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a b s t r a c t

The problem of momentum transfer from the solar wind to the geotail via magnetosonic waves has

been solved. The structure of the wave field of monochromatic MHD oscillations is calculated in a

cylindrical model of the geotail with a background plasma distribution typical of the geotail lobes. Fast

magnetosonic waves entering the magnetosphere from the magnetosheath excite slow magnetosonic

waves at the resonance magnetic shells inside the geotail. Resonant oscillations interact with the

background plasma transferring their momentum to it. The problem of modifying the ion distribu-

tion function of the background plasma for a given spectrum of magnetosonic oscillations in the

magnetosheath has been solved in the quasilinear approximation. It is shown that, in the process, ions

in the geotail lobes acquire an average Earthward velocity. The region of the most effective transfer of

the momentum is near the magnetopause, in the area of open field lines, housing resonance shells for

slow magnetosonic oscillations of a broad range of frequencies and wave numbers. The wave transfer

mechanism for the momentum is capable of generating an Earthward flow of magnetospheric

convection during prolonged periods of the Northern IMF component.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Plasma convection in the magnetospheres of planets posses-
sing their own magnetic field (including Earth), is a sufficiently
complicated phenomenon. The structure of magnetospheric con-
vection depends essentially on interplanetary magnetic field
(IMF) orientation (Sergeev et al., 1996). In Earth’s magnetosphere,
convection is most intense during periods of Southern IMF
component (Cowley, 1983). Notably, the plasma moves tailwards
in regions adjacent to the magnetospheric boundary, while
moving Earthwards in the inner regions, including the plasma
sheet. The electric field of magnetospheric convection penetrates,
along geomagnetic field lines, into the ionosphere where it is
signature as convective cells of plasma motion in the polar cap
and the auroral zone (Ruohoniemi and Baker, 1998). Magneto-
spheric convection is associated with the solar wind flowing
around the magnetosphere, partially transferring its momentum
to the magnetospheric plasma. Two main concepts have been
proposed to explain the momentum transfer mechanism, which
remain in use today.

The first concept was proposed by Dungey (1961). According
to it, solar wind plasma enters the outer layers of the magneto-
sphere when geomagnetic field lines reconnect with interplane-
tary magnetic field lines in the frontal part of the magnetosphere,

and are later transported into the geotail by the solar wind. This
movement generates a tailward flow of magnetospheric convec-
tion. An inverse reconnection between the IMF and geomagnetic
field lines occurs in the distant tail, where they become closed
again. In the geotail plasma sheet, Earthward plasma motion is
caused by the drift mechanism related to the dawn-dusk electric
field resulting from solar wind plasma flowing around the magneto-
sphere. This model, involving the formation of two convection cells,
agrees well with the behavior of the IMF components—magneto-
spheric convection increases when the Southern IMF component
appears providing the conditions for effective reconnection between
the geomagnetic field and IMF.

Unfortunately, this model cannot explain all the features of
magnetospheric convection. For example, it does not fully explain
magnetospheric convection in the absence of the Southern IMF
component. During periods of the Northern IMF component, a
new type of convective motion evolves in the magnetosphere—

with three or four convective cells (Potemra et al., 1984; Forster
et al., 2008). Two of these are the same cells as in the case of the
Southern IMF component with decaying convective motion.
Against their background, one or two new cells form in the region
of open field lines (at geomagnetic latitudes above 751). The
direction of plasma motion in these cells is opposite to that in the
first two cells (so-called ‘‘inverse convection’’). To explain this
phenomenon within the Dungey concept, the IMF and geomag-
netic field lines are deemed to reconnect in high latitudes in the
magnetospheric cusp in the presence of the By component in the
IMF (Crooker et al., 1998; Sandholt et al., 2000). How these cells
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close via a convective Earthward flow in the region of open field
lines still remains to be understood, however.

Another concept of magnetospheric convection has been
proposed by Axford and Hines (1961). A mechanism has been
suggested for the momentum transfer from the solar wind into
the magnetosphere, similar to viscous interaction in liquids with
shear flow. Such a type of plasma flow is realized at the magneto-
spheric boundary. This mechanism has been termed as ‘quasi-
viscous interaction’. The presence of such interaction in a
collisionless plasma is also an assumption based on the turbulent
nature of the flow around the magnetosphere (Miura, 1984;
Mishin, 2005). If we accept this assumption, then, unlike the
Dungey mechanism, the conditions for quasi-viscous interaction
are always satisfied in the magnetosphere. The momentum
transfer efficiency is mainly related to the solar wind speed.

That model cannot qualify as a complete description of magneto-
spheric convection, either. For example, it does not explain the
dependence of the magnetospheric convection regime on the IMF
orientation. Nor does it clarify the mechanism of the convection
velocity changing its direction in the geotail (the Earthward and
tailward flows of the convection are discussed separately). The issue
of the above features of convection for the Northern IMF component
remain unaddressed, too.

