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Abstract

ULF pulsations are magnetohydrodynamic waves in the terrestrial magnetosphere. They are generated by solar wind buffeting of

the magnetosphere, Kelvin–Helmholtz instability of the magnetopause, or particle–wave interactions within the magnetospheric

plasma. As a major damping mechanism the terrestrial ionosphere has been identified. Wave modes and wave propagation in the

inhomogeneous magnetosphere is described in terms of global toroidal and poloidal oscillations or phenomena such as the field line

resonance. An attempt is made to compare ULF pulsations with other comparable wave observations in the magnetospheres of

Mercury, Jupiter, and Saturn. Special emphasize is paid to low frequency waves in the Hermean magnetosphere as this global system

can not be described as a magnetohydrodynamic plasma which alters physical concepts useful in the terrestrial magnetosphere.

� 2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

There is only one published report about the exis-

tence of ULF pulsations in the Hermean magneto-

sphere, the one by Russell (1989), reporting about a 2-s

narrow band ULF pulsation during the first Mariner 10

encounter with Mercury (Fig. 1). The measured signal

exhibits a clear compressional component, but is mainly

transverse to the ambient magnetic field with an almost

linear polarization in the meridian plane. By the time of
this event, the Mariner 10 spacecraft was located in

Mercury’s midnight sector, close to the equatorial plane,

at a planetocentric distance of about 1:3RMercury. The

narrow bandwidth of the signal suggests a resonant

excitation mechanism. Russell (1989) proposes it to be a

standing Alfv�en wave along a Hermean magnetic field

line. Using an electron density of 3 cm�3 and assuming

the plasma ions to be protons, he derives an Alfv�en
velocity of about 1000 km/s. With an estimated field line
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length of about 4000 km, Russell calculates a period of

8 s for the fundamental of a standing wave on the field
line. Thus, according to Russell’s interpretation, the

observed 2-s waves could be the fourth harmonic of the

fundamental.

At this point, this review could be finished due to the

sparsity of observational facts. However, in view of the

planned space missions MESSENGER and BepiCo-

lombo, heading for an exploration of the Hermean

system, a more detailed comparative look into the
problem of eigenoscillations and ULF waves in the

magnetosphere of Mercury is worthwhile.

Over the past five decades topics such as wave modes,

excitation, and damping of ULF waves in the terrestrial

magnetosphere have been studied in great detail (e.g.,

Southwood and Hughes, 1983; Samson, 1991; Glass-

meier et al., 1999a for a review). ULF waves are thought

to be standing waves in the magnetospheric system with
the northern and southern ionosphere being the

boundaries where the oscillations exhibit a node. The

phenomenon of field line resonance, first described by

Tamao (1965), plays the role of a paradigm in the ULF

wave community, with global oscillations gaining an
ved.
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Fig. 1. Time series of the magnetic field recorded by Mariner 10 deep in

the magnetosphere of Mercury. The coordinate system is radial from

the planet, east and north. The average magnetic field has been re-

moved (after Russell, 1989).
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increasing interest (e.g., Kivelson and Southwood,

1985).

Possible source mechanisms for terrestrial ULF

waves are the Kelvin–Helmholtz instability at the mag-
netopause (e.g., Engebretson et al., 1998), particle–wave

interactions within the magnetosphere (e.g., Southwood,

1973; Glassmeier et al., 1999b), or solar wind buffeting of

the magnetosphere (Kepko and Spence, 2001). Once

generated, the excited waves are propagating in the

magnetospheric system and need to be dissipated

somewhere. A minor part of their energy is processed

and lost via wave–particle interactions, however, most of
the energy is finally dissipated by Joule heating in the

terrestrial ionosphere, causing significant temperature

changes there (Glassmeier et al., 1984; Lathuilliere et al.,

1986).

Here, we shall concentrate on a comparison of the

three wave modes mentioned, i.e., standing waves,

global oscillations, and field line resonances, as well as

a discussion of the importance of solar wind buffeting as
a source mechanism and wave–particle interaction as a

dissipation mechanism for the wave energy.
Fig. 2. Magnetic field and plasma pressure observations made onboard

Voyager 2 in the Jovian magnetosphere (after Khurana and Kivelson,

1989).
2. Standing waves

ULF waves in the terrestrial magnetosphere have

very early been interpreted as standing waves in the
magnetosphere bounded by the ionosphere. Due to the

large Pedersen conductivity, the wave electric field is

almost shortcut in the boundary, inhibiting any field line

motion there (Dungey, 1954). In this sense ULF waves

are a global phenomenon in the terrestrial magneto-

sphere. Typical periods of such standing waves are of
the order of minutes, that is of the order of the travel

time of Alfv�en waves between conjugate ionospheric

regions. These periods are significantly less than, for

example, the rotation period of the Earth or timescales

governing substorm activity in the magnetosphere.

