Reynolds
number with ν = 0.01. Again we present results for two cases. Case
1 is that of zero correlation time: the force is updated at each time-
step and Re ≈ 11. In Case 2, which has finite correlation time, the
force was updated each 50th time-step and Re ≈ 22.8. The relation
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Figure 7. A1,2,3 versus Pm. Top row: Case 1. The FOSA solution is shown by circles, the exact solution by stars and the τ approximation by squares. The
bottom row shows the same data for Case 2.

Figure 8. Plots of −Ex (left) and α (right) as functions of B/v and Pm for Case 2. Case 1 is similar (Fig. 7).

Figure 9. The α effect (dashed line) and residual helicity cτ (h)(hC −hK) (solid line), for the steady forcing (left) and for the δ-correlated random force (right),
as functions of Pm and B/ν = 0.001.

between Pm and the amplitude of the small-scale magnetic field
fluctuations for B = 0 is shown in Fig. 10. For Case 1 there is
a small-scale dynamo if Pm ≥ 1, while it exists for Pm > 0.1 in
Case 2. Furthermore, in Case 2 we observe that for the high enough

Pm the energy of magnetic fluctuations is slightly larger than its
kinetic counterpart.

This seems to be the main reason why the α effect changes
sign as Pm varies from low to high values. Meanwhile the residual

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 388, 367–374
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Figure 10. ν = 0.01. Left: ratio between magnetic and kinetic energy as a function of Pm. Squares are Case 1 and circles are Case 2. Right: the residual
helicity as a function of Pm: Case 1, dashed line; Case 2, solid line.
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Figure 11. ν = 0.01. The mean-electromotive force versus Pm with mean field fixed (B/ν = 0.1): Case 1 (left), Case 2 (right). We decrease the values of E
obtained from FOSA by a factor of 10 to make all the curves visible in one scale. Circles show FOSA, stars the exact solution and squares the τ approximation.

helicity ((hC − hK)) does not. This is demonstrated in Fig. 11, and
helicity is shown at right-hand side in Fig. 10. The reversal of sign
the α effect for high Rm was also found by Courvoisier et al. (2006).
Having in mind that the energy of magnetic fluctuations dominates
the kinetic energy of the flow we could interpret this on the basis of
results of analytical calculations of the α effect for a rotating strati-
fied turbulence within τ approximation as those given in e.g. Rädler
et al. (2003), Rogachevskii & Kleeorin (2007) and Pipin (2007).
Suppose that the vector U characterizes the stratification scale and
� is a global rotation velocity then for the case of slowly rotating
media penetrated with a weak large-scale magnetic field, within τ

approximation we obtain α ∼ (� · U)τ 2
c[〈b2〉/(4πρ) −〈u2〉]. How-

ever, in this theory the sign of expression in the brackets is intimately
related to the sign of the residual helicity which is not the case for
the computational results presented above. This point needs further
clarification in the multiscale model.

3 D I S C U S S I O N A N D C O N C L U S I O N S

One of the core issues of mean-field dynamo theory is the absence
of a reliable method for evaluation of the kinetic coefficients which
describe the influence of turbulent dynamics on the evolution of the
large-scale field. This issue is related to the unsolved closure prob-
lem in turbulence theories. Here we have attempted to construct a
simple non-linear dynamical model that can be used for this pur-
pose. The feasibility of the model was demonstrated by numerical

calculation of the non-linear α effect. Moreover, the model is helpful
for checking two basic analytic ansätze of mean-field magnetohy-
drodynamics – SOCA (FOSA) and the τ approximation, at least for
moderate values of Rm. Our results indicate that the τ approxima-
tion may be useful in a dynamical regimes where the small-scale
dynamo is active. On the other hand, the results show catastrophic
quenching of the α effect for high Pm. This is not found in analytic
computations either in Rogachevskii & Kleeorin (2007) or in Pipin
(2007). Certainly the applicability limits of this approximation need
further clarification, but we can say with some confidence that if the
approximation schemes fail for the present model they are unlikely
to be very good for a fully resolved calculation.

In the paper we present numerical calculations of the mean elec-
tromotive force for two different temporal regimes of the random
force driving the turbulence. One case (Case 1) is essentially white
noise forcing and the other (Case 2) is a coloured noise with a
random force which was updated each 50th time-step (for our pa-
rameters this is about two diffusion times of the system). We found
that in the high conductivity limit, the difference between SOCA
and the full solution of the model is quite significant. In particu-
lar, the full α effect is more than 10 times smaller than that from
SOCA. The difference in magnetic quenching is not very large. For
high Pm the α effect is quenched α ∼ B

−4
in the non-linear model

though SOCA gives α ∼ B
−3

which is consistent with previous
findings by Rüdiger & Kichatinov (1993) and Sur, Subramanian &
Brandenburg (2007).

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 388, 367–374



374 V. V. Pipin and M. R. E. Proctor

The model is not competent to deal properly with turbulent diffu-
sion because there no energy transfer to different spatial scales. In
fact, it would be very useful to generalize the simple Fourier vector
space given in Fig. 1 to a more general one with several shells.
Then the effect of non-uniform magnetic fields and non-uniform
flow on the turbulence and the mean electromotive force can be
investigated in a similar way. One possible generalization would
be to consider a decomposition of the fluctuating velocity of the
form

u(x) =
∑
j=1,3

∑
n=1,6

û(j,n)ei[k(j,n) ·x] + CC,

where for the superscripts (j, n), j = 1, 2, 3 is related to the number
of a vector shell and n = 1, . . . , 6 is the number of a mode, and
CC denotes complex conjugate. Each shell is similar to that of
Fig. 1. The modes of these shells interact in each triplet since
e.g. k(1,1) + k(2,1) + k(3,1) = 0 and |k(1,1)| �= |k(2,1)| �= |k(3,1)|.
The dynamical system thus obtained obeys all conservation laws.
It should be suitable for the evaluation of α and other effects which
are important for the mean-field dynamo, e.g. turbulent diffusion,
or joint effect due to global rotation, non-uniform magnetic field
and non-uniform mean flow.
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Krause F., Rädler K.-H., 1980, Mean-Field Magnetohydrodynamics and

Dynamo Theory. Akademie-Verlag, Berlin
Kuzanyan K. M., Pipin V. V., Seehafer N., 2006, Sol. Phys., 233,

185
Moffatt H. K., 1978, Magnetic Field Generation in Electrically Conducting

Fluids. Cambridge Univ. Press, Cambridge
Parker E. N., 1979, Cosmical Magnetic Fields: Their Origin and Their

Activity. Clarendon Press, Oxford
Pipin V. V., 2008, Geophys. Astrophys. Fluid Dyn., 102, 21
Proctor M. R. E., 2003, in Thompson M. J., Christensen-Dalsgaard J.,

eds, Stellar Astrophysical Fluid Dynamics. Cambridge Univ. Press,
Cambridge, p. 143
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APPENDI X A

Non-linear contributions in the induction equation (5):
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(4)
i − ˜̂

b
(2)

i û(4)
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The non-linear parts of momentum equation (6):
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i û(5)
n

]
,

N (2)
i = ik(2)

n

[˜̂
b

(1)

n b̂
(3)
i + ˜̂

b
(1)

i b̂(3)
n + ˜̂

b
(6)

n b̂
(4)
i + ˜̂

b
(6)

i b̂(4)
n

− ˜̂u(1)

n û
(3)
i − ˜̂u(1)

i û(3)
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