There is also an alternative point of view claiming that, vice
versa, it is the flow existing in the plasma sheet (sustained by the
plasma pressure gradient) that generates the convection electric
field (Vasyliunas, 2001). This motion drags away plasma of closed
field lines of the geotail, forming an Earthward flow of magneto-
spheric convection. The mechanism of magnetospheric convec-
tion is described in detail in Ponomarev et al. (2006), linking
the momentum of the magnetospheric plasma to the electric
field generated in the Bow shock front and penetrating into the
magnetosphere.

There is, however, one more possibility of how the momentum
may be transferred from the solar wind into the magnetosphere.
The magnetosheath plasma flow is turbulent. Such plasma oscil-
lations can be regarded as a stochastic flow of magnetosonic
waves, partly directed towards the magnetosphere. Leonovich
et al. (2003) have shown that up to 50 % of the energy of this wave
flux can penetrate into the geotail. The integrated energy of the
wave flux penetrating into the magnetosphere during a typical
time interval between two successive substorms is the two orders
of magnitude larger than the total energy of magnetospheric
convection and can be used to maintain it. This is only a potential
capacity, however.

Calculations in that paper referred to the simplest model
medium consisting of two homogeneous half-spaces separated
by a transition layer. The real magnetosphere is strongly inho-
mogeneous, and the geotail cross-section is spatially limited. For
each harmonic of magnetosonic waves there is a surface in the
magnetosphere from which it is completely reflected. Therefore, if
no appreciable absorption of their energy takes place while
magnetosonic oscillations travel from the magnetopause to the
turning point, they must be reflected back into the solar wind in
almost their entirety. Direct heating of the magnetospheric
plasma by the solar wind MHD waves has been found to be
rather ineffective (Kozlov, 2010). The energy of MHD oscillations
is known to be efficiently absorbed at resonance surfaces for the
Alfven and slow magnetosonic (SMS) waves (Leonovich and
Kozlov, 2009). The SMS waves are especially interesting in this
regard. Due to their very dissipative nature they are weakly
localized across magnetic shells and can interact with ions of
the bulk of the background plasma distribution function.

To check this possibility, we employ quasilinear theory to
calculate the velocity the background plasma acquires when
interacting with the flux of fast magnetosonic (FMS) waves

penetrating into the magnetosphere from the magnetosheath.
To this end, we will calculate the field structure of monochro-
matic MHD waves in a cylindrical model of the geotail where the
plasma distribution is typical of the tail lobes. Specifying the FMS-
wave spectrum in the magnetosheath and integrating over all
harmonics, we will find the diffusion coefficient for plasma ions in
the velocity space at each magnetic shell in the tail. Using the
quasilinear theory equation for the ion distribution function, we
will calculate the asymptotic distribution of their velocities across
the geotail. We will determine the characteristic time the asymp-
totic regime takes to set in for each resonance shell.

This work has the following structure. Section 2 presents a
cylindrical model of the geotail with a plasma distribution
characteristic for its lobes. In Section 3, an equation is obtained
describing the field of monochromatic MHD waves in this
cylindrical model and the spatial structure of individual harmo-
nics are computed. In Section 4, an equation is obtained describ-
ing, in the quasilinear approximation, the modification of the
distribution function of plasma ions under the impact of SMS
waves excited on the resonance magnetic shells by FMS waves
penetrating into the geotail. Section 5 presents numerical com-
putations of the asymptotic distribution (across the geotail) of the
average velocity of plasma ions acquired under the impact of the
FMS wave flux from the magnetosheath. Section 6 presents
calculations of the distribution of the characteristic time needed
for the asymptotic regime to set in on the resonance shells inside
the tail and discusses the results. Section 7 lists the main results
of this study.

2. Model of medium

Let us consider a model magnetotail in the form of an inhomo-
geneous plasma cylinder as shown in Figs. 1 and 2. The plasma
distribution over radius corresponds to the geotail lobes. This model
does not explicitly take into account the plasma sheet. Its presence is
simulated by the radial distribution of the Alfven and SMS velocity.
Moving away from the cylinder axis, they change from values
characteristic of the plasma sheet to those typical of the geotail lobes.
The radial distribution of the Alfven speed is plotted in Mazur and
Leonovich (2006) based on satellite data for the distribution of plasma
concentration and magnetic field in the magnetosphere (Sergeev and
Tsyganenko, 1980; Borovsky et al., 1998). Since the main results of

Fig. 1. A cylindrical model of the magnetotail within the solar wind plasma flow.

Magnetic field B0 is along the plasma cylinder axis. The radial distribution of the

solar wind velocity v0 flowing round the geotail is shown schematically.
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that study concern the region of open field lines, the presence of
plasma sheet should not be an essential element in the calculations.