Therefore, eigenoscillations can built up in the terrestrial
magnetosphere.

The first systematic search for ULF waves in another

magnetosphere was presented by Khurana and Kivelson

(1989), studying observations from the Voyager 2

spacecraft in the Jovian magnetosphere (Fig. 2). ULF

pulsations with periods of about 10–20 min have been

detected and interpreted as standing waves in the tail

plasma sheet of Jupiter. These waves are actually not
standing waves in the sense discussed above. The ei-

genperiod of a field line oscillation in the Jovian system,

determined as the travel time between conjugate regions

of the northern and southern ionosphere, is of the orders

of hours (e.g., Glassmeier et al., 1989), a time scale

comparable to other magnetospheric time scales such as

the rotational period of the planet Jupiter itself. Thus,

‘‘global’’ standing waves are not to be expected in the
Jovian system. However, if there are regions with en-

hanced mass density, e.g., decreased Alfv�en velocity in

the magnetospheric system, standing waves can be ex-

cited in such wave guides. Khurana and Kivelson (1989)

interpreted their observations as such ‘‘local’’ standing

waves. The Io plasma torus with its large mass density

along the Io orbit around Jupiter is another regime

where ‘‘local’’ standing waves can exist. Glassmeier et al.
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(1989) report about the existence of decoupled toroidal

and poloidal oscillations of the entire Io torus.

At Saturn Alfv�en wave travel times are also of the

order of the rotational period of the planet. Thus

‘‘global’’ standing waves are not expected to exist and

have also not been reported. Also, the existence of
‘‘local’’ standing waves has not yet been confirmed.

At Mercury, the ULF wave travel time is of the order

of a few seconds due to the small spatial extend of its

magnetosphere. ‘‘Global’’ standing waves can exist, and

the Russell-event is a nice example. However, these

standing waves differ from those usually observed in the

terrestrial magnetosphere in that the boundary is not an

ionosphere, but the planet’s surface or some photo-
emission layer (e.g., Grard et al., 1999). A low-con-

ducting boundary implies an open end boundary, that is

the mode structure along the oscillating field line is

different at Mercury and Earth.
Fig. 3. Voyager magnetic field observations of a field line resonance

oscillation in the magnetosphere of Saturn, displayed in a minimum

variance coordinate system. Bz is the component of minimum variance

and Bx denotes the component of maximum variance direction. A

modelled field line resonance signal is displayed as a solid line on top of

the Bx and By components (after Cramm et al., 1999).
3. Field line resonances

The concept of the field line resonance process has first

been suggested by Tamao (1965). It describes the

propagation of fast mode MHD waves in a non-uniform

plasma and its subsequent resonant mode coupling to a

standing wave in a magnetospheric system. The actual

coupling point is determined by the local eigenperiod of

the resonating field line. Field line resonance is a theo-

retically very well developed concept in magnetospheric
physics (for a recent review see Glassmeier et al., 1999a).

Comparing planets it is of great interest to study the

question whether field line resonances also occur in

other planets magnetosphere.

No reports about field line resonances in the Jovian

magnetosphere have been published. All what can be

concluded is that coupling to ‘‘global’’ standing waves is

not likely as these modes do not exist at Jupiter. The size
of the Kronian magnetosphere is comparable to that

one of the Jovian magnetosphere. Thus, field line reso-

nances in their traditional meaning are also not expected

in the magnetosphere of Saturn.

However, Cramm et al. (1998) report about magnetic

field observations at Saturn which resemble all ingredi-

ences of a field line resonance: spatially localized wave

activity in the toroidal field component with a phase
shift of about 180� across the amplitude maximum in the

radial direction (Fig. 3). The wave event discussed by

Cramm et al. (1998) is related to surface wave activity

observed at the Kronian magnetopause (Lepping et al.,

1981). The interpretation of the Cramm-event as a field

line resonance is hampered by the fact that standing

waves should not exist in the magnetosphere of Saturn.

