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YCJOBHUS OBPA3OBAHUSA DJIEKTPUYECKOI'O ITPOBOS, OBYCJIOBJIEHHOT'O I'PO30BBIM
PA3PAAOM, B HU’)KHUX CJIOSIX HOHOCDEPBI

II.T. Touen

CONDITIONS FOR ELECTRIC BREAKDOWN IN THE LOWER IONOSPHERE
DUE TO A LIGHTNING DISCHARGE

P.T. Tonev

TeopeTnyecku HU3y4arOTCsl yCIOBUS, IPU KOTOPBIX MPOUCXOAUT NMpoboil B HIKHEN noHOcdepe Haa Ipo30il mocie MO3UTHB-
Horo paspsiaa MosHuu obnako—3eminst (+CG). B kadecTBe BO3MOXKHBIX (PaKTOPOB, BIMSIOIIMX HA BOSHUKHOBEHHE Mpobosi, pac-
CMaTPHUBAIOTCS JIBE BHICOTHI: (i) OJHA, IPH KOTOPOH BpeMsl pellaKcalliil paBHIETCS BpEMEHH pa3psana, u (i) BTopasi, ¢ «<KOJIEHOM>»
B nipodrute mpoBoanMocTH. COrJIacHO 3TOMY, MOXHO C(HOPMYIHUPOBATh KPUTEPH BOSHUKHOBEHHS MpoOos. KioueBbiM ¢axTo-
poM 1uis Hadana mpo6ost (ake Gosiee BayKHBIM, €M M3MEHEHHE MOMEHTA 3apsijia) SBISETCS MPOBOAUMOCTD HM3-3a €€ OOJIBIIOi

HU3MCHYMBOCTHU Ha 3TUX BBICOTAX.

Conditions are theoretically studied, under which a breakdown is realized in the lower ionosphere above a thunderstorm after
a positive cloud-to-ground (+CG) lightning discharge. Two altitudes are seen as candidates for a breakdown initiation: (i) at
which the relaxation time equals the discharge time, and (ii) at the "knee" of the conductivity profile. According to this, a crite-
rion of a breakdown occurrence is formulated. The conductivity is the key factor for a breakdown onset (i.e. more important than
the charge moment change), due to its large variability at these heights.

Lightning discharges produce strong quasi-
electrostatic fields (QSF) and electromagnetic pulses,
which can provoke red sprites and haloes in the lower
ionosphere [1], electron density variations in the middle
ionosphere [2], etc. According to a hypothetical mecha-
nism, sprites are realized through a conventional break-
down in the lower ionosphere above a lightning dis-
charge due to the QSF. A breakdown is realized when
the applied electric field IEl exceeds the breakdown
threshold electric field E=3.2x10°N/N, [V/m], where N
is the neutral density at altitude z, and N, is the density
at the sea level z=0 [3]. We examine the conditions,
under which the time peak of the QSF exceeds the
breakdown electric field E;, by a 2D analytical quasi-
static model [4] (the quasi-static conditions are relevant
for horizontal scale typical for sprites [5]). Among sim-
plifying assumptions used [4] we accept that the thun-
dercloud charge involved in lightning is distributed at
altitude Z,, with surface density p(f) at time 7. We obtain
the spatial and temporal distributions of the electric field
E and of its potential U as solutions of the continuity
equation V-j=0 for the Maxwell’s current density j
(above a thunderstorm j=jc+jp, where jc and jp are the
conduction and displacement currents densities). The
model region is bounded by altitudes z=0 (the sea level)
and Zg=100 km. The boundary conditions are: (a) U=0
at z=0 and Zg; (b) the vertical electric field has a jump
of amount p/g, at height Z, (g, is the dielectric con-
stant). We accept as the initial condition at the lightning
beginning at time r=0 that E is the DC electric field
generated by the thundercloud charge at #=0.

In order to examine the conditions when IEI>E}, we
study the height dependence of the QSF time peak Ejpcqx
above a causative +CG lightning discharge, as com-
pared to the breakdown electric field profile Ei(z). In
our calculations we use day- and night-time profiles
o(z) of the conductivity 6 (which is assumed to be iso-
tropic) at middle latitudes for quiet conditions [6]. First,
Eye. caused by a +CG lightning discharge with an ex-
ponential charge decay Q(t) = Q,exp(—t/7,) is studied

by using an idealized exponential conductivity profile 6(z)
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QSF peak E, by lightning with parameters Qy=200 C,
Zp=10 km, 1.=1 ms, as a function of altitude z, at nighttime
conductivity [6] compared to breakdown electric field ;. The
QSF peak diminishes much slower than E) below the ‘knee’ of
the conductivity profile Zc and much faster than £; above Zg.
with a scale height H,=const. In this case Epc. is ex-

pressed in the form |E, I=QH P, ((.C,.C,) .

where Qy is the initial thundercloud charge, and ¢, o,
;. are dimensionless characteristics for the altitude,
the charge altitude and the discharge time [7]. We re-
vealed that, by different z, Z,, Qy, 1, and parameters of
the conductivity profile, the dependence of Ec, on the
altitude z is characterized by a scale height Hg=C;H,
where C,=1 above the altitude Z; with a relaxation
time Tz=T;, and Cy=2.5-2.7 below Zz. This result is
approximately valid also for a realistic conductivity
profile (i.e. when the conductivity scale height H; var-
ies with z), since E,. at altitude z depends essen-
tially on the conductivities at heights z and Z,, and it
is and relatively independent from the conductivity
values at other altitudes [7]. A realistic conductivity
profile is characterized by a ‘knee’ at altitude Z~75—
85 km (H, is much smaller above Z. than below Z;).
Due to these features, the QSF peak E,.. decreases:
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(i) much slower than E; below both altitudes Zz and
Z¢; and (i) much faster than E; above Zg and Z¢. This
conclusion is demonstrated by our computational
results for nighttime conductivity in figure. Thus, we
conclude that a breakdown, if realized, is initiated in
the lower ionosphere, either close to the altitude Zp,
or close to Z.. Therefore, a breakdown occurs if at
least one of the following conditions is fulfilled:

Q() >H§Ek/PQS(C:ZE /H0'7CQ’CL)7
or Q> H2E, [Py (§=2Z. 1H,. 5,5, ).

These results show that the conductivity profile, be-
ing a highly variable characteristic in the lower iono-
sphere [6, 8], is more important factor for the occurrence
of a breakdown than the charge moment change of the
causative lightning. This can probably explain realization
of sprites due to rather feeble lightning discharges and their
occurrence usually at night.
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