We introduce a cylindrical coordinate system (r,f,z) in which
the origin r¼0 coincides with the axis of the plasma cylinder.
The background magnetic field is directed along the z-axis. We
assume that plasma in the magnetosheath moves along the z-axis
at velocity v0, while plasma is motionless in the geotail, in the
absence of waves (see Fig. 1). Transition from the magnetospheric
parameters to the magnetosheath parameters occurs in a narrow
transition layer of thickness Dr 5rm, where rm is the characteristic
radius of the geotail. We set such a plasma density distribution
over the radius that its maximum is reached on the axis of the
plasma cylinder falling to a minimum toward its boundary.
Magnetic field in the magnetotail is stronger than in the solar
wind. The distribution of the Alfven speed A¼ B0=

ffiffiffiffiffiffiffiffiffiffiffiffi
4pr0

p
over the

radius is presented in Fig. 2. Such a distribution is typical for
plasma parameters in the geotail lobes.

To describe perturbations in such a plasma configuration, we
used a system of ideal MHD equations of the form

rdv

dt
¼rPþ

1

4p ½curlB � B�, ð1Þ

@B

@t
¼ curl½v � B�, ð2Þ

@r
@t
þrðrvÞ ¼ 0, ð3Þ

d

dt

P

rg ¼ 0, ð4Þ

where B, v are magnetic field and plasma velocity vectors, r, P are
the plasma density and pressure, g¼ 5=3 is the adiabatic index. Let us
assume wave-related disturbances to be rather weak, so as to allow
the initial system of Eqs. (1)–(4) to be linearized. Let us subscript the
parameters linked to background plasma with zero, while using
the unsubscripted values to denote the wave-related para-
meters (r ¼ r0þr, P ¼ P0þP, B ¼ B0þB, v ¼ v0þv). In the zero

approximation, the r-component of Eq. (1) yields, in steady state
(@=@t¼ 0), the equilibrium condition of the plasma configuration

P0þ
B2

0

8p ¼ const, ð5Þ

which defines the equilibrium distribution of plasma pressure P0ðrÞ

for a given distribution of B0ðrÞ. This pressure determines

the distribution of sound velocity in plasma S¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gP0=r0

p
and the

corresponding velocity distribution of SMS waves CS ¼ AS=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
þS2

p
in Fig. 2. We assume that magnetic field is almost constant both
inside and outside the plasma cylinder, changing only in a thin
transition layer of thickness Dr 5rm. Our numerical computations
used the following values rm¼30Re, Dr ¼ 2Re, where Re¼6370 km is
the average Earth radius. It follows from the equilibrium condition (5)
that plasma pressure also varies in the transition layer only. Table 1
lists the values of the key parameters of the plasma and magnetic
field on the geotail boundary used in the following computations.
These parameters provide for the equilibrium condition (5) to be met
in the plasma configuration.

3. Structure of monochromatic MHD waves

Let us define the spatial structure of a monochromatic MHD
wave in the geotail model under consideration. Denote the
component of the disturbed vector of plasma velocity in the wave
in the r-axis direction as vr ¼ dz=dt¼ @z=@tþðv0=Þz, where z is the
displacement of a plasma element. Consider a monochromatic
wave of the form expðikzzþ imf�iotÞ, where kz is the component
of the wave vector in the z-axis direction, m¼ 0;1,2;3 . . . is the
azimuthal wave number, o is wave frequency. Linearizing the
system of Eqs. (1)–(4) and expressing the other components of
the oscillation field through z, we obtain (see Leonovich, 2011a)

vr ¼�ioz, vf ¼�
1

K2
S

A2
þ

K2
AS2

w2
S

 !
m

or2

@rz
@r

,

vz ¼�
kzK2

AS2

ow2
S r

@rz
@r
�z

dv0

dr
, ð6Þ

Br ¼ ikzB0z, Bf ¼�
kzB0

o
vf,

Bz ¼�
K2

AB0

w2
S

1�
k2

z S2

o2

 !
1

r

@rz
@r
�z
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dr
, ð7Þ

P¼�gP0
K2

A

w2
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dr

B2
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 !
, ð8Þ

where

K2
A ¼ 1�

k2
z A2

o2
, K2
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Fig. 2. Distribution of the Alfven speed AðrÞ and velocities of SMS waves CSðrÞ in

the magnetotail and in the solar wind. On the resonance shells r¼ rS (points 2 and 3)

and r¼ rA (points 1 and 4) the parallel phase velocity o=kz of a monochromatic wave

is equal, respectively, to local velocity CS of SMS waves and Alfven speed A.

Table 1
The main parameters of the medium on the geotail boundary.