Furthermore, the region where the Cramm-event has
been detected is not a region where significantly in-

creased mass densities are expected, which rules out the
coupling to a ‘‘local’’ standing wave. Cramm et al. (1998)

offer an alternative explanation: field line resonance is

only a special case of a resonant mode coupling between

a fast mode and an Alfv�en mode. A more general dis-

cussion exhibits that resonant mode couplings require

the two interacting wave partners to have their phase

velocity (components) coinciding at the resonant point.
For the coupling to a standing Alfv�en wave, this is con-

sistent with requiring equal oscillation frequencies for

field line resonance to occur. If the magnetospheric

system is huge enough, coupling to a propagating Alfv�en
wave becomes possible. Obviously such a coupling is the

most likely explanation for the Cramm-event (see

Cramm et al., 1998 for a more detailed discussion). Field

line resonances as discussed here have also been treated
by Fedorov et al. (1998).

The question arises whether the field line resonance

concept is applicable to Mercury as well or in which way

it has to be modified in order to take into account of the

particular conditions in the Hermean magnetosphere.

The fundamental difference to be considered is the fre-

quency range of magnetospheric eigenoscillations. The

frequency of the wave event displayed in Fig. 1 lies
between the local gyroperiods of protons (0.8 s) and

sodium ions (18.3 s), that is well outside the MHD
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frequency range. Field line resonance or resonant mode

coupling considerations thus require the study of higher

frequency waves in a multi-ion plasma. Such a treatment

has been presented by Othmer et al. (1999). A necessary

condition for field line resonance is the matching of the

field-aligned component of the fast mode wave phase
velocity and the phase velocity of the Alfv�en mode. A

sufficient condition requires the existence of a strictly

guided mode (the Alfv�en mode in an MHD plasma) to

which the non-guided (the fast mode in an MHD plas-

ma) can couple its energy. For frequencies in the range

of the ion gyrofrequencies, as in Mercury’s magneto-

sphere, a strictly guided mode needs to identified. De-

tailed descriptions of wave propagation in a multi-ion
plasma are given by, e.g., Smith and Brice (1964),

Gurnett et al. (1965), and Rauch and Roux (1982).

According to these authors each further ion species

causes the same principal modifications in the plasma

dispersion characteristics with the extent of these chan-

ges depending on the respective ion abundances. Since

next to protons, sodium ions are presumably the main

ion species in the Hermean magnetospheric plasma, only
their importance for the field line resonance phenome-

non will be discussed here.

Fig. 4 displays Friedrichs diagrams for the R-, L-,

and X-modes up to the proton gyrofrequency of a

plasma consisting of electrons, protons, and sodium ions

for realistic Mercury conditions. The R-mode (L-mode)

is the right-hand (left-hand) circularly polarized mode,

whose wave vector is parallel to the background mag-
netic field; the wave vector of the X-mode as well as of

the O-mode is perpendicular to the background mag-

netic field. The O-mode does not appear as this mode is

not supported for frequencies less than the plasma fre-

quency, which is much higher than the proton gyrofre-

quency for typical magnetospheric plasmas. The effect of

the sodium ions onto the dispersion of a pure electron–

proton plasma consists essentially in the formation of
four new characteristic frequencies: (1) the L-mode has

got a new resonance at the sodium gyrofrequency XNa,
Fig. 4. Friedrichs diagrams for the low frequency modes
(2) there is a new resonance of the X-mode, the so-called

bi-ion resonance xbi, (3) at the bi-ion cut-off frequency

xCF above these two resonances, both the L- and the X-

mode reappear, and (4) very important for the reso-

nance problem, the dispersion branches of the L-, R-,

and X-mode intersect at the crossover frequency xCR.
The wave normal surfaces and the polarization of the

wave modes within the different frequency regimes are

displayed in Fig. 4. Their topology contains information

about the Poynting flux characteristics of the wave

modes: a mode that is guided along the background

magnetic field is characterized by a dumbbell lemnis-

coid, whereas a spheroid belongs to a non-guided mode.

Of particular interest for our problem is the region
around the crossover frequency. For xCR < x, the non-
guided mode is left-handed and the guided mode is

right-handed elliptically polarized. For x < xCR, the

conditions are reversed. At x ¼ xCR, the wave modes

supported by the plasma are linearly polarized, and

the phase velocities of both modes in the direction of

the background magnetic field are equal (cf. Fig. 4). The

crossover frequency is the only frequency outside the
MHD frequency range to exhibit these properties. At

x ¼ xCR, the dielectric tensor takes the form

e ¼
S 0 0
0 S 0
0 0 P

 !
; ð1Þ

where S and P are defined in the usual way (e.g., Stix,

1962). Its non-diagonal terms vanish much as they do in

the MHD range. Rauch and Roux (1982) studied the

propagation of waves in a multi-ion plasma extensively

and found that at xCR, the group velocity of the guided

mode and the Poynting flux are directed along the

background field for any direction of the wave vector. In

other words, at the crossover frequency, a multi-ion
plasma supports a strictly guided mode which is com-

parable to the Alfv�en mode of magnetohydrodynamics.

This distinguishes the crossover frequency from all other

frequencies outside the MHD range. The requirement of
in the Hermean plasma (after Othmer et al., 1999).



Fig. 5. Geomagnetic pulsations recorded at the mid-latitude magnetic

observatories Wingst, G€ottingen, and F€urstenfeldbruck. The pulsation

period is decreasing with decreasing latitude of the observatory (after

Voelker, 1962).
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a strictly guided mode thus gives rise to a frequency

selection rule for field line resonances in the inhomoge-

neous plasma at Mercury. The crossover frequency is

given by xCR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 528aNa

p
XNa, where aNa is the ratio

of the sodium to proton particle number density and

XNa is the sodium gyrofrequency. It should be noted that
the crossover frequency depends on the sodium abun-

dance and is proportional to the magnetic field strength.

Provided that the gradient of the plasma composition is

not too big, the crossover frequency thus rises mono-

tonically from the Hermean magnetopause towards

the planet. If one generates a broadband signal at the

magnetopause or somewhere in the outer fringes of the

Hermean magnetosphere travelling inward and consid-
ers a fixed field-aligned wave number kk, the necessary

condition for field line resonance is in general fulfilled

for every frequency component of the broad band

source signal at some location~r . The fact however, that
the crossover frequency is a preferred frequency for

critical coupling favours one frequency out of the

spectrum.

The location where this favoured frequency equals
the local crossover frequency is the field line resonant

point. This point is identical to the point where the

curves of the spatially varying resonance frequency and

the crossover frequency intersect each other (see Othmer

et al. (1999) for details). This has the interesting conse-

quence that observations of resonant pulsations in

Mercury’s magnetosphere allows one to infer local

plasma properties provided the frequency of any ob-
served resonant wave is interpreted in terms of the local

crossover frequency. As this frequency is determined by

the magnetic field strength and the abundance of sodium

ions, the local value of the sodium ion percentage can be

calculated provided the magnetic field magnitude is

known. Othmer et al. (1999) try such an interpretation

using the observations of ULF pulsations made by

Mariner 10 (Fig. 1) and conclude about 14% sodium
abundance which is well in accord with estimates by Ip

(1986) or Cheng et al. (1987). This demonstrates that

ULF waves are also a very useful diagnostic tool in the

Hermean magnetosphere.
4. Global oscillations

The seminal theoretical paper of ULF pulsations in

the terrestrial magnetosphere is Dungey’s (1954) study

on the electrodynamics of outer space. Studying eigen-

oscillations in a dipole magnetosphere Dungey derived a

set of partial differential equations allowing a detailed

discussion of toroidal and poloidal eigenoscillations. A

particular finding is decoupled toroidal and poloidal

modes, provided the perturbations are axisymmetric.
In particular, the toroidal global oscillations are inter-

esting as they represent oscillations of individual field
line shells at their respective eigenfrequencies. Voelker

(1962) was the first to report about observations of

such decoupled toroidal modes (Fig. 5). Magnetic

field observations of a damped ULF event from the

three German observatories Wingst, G€ottingen,
and F€urstenfeldbruck clearly indicate the different os-

cillation periods expected for decoupled axisymmetric
eigenmodes.