Parameter Geotail lobes Magnetosheath

B0 (nT) 20 5

A (km/s) 6000 50

S (km/s) 420 177

bn
¼ S2=A2 0.005 12.6
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o ¼o�kzv0 is Doppler-modified oscillation frequency. For dis-
placement z we obtain the equation

@

@r

r0O
2

k2
r

1

r

@rz
@r
þr0O

2z¼ 0, ð9Þ

where O2
¼o2

�k2
z A2,

k2
r ¼

o4

o2
ðA2
þS2
Þ�k2

z A2S2
�k2

z�
m2

r2

¼ k2
z

o4
A=ð1þb

n
Þ

ðo2
A�o

2
S Þ
�1�

m2

k2
z r2

 !

¼
k2

z

1þbn

ðo2
A�o

2
A1Þðo

2
A�o

2
A2Þ

ðo2
A�o

2
S Þ

, ð10Þ

and oA ¼o=kzAðrÞ, oS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bn=ð1þbn

Þ

q
, bn
¼ S2=A2, and o2

A1,o2
A2 are

the roots of biquadratic (with respect to oA) equation k2
r ¼ 0. Note

that the expression bn coincides, up to a factor close to unity, with
the known parameter b¼ 8pP0=B2

0—the gas-kinetic plasma pressure
to magnetic pressure ratio. From (9) it is evident that k2

r is the
square of the r-component of the MHD wave-vector in the WKB
approximation when solution of Eq. (9) can be presented as
z� expði

R
krdrÞ.

The turning points are determined by the zeros of the k2
r ðrÞ

function, and the resonance surfaces by the singular points of
Eq. (9), in which the coefficient at the higher derivative becomes
zero. At the Alfven resonance point r¼ rA we have O2

ðrAÞ ¼ 0.
At the magnetosonic resonance point r¼ rS the denominator in
expression (10) becomes zero yielding the local dispersion equa-
tion for SMS waves when 9k2

r 9-1 : o2
¼ k2

z C2
S ðrSÞ. On the reso-

nance surfaces the phase velocity in the magnetic field direction
o=kz of the MHD wave under study coincides with the local
velocity of the Alfven or SMS wave (see Fig. 2). The following
boundary conditions were used in the numerical solution of
Eq. (9). When r-0, a solution limited in amplitude was chosen
to Eq. (9), which at r-0 could be presented approximately as

r2z00 þsrz0 þðk2
r0r2�2þsÞz¼ 0,

where k2
r0 � k2

r ðr-0Þ (for ma0 we have k2
r0 ��m2=r2). Here s¼ 1

for m¼0 and s¼ 3 for ma0. The solution that is finite for r-0
has the form

z¼ C
r for m¼ 0,

rm�1 for ma0,

(

where C is an arbitrary constant. The second boundary condition
was formulated in the magnetosheath, at r¼ 2rm. It requires that
the oscillation amplitude here is equated with the amplitude of
the harmonic of FMS wave model spectrum in the magnetosheath
(see Section 6), which determines the C constant and the oscilla-
tion amplitude in the entire space.

Moreover, to regularize singularities in (9), the expressions for
the oscillation frequency have been redefined in the definition of
O2 and in the denominator for k2

r by adding imaginary parts that
take into account dissipation of the Alfven and SMS oscillations
at the resonance surfaces. The definition of O2 assumed o ¼o�
kzv0þ igA, while o ¼o�kzv0þ igS in the denominator of (10),
where gA,S are decrements of the Alfven and SMS waves, respec-
tively. The decrements determine the amplitude and character-
istic scale of Alfven and SMS wave localization at the resonance
shells. For the Alfven waves the decrement is small (gA � 10�3o),
implying a large amplitude of resonant oscillations and a narrow
area of their localization over the radius. The decrement of SMS
waves strongly depends on the ion to electron temperature ratio
in plasma (see Leonovich and Kozlov, 2009). In the solar wind the
plasma electrons are hotter than the ions (Te � 3Ti), therefore, in
the magnetosheath we assume gS � 10�2o. In the tail lobes, on

the contrary, plasma ions are hotter than the electrons (Ti � 8Te),
which corresponds to gS � 0:8o. The decrement of SMS waves
chosen for the magnetosheath changes to the one typical of the
magnetosphere in the same transition layer as the other plasma
parameters.

Consider the structure of the solution to (9) near the resonance
surface r¼ rS. Let us linearize the coefficient at the higher derivative
in (9), expressing k�2

r � a2
SxS, where xS ¼ ðr�rSÞ=aS, aS ¼ ð�@k�2

r =

@rÞr ¼ rS
is the characteristic scale of k�2

r near r¼ rS. Then Eq. (9) near
r¼ rS can be presented as

@

@xS
ðxSþ ieSÞ

@z
@xS
�z¼ 0, ð11Þ

where eS ¼maSgS=kzrSCSðrSÞ is the regularized factor determined by
the decrement of SMS waves. It should be taken into account that
away from the resonance surface the SMS wave transforms into
an almost undamped FMS wave. Therefore, the following model
was used for the SMS wave decrement: gS ¼ gS exp½�ðr�rSÞ

2=D2
S �

where DS ¼ aSb
n=ð1þðm=kzrSÞ

2
Þ is the localization scale for which

the oscillation field can be regarded as a resonant SMS wave (see
Leonovich and Kozlov, 2009). The solution of (11) is

z¼ C1I0ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xSþ ieS

p
ÞþC2K0ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xSþ ieS

p
Þ,

where I0ðzÞ,K0ðzÞ are modified Bessel functions, C1;2 are arbitrary
constants determined from the boundary conditions away from the
resonance surface. It is evident that when r-rS there is a solution
with a logarithmic singularity

z¼�
C2

2
lnðxSþ ieSÞ,

which corresponds to the resonant SMS wave.
Fig. 3 shows the radial structure of two monochromatic

harmonics. There are resonance surfaces for SMS waves in the
magnetosphere (Fig. 3a) for one of them, but not for the other
(Fig. 3b). This figure presents the unity-normalized structure of
the derivative dz=dz determining the maximum oscillation ampli-
tude on the resonance surfaces. The resonance surfaces for the
SMS wave are determined by the intersection points of functions
ReðoAðrÞÞ and oSðrÞ, where the real part of the denominator in
(10) vanishes.

4. Equation for ion distribution function in quasilinear
approximation

Consider the problem of the ion distribution function in
magnetospheric plasma transformed under the impact of the
MHD wave flux from the magnetosheath. We use kinetic theory
equations in the locally quasilinear approximation. This means
that, on each resonance shell inside the geotail, we will consider
the distribution function in the same way as if it were defined
over the entire space, while assuming the MHD oscillation field to
correspond to this shell. We assume the plasma to consist of the
hydrogen ions and electrons. The equation for the ion distribution
function in the presence of MHD waves with linear dispersion
(such as the Alfven wave with o¼ kJA or the SMS wave with
dispersion law o� kJCS) has the form (see Akhiezer et al., 1979)

@f

@t
¼

e

mi

� �2 @

@vJ

Z
d3k E3J0ðlÞþ i

kJv?
o J00ðlÞE2

� �n

�

Z t

0
E3ðt

0ÞJ0ðlÞþ i
kJv?
o J00ðlÞE2ðt

0Þ

� �
@f ðt0Þ

@vJ
eiðkJvJ�oÞðt�t0 Þ dt0:

ð12Þ

Here, f ðvJ,v?,tÞ is the ion distribution function over velocities, vJ,?

are ion velocities along and across magnetic field lines, J0ðlÞ is the
Bessel function, l¼ k?v?=oi, kJ, k? are the parallel and the
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perpendicular wave vector components, oi is ion gyrofrequency,
and the various components of field oscillations are subscripted
with i¼ 1;2,3: E3 �/EJS is the averaged amplitude of the
oscillation electric field along the magnetic field after averaging
over the wave number spectrum, E1 is the average amplitude of
the field along k?, and E2 is the average amplitude along the
vector ½B0k?�. The relationship between the oscillation frequency
and the wave vector components is determined by the local
dispersion equation. Integration in (12) is with respect to the
three components of the wave vector and the entire interval of
time preceding the present moment. That is, in the general case,
this equation is not local in time.

To solve this equation in its general form is rather a difficult
problem. Here, we address a simpler problem of determining the
asymptotic form of the distribution function when t-1. The
main contribution to the integral over t0 in (12) is by asymptotic
values Ei (since the source is a constant oscillation field in the
magnetosheath, these values remain unchanged throughout the
time interval in question), the distribution function f changing
little on the asymptotics. Taking the functions Ei and f at t0-t

outside the integral over t0 in (12), we obtain the following
equation (Sizonenko and Stepanov, 1968):

@f

@t
�

@

@vJ
D
@f

@vJ
, ð13Þ

where

D¼ p e

mi

� �2 Z
d3k E3J0ðlÞþ i

kJv?
o

J00ðlÞE2

����
����
2

dðo�kJvJÞ

is the ion diffusion coefficient in the velocity space. Thus, it is
clear that coupling occurs when the parallel wave phase velocity
o=kJ is the same as the parallel plasma ion velocity vJ.

Since the equation for the distribution function is obtained in
the Cartesian coordinates, it is necessary to transform it for the
cylindrical model we use for the geotail. The relationship between
the electric and magnetic field components is determined by the
equation B¼�ic½=E�=o. In the ideal MHD approximation, E3 ¼ 0
for all types of MHD waves, while for the E2 component we have

E2 ¼ �
o

kzc

kr
~Brþkf ~Bf

k?