Do such decoupled oscillations also exist in others

than the terrestrial magnetosphere? At Jupiter and Sat-

urn such modes are not expected as their eigenperiods

will be comparable to other magnetospheric time scales

such as the rotation period. Only in the Io plasma torus

decoupled toroidal and poloidal oscillations correspond-

ing to the Dungey modes have been identified by
Glassmeier et al. (1989). In the Hermean magneto-

sphere, spatial scales are more favourable for these

modes, however. But it should be taken into account

that an MHD description of the Hermean plasma is

prohibited as all relevant frequencies will be close or are

comparable to the gyroperiods.

Glassmeier et al. (2003) tackle the Dungey problem

using a more general plasma model. The wave equation
reads

r�r�~E ¼ x2

c2
e~E; ð2Þ

where e is the dielectric tensor, given by

e ¼
c2=v2A 0 0

0 c2=v2A 0

0 0 �x2
pe=x

2

0
@

1
A ð3Þ

for a cold plasma at MHD frequencies. As the third

diagonal element is much larger than the two other el-

ements, the field-aligned component may be neglected.

Then the wave electric field is represented by the two
scalar potentials U and W (e.g., Klimushkin, 1994;

Klimushkin, 1998)
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~E ¼ �r?Uþr? �W~ek; ð4Þ
and using curvilinear coordinates the wave equation

separates into two partial differential equations for the

toroidal and poloidal part of the oscillation field:

o1To1U� k22PU ¼ ik2 o1
x2

v2A

� �
W; ð5Þ

o1
g2ffiffiffi
g

p P
g2ffiffiffi
g

p o1

�
� k22

g1ffiffiffi
g

p T
g1ffiffiffi
g

p
�
W� D?

g3ffiffiffi
g

p D?W

¼ ik2 o1
x2

v2A

� �
U; ð6Þ

where T and P denote the toroidal and poloidal oper-

ators defined by (see Klimushkin, 1998)

TðxÞ ¼ o3
g2ffiffiffi
g

p o3 þ
ffiffiffi
g

p

g1

x2

v2A
;

PðxÞ ¼ o3
g1ffiffiffi
g

p o3 þ
ffiffiffi
g

p

g2

x2

v2A
;

ð7Þ

with g1, g2, g3, and g denoting the diagonal elements of

the metric tensor in radial, azimuthal, and meridional

direction and its determinant, respectively. Eqs. (5) and

(6) are equivalent to Dungey’s equations. In case of an

axisymmetric perturbation, k2 ¼ 0, Dungey’s equations

read

o1
g2ffiffiffi
g

p P
g2ffiffiffi
g

p o1W� D?
g3ffiffiffi
g

p D?W ¼ 0; ð8aÞ

o1To1U ¼ 0; ð8bÞ

denoting decoupled toroidal and poloidal oscillations as
observed by Voelker (1962).

In a similar way Dungey’s equations for the Hermean

magnetosphere can be derived. To simplify matters the

plasma is approximated as a cold plasma consisting of

protons and electrons only. For frequencies smaller, but

close to the proton gyrofrequency, 0 < x � Xp, the di-

electric tensor reads

e ¼
e1 �ie2 0

ie2 e1 0

0 0 e3

0
@

1
A; ð9Þ

with

e1 ffi
c2

v2A
þ c2

v2A

x2

X2
i

; e2 ffi � c2

v2A

x
Xi

; e3 ffi �
x2

pe

x2
:

The third diagonal element of the dielectric tensor is still

very large compared to the other two diagonals, which

allows to neglect the field-aligned electric field also in

this approximation. The same algebra as used to derive

Dungey’s equations for the MHD case can be used to

derive the corresponding equations for the Hermean
case discussed here (see Glassmeier et al., 2003, for de-

tails). The toroidal equation then reads
o1To1U� k22PUþ k2o1
ffiffiffiffiffi
g3

p x2

v2A

x
Xi

/ � k2
ffiffiffiffiffi
g3

p x2

v2A

� x
Xi

o1U ¼ �io1
x2

v2A

x
Xi

ffiffiffiffiffi
g
g1

r
o1Wþ ik2 o1

x2

v2A

� �
W

þ ik2 o1o3
g2ffiffiffi
g

p o3
g1ffiffiffi
g

p
�

� o3
g1ffiffiffi
g

p o3
g2ffiffiffi
g

p o1

�
W

þ ik22
x2

v2A

x
Xi

ffiffiffiffiffi
g1
g

r
W;