* +
,

the angular brackets /S denote averaging over the wave vector
phases, where kr ,kf,kz are the radial, azimuthal and parallel

components of the local Cartesian coordinate system in a cylindrical
model, and the tilde above denotes a spatial harmonic of the Fourier
transform. For example

~Br ¼
1

ð2pÞ3=2

Z
d3rBrðrÞe

�ikr:

Using the natural assumption that the ion Larmor radius ri is small as
compared to the wavelength k?ri ¼ k?vTi=oi51, where vTi � v? is
ion thermal velocity, we obtain

D�
p
4

v4
?

B2
0

Z
d3k 9kr

~Brþkf ~Bf9
2

D E
dðo�kzvJÞ

for the diffusion coefficient.
Note that E2 ¼ 0 for the Alfven waves, while the Br component

of the SMS wave field is singular, and the Bf component has a
finite amplitude in the absence of dissipation on the resonance
surface. From the solution of (9) we know the structure of the
wave field harmonic of the form

Brðr,m,kz,oÞ ¼ 1

ð2pÞ3=2

Z
Brðr,tÞe�iðkzzþmf�otÞ df dz dt:

Leaving only the singular Br component of the magnetic field in
the expression for the diffusion coefficient, it can be written as

D�
p
4

v4
?

vJB
2
0

X1
m ¼ 0

Z 1
0
rrBrðr,m,kz ¼o=vJ,oÞ
�� ��2D E

do: ð14Þ

Here the integrand d function was used for integrating over kz.
Averaging is over the phases of the frequency harmonic, as well as
over the azimuthal and parallel harmonics of the wave vector.

As the initial condition for solving (13), we use the Maxwell
distribution function

f ðvJ,v?Þ ¼
n0

p3=2v3
Ti

exp �
v2
J þv2

?

v2
Ti

 !
,

where n0 is the plasma ion concentration, vTi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ti=mi

p
is the

thermal velocity of plasma ions on the magnetic shell under
consideration. This function describes the equilibrium plasma state
in the absence of waves. Presumably, plasma takes on this state in the
geomagnetic tail lobes during the substorm recovery phase.

As follows from the form of the diffusion coefficient (14), Eq. (13)
does not change the dependence of the distribution function on v?.
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Fig. 3. The spatial structure of monochromatic MHD waves for azimuthal harmonic m¼1 with different values of parallel phase velocity o=kz: (a) oscillations for which

there are resonance shells for SMS-waves in the geotail (oAðrSÞ ¼oSðrSÞ) and (b) oscillations with no resonance shells inside the geotail.
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Integrating (13) over v?, we obtain

@f

@t
�

@

@vJ
D
@f

@vJ
, ð15Þ

where

f ðvJÞ ¼

Z 2p

0
df
Z 1

0
v?f ðvJ,v?Þ dv? ¼

n0ffiffiffiffi
p
p

vTi

exp �
v2
J

v2
Ti

 !
, ð16Þ

D ¼
1

pv2
Ti

Z 2p

0
df
Z 1

0
v?De�v2

?
=v2

Ti dv?

�
p
2

v4
Ti

vJB
2
0

X1
m ¼ 0

Z 1
0
rrBrðr,m,kz ¼o=vJ,oÞ
�� ��2D E

do: ð17Þ

Multiplying (15) by f on the left and integrating over vJ, we have

1

2

@

@t

Z 1
�1

f
2

dvJ ��

Z 1
�1

D
@f

@vJ

 !2

dvJ: ð18Þ

Hence, if a new equilibrium state is reached (@f =@t¼ 0) at the
asymptotic t-1, a ‘‘plateau’’ must appear in the distribution
function (@f =@vJ ¼ 0) in the intervals of vJ where Da0.

5. Calculation of velocity acquired by magnetospheric plasma
due to its interaction with MHD waves in the magnetosheath

Consider the conditions under which the distribution function
of magnetospheric plasma ions is modified under the impact of the
MHD wave flux from the magnetosheath. Firstly, the intervals vJ

where Da0 are determined by the presence of magnetosonic
waves in the solar wind far from the magnetosphere (when r-1).
As follows from (10), the solar wind is a transparency region for
magnetosonic waves (Reðk2

r Þ40) when o2
S oo2

Aoo2
A1 and when

o2
Aoo2

A2. When r-1 we have o2
A1 ¼ 1, o2

A2 ¼ bn. The first of
these conditions defines a very narrow range of admissible wave
parameters so that we ignore its presence. From the second
condition we find that the solar wind is transparent in the intervals
of parallel wave numbers kzominðk1,k2Þ and kz4maxðk1,k2Þ,
where k1;2 ¼o=v1;2, v1 ¼ v0þSw, v2 ¼ v0�Sw. In our model of the
medium the sound velocity in the magnetosheath Sw¼177 km/s.
For solar wind plasma flows with v04200 km=s we have
v14v240 and the solar wind is opaque when 0ok1okzok2.
Considering the resonance conditions for plasma particles inter-
acting with waves (kz ¼o=vJ), we find that the distribution
function remains unchanged in the range v2ovJov1.