and in the axisymmetric perturbation case

o1To1U ¼ �io1
x2

v2A

x
Xi

ffiffiffiffiffi
g
g1

r
o1W: ð10Þ

This latter equation exhibits a very interesting result:

there are no decoupled toroidal and poloidal axisym-

metric oscillations in the Hermean magnetosphere! This

also holds when applying a more complex plasma

model. The reason for the absence of decoupled toroidal

and poloidal oscillations is the appearance of finite off-

diagonal elements in the dielectric tensor.
5. The magnetospheric bulk modulus and solar wind

buffeting

The solar wind is constantly changing its velocity and

its mass density, that is the solar wind dynamic pressure

is highly variable. This solar wind buffeting of planetary

magnetospheres can be an important source of ULF
waves and causes the question to what extend a plane-

tary magnetosphere is compressible. A typical length

scale of a magnetospheric system is the subsolar standoff

distance of the magnetopause RMP, given by the pressure

equilibrium between the dynamic pressure pram ¼ qSWv2

and the magnetic pressure of the planetary magnetic

field via

RMP ¼ B2
0

l0pram

� �1=6

: ð11Þ

The bulk modulus K of the magnetosphere is defined here

as the ratio of the solar wind dynamic pressure change

required to obtain a specified relative change in the

magnetopause position:

K ¼ RMP

dpram
dRMP

: ð12Þ

With the above definition of the stand-off distance,
we have K / pMP ¼ pramðr ¼ RMPÞ. Thus, the magneto-

spheric compressibility j is given as

j ¼ 1=K / �1=pMP: ð13Þ
We conclude that the compressibility of a planetary

magnetosphere is only depending on the solar wind

dynamic pressure, not on the planetary magnetic field.

As the solar wind mass density along Mercury’s orbit is
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much larger than along Jupiter’ s orbit by about a factor

of 200, the compressibility of the Hermean magneto-

sphere is much less than that one of the Jovian magne-

tosphere. Mercury has a very stiff, Jupiter a very fluffy

magnetosphere.

The same solar wind dynamic pressure change causes
a very different reaction of the magnetospheres of

Mercury, Jupiter, or Earth. At Mercury small-amplitude

oscillations will be the result, while at Jupiter major

variations of the overall Jovian magnetosphere occur

because of the large compressibility. Solar wind buffet-

ing thus causes a ringing of the Hermean magneto-

sphere, that is small-amplitude oscillations are more

easily generated by the solar wind in the Hermean
magnetosphere than in the Jovian magnetosphere.

When compressing a planetary magnetosphere the

solar wind needs to do work against the magnetic field

dW ¼ �pramAdRMP ð14Þ

or, with de the work per unit area,

de ¼ �pramdRMP / RMPdp / pramRMP

dp
pram

: ð15Þ

For the same relative change of the dynamic pressure,

the compression work on the magnetosphere or the

energy transfer per unit area is about a factor 3 larger

when comparing Jupiter and Earth and about a factor 7

smaller when comparing Mercury and Jupiter. This is

intuitively consistent with Mercury being the much

stiffer object.

Solar wind buffeting will be an important ULF wave
source at Mercury as its magnetosphere is a very stiff

one, which allows ringing of the whole magnetosphere.

At Jupiter, solar wind buffeting will cause major rec-

onfigurations and large-amplitude variations of the en-

tire magnetosphere which do not allow these variations

to be interpreted as ULF waves. Furthermore, as the

scale of the Hermean magnetosphere is small solar wind

buffeting should be a source of global oscillations of
which some may be quasi-axisymmetric requiring a

formulation of Dungey’s equations as described above.
6. Wave damping

Independent of the wave source, most of the energy of

ULF pulsations in the magnetospheres of Earth, Jupiter,

and Saturn will finally be dissipated in the ionospheres of

these planets due to ionospheric Joule heating (e.g.,
Glassmeier et al., 1984). AtMercury the situation is more

complicated as there is no or only a very tenuous iono-

sphere with a very low Pedersen conductivity (e.g., Grard

et al., 1999). Joule heating in the solid planet, its crust or

metallic core, can be a means of wave energy dissipation.

However, the Hermean magnetosphere is much

smaller than the terrestrial, Jovian, or Kronian one.
Major ion populations are protons and sodium ions

(e.g., Ip, 1986; Othmer et al., 1999; Killen and Ip, 1999).