The presence of resonance surfaces for SMS waves in the
geotail should also be taken into account. Given the local disper-
sion equation for the SMS waves o2 ¼ k2

z C2
S , we have

CS max49vJ94CS min. In our model, the value CS min � 8 km=s is
reached on the axis of the plasma cylinder, and CS max �

2000 km=s in the vicinity of the magnetopause. Thus, there are
three areas where a ‘‘plateau’’ forms in the distribution function
f : �CS maxovJo�CS min, CS minovJov2 and v14vJ4 CS max. The
area CS minovJov2 corresponds to ‘‘downstream’’, while the two
other areas to ‘‘upstream’’ FMS waves in the solar wind. The
corresponding distribution of f ðvJÞ is presented in Fig. 4.

The level of the plateau in each of these areas is determined by
the condition that the total number of particles should remain the
same and can be expressed by the following relation

f j ¼

Z vJmax

vJmin

f ðvJÞ dvJ

�
ðvJmax�vJminÞ,

where j¼ 1;2,3 is the number of an area with a ‘‘plateau’’ (see
Fig. 4), and the values vJmax,min correspond to the maximum and
minimum value of the parallel velocity of particles in each of these
intervals. Satisfying these relations provides for maintaining the

balance of the total equilibrium pressure and, hence, for keeping the
Alfven speed and sound velocity profiles in the plasma unchanged.

The average velocity of plasma resulting from its interaction
with MHD waves is determined by the equation

v0 ¼
1

n0

Z 1
�1

vJf ðvJÞ dvJ:

Obviously, the contribution from symmetric (with respect to vJ ¼ 0)
parts of f ðvJÞ is zero. Fig. 5 shows the distribution of v0ðrÞ calculated
for the parameters of the cylindrical model of the geotail used in this
study, for different solar wind velocities in the magnetosheath.

Fig. 5a presents the solar wind velocity v0ðrÞ profiles taking
into account the transition layer, and plasma velocity profiles in
the geotail lobes v0ðrÞ calculated for two limiting cases. The first
of these (curves 4 and 5 in Fig. 5a) assumes that all waves in the
magnetosheath move ‘‘downstream’’ and plateau do not form in
the ranges �CS maxovJo�CS min and v14vJ4CS max. Obviously,
in this case the impulse transferred by MHD waves to ions in the
geotail lobes is tailward v0ðrÞ40. In the second limiting case, the
‘‘downstream’’ and ‘‘upstream’’ fluxes of waves are equal. It is
evident from Fig. 5a, that in this case the impulse transferred to
plasma ions is Earthward. From satellite observations of solar
wind oscillations, it is difficult to determine which portion of the
wave flux is ‘‘downstream’’ or ‘‘upstream’’.

The most probable seems to be an intermediate case between the
two, when the ‘‘downstream’’ waves in the magnetosheath occupy a
broader part of the spectrum than do the ‘‘upstream’’ waves. The
summarized plasma velocity distribution v0ðrÞþv0ðrÞ in the case
when the ‘‘upstream’’ waves are absent from the range �CS maxo
�300 km=sovJo�CS min is presented in Fig. 5b. Evidently, in this
case the impulse transferred to ions in the regions adjacent to the
transition layer reverses the plasma flow motion back to Earth,
whereas closer to the cylinder axis the motion becomes tailward
again. Note that the model in question is inapplicable to those inner
parts of the geotail where the plasma sheet lies. As will be seen later,
another reason why the obtained results cannot be used for the inner
regions of the geotail is that the characteristic time for the asymptotic
regime of the plasma flow to set in there is too long.

6. Calculation of the characteristic time needed for the
asymptotic regime to set in the plasma flow

The profile calculations of plasma velocity acquired under the
influence of MHD waves in the previous section do not depend on

Fig. 4. ‘‘Plateau’’ formation on the plasma ion distribution function under the

impact of MHD waves penetrating into the geotail lobes from the magnetosheath.

The range CS min ovJov1 corresponds to the downstream FMS waves, and the

ranges �CS max ovJo�CS min and v2 ovJoCS max correspond to the upstream FMS

waves in the magnetosheath.
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their amplitude. This is due to the fact that the flow velocity to be
calculated corresponds to the asymptotic regime at t-1. The
real magnetospheric plasma flow, however, takes a finite interval
of time to set in. The characteristic time t needed for the
completely motionless plasma to switch to the asymptotic regime
of its motion is determined by the amplitude of MHD waves
transferring the momentum from the solar wind into the magne-
tosphere. To estimate this time, let us replace the time derivative
in (18) with t�1, resulting in

t� 2

Z 1
�1

f
2

dvJ

�Z 1
�1

D
@f

@vJ

 !2

dvJ: ð19Þ

For the f function, let us choose the Maxwell distribution of
form (16).