Assuming ion temperatures of the order of 1 keV allows

one to estimate a sodium thermal ion gyroradius of

about 150 km. Thus, the ratio of the system scale, taken

here as 1RMercury ¼ 2450 km, to the sodium ion gyrora-
dius is about 16 in the Hermean magnetosphere. The

corresponding terrestrial value is of the order of 600. A

ratio as small as 16 suggests that any wave activity

generated by solar wind induced magnetospheric ringing

or other processes is associated with kinetic Alfv�en
waves, not with conventional MHD Alfv�en wave modes.

Kinetic Alfv�en waves are strongly dispersive due to

electron inertia and finite gyroradius effects. Their dis-
persion relation is given by (e.g., Hasegawa and Uberoi,

1982; Lysak, 1990)

x � v2Akk 1ð þ k2?r
2
ion

�
; ð16Þ

where rion is the thermal ion gyroradius and k? and kk
are the wave vector components transverse and parallel

to the ambient magnetic field. Finite electron inertia and

ion gyroradius effects cause kinetic Alfv�en waves to

carry a significant parallel electric field component Ek.

For a low b plasma, this parallel component is related to
the transverse field component E? via (Goertz and

Boswell, 1979; Lysak, 1990; Leonovich and Mazur,

1995)

Ek � r2gia
oE?

os? osk
; ð17Þ

where rgia is the ion acoustic gyroradius and os? and osk
denote derivates along the transverse and longitudinal

directions with respect to the ambient magnetic field.

Approximating

oE?

os? osk
� oE?

L?Lk
; ð18Þ

assuming L? ¼ Lk ¼ RMercury, and choosing rgia ¼ 0:2
RMercury, one has dEk � 0:0004dE?. The transverse elec-

tric field may be estimated via dE?=dB � vA. With

vA ¼ 1000 km/s (Russell, 1989) and B ¼ 5 nT (see

Fig. 1), we have E? � 5 mV/m, and the parallel electric

field component Ek is of the order of 0.2 mV/m. Po-

tential differences of about 0.5 keV will be associated

with ULF waves induced by, e.g., solar wind buffeting of

the Hermean magnetosphere. Particle acceleration due
to kinetic Alfv�en waves will help to damp and dissipate

the energy associated with low-frequency waves. ULF

waves are an important means to heat the Hermean

electron population.
7. Summary and comparison

ULF pulsations in the magnetospheres of Mercury,

Earth, Jupiter, and Saturn have been compared. In the
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terrestrial magnetosphere, global eigenoscillations can be

excited as the eigenperiods are much smaller than other

important magnetospheric time scales. The huge mag-

netospheres of Jupiter and Saturn do not support such

global oscillations as travel times between conjugate

ionospheric boundaries are of the order of the rotation
periods of the planets and eigenoscillations are not likely

to build up. However, local eigenoscillations are ob-

served in regions of low Alfv�en velocity such as the

Jovian plasma sheet. Field line resonances in their clas-

sical meaning, that is coupling of a fast mode to a

standing Alfv�en mode, are only observed in the terres-

trial magnetosphere, while in the magnetospheres of the

giants resonant mode coupling between propagating fast
and Alfv�en waves is possible and observed. Special

conditions exist in the Hermean magnetosphere, where a

description of the plasma as an MHD plasma is not

suitable as this magnetospheric system is rather small

and its eigenperiods are close to the gyroperiods of

protons and sodium ions. Resonant mode coupling oc-

curs at the crossover frequency, not at the local eigen-

frequency of a standing wave. Decoupled toroidal and

poloidal global oscillations are also not expected to be

observed in the Hermean system as the off-diagonal el-

ements of the dielectric tensor matter and couple these

two modes.

Defining a magnetospheric compressibility, it is found

that the magnetosphere of Mercury is a rather stiff

magnetosphere while the giants have very fluffy mag-

netospheres. Solar wind buffeting thus leads to major
reconfigurations of the giant magnetospheres while

the Hermean magnetosphere will start to ring under the

influence of solar wind dynamic pressure variations. The

associated ULF waves are most likely kinetic Alfv�en
waves with significant field-aligned electric field com-

ponents causing electron heating. Solar wind excited

ULF waves are thus a possible candidate for heating the

Hermean plasma.
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