To calculate the diffusion coefficient D, it is necessary to specify
the spectrum of MHD waves in the magnetosheath. There are many
onboard observations of variations in the solar wind parameters. They
are generally stochastic oscillations with a ‘‘white noise’’ spectrum
(Matthaeus and Goldstein, 1982). Two types of statistical observa-
tions of these spectra are cited in the literature. A number of works
present oscillation energy density spectra depending on frequency
(Marsh and Tu, 1990; Klein et al., 1993). According to these data,
oscillation energy WðoÞ can be approximated by a power function of
the form W �o�a in a greater part of the frequency range. The
exponent a is in the range 1 �oa �o 3 with an average of a¼ 5=3,
which corresponds to Kolmogorov’s spectrum for well-developed
turbulent oscillations. When frequency o4oi, where oi is the
gyrofrequency of solar wind ions, the spectrum of WðoÞ drops
sharply due to a resonant ion-cyclotron absorption of waves.

Other papers (see Goldstein et al., 1995) present data on the
oscillation spectrum of solar wind plasma concentration as a

function of wavelength, i.e. in effect, the function /nðktÞS, where

kt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2

z þm2=r2
q

is the tangential component of the wave vector,

kz is the parallel component of the wave vector in the reference
frame moving at the solar wind velocity, r is the radius of the
cylindrical model for which the oscillation spectrum is set (our
calculations assumed r ¼ 2rm). These observations imply that the
spatial spectrum can be approximated by a function of the form

/nðktÞS� k�bt , where b� 5=3.

Since the oscillation energy density is a quadratic function of
the oscillation amplitude, the following modeling expression may

be suggested for the spectrum of magnetic field oscillations of the
solar wind

/9Br9
2S¼ CFðkt ,oÞo�ak�2b

t , ð20Þ

where C is a constant determined by the average oscillation
amplitude, and Fðkt ,oÞ is a step function determining the upper
and lower limits of the spectrum, as well as the wave range for
which the solar wind is an opacity region. The spectrum (20)
should be cut off when o-0. It is known from Matthaeus and
Goldstein (1982) that there is a maximum correlation scale
l̂ � 150RE related to the inhomogeneous structure of the solar
wind. It is possible to introduce minimum frequency ô ¼ 2pv0=l̂

limiting the oscillation frequency range from below. Then the
function Fðkt ,oÞ may be written as

Fðkt ,oÞ ¼Yðo�ôÞYðoi�oÞ½Yðkz�k2ÞþYðk1�kzÞ�,

where YðxÞ is the Heaviside step function, and k1 ¼�o=Swokzo
k2 ¼o=Sw is the range of parallel wave numbers corresponding to
solar wind opacity for FMS waves. Constant C in (20) is deter-
mined by the inverse Fourier-transformation

/9Br9
2S¼

1

ð2pÞ3=2

X1
m ¼ 0

Z 1
0

do
Z 1
�1

/9Br9
2S dkz

¼
C

ð2pÞ3=2

X1
m ¼ 0

Z 1
0

o�a do
Z 1
�1

Fðkt ,oÞk�2b
t dkz,

where /9Br9
2S is the mean square of the amplitude of the Br

component of the solar wind oscillation field at r¼ r . In our
calculations we assume /9Br9S� 0:2B0 � 1 nT. Fig. 6 shows the
distribution over the radius of the characteristic time t needed for
the asymptotic regime to set in the geotail plasma flow, as
calculated by formula (19), in which the diffusion coefficient is
determined by (17), and the spectrum of FMS fluctuations in the
magnetosheath (20) corresponds to the plasma flow profiles in
Fig. 5b. It is evident that the values of t comparable with the
time during which the geotail can be regarded as a fairly stable
plasma configuration (average interval between two successive
substorms � 3�6 h) is achieved in the ranges 0:8rmororm

(for the v0 ¼ 400 km=s solar wind) and 0:85rmororm (for the
v0 ¼ 200;800 km=s solar wind). It is in this range of magnetic
shells that a maximum concentration of resonance surfaces for
SMS waves is reached in our model geotail.
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Fig. 5. Distribution over the radius of the plasma flow velocities v0 in the magnetosheath and magnetospheric convection velocity v0 for different velocities of the solar

wind. Curves 1–3 in panel (a) correspond to the solar wind velocity distribution for v0 ¼ 200;400,800 km=s, curves 4 and 5 are the magnetospheric convection velocities

when v0 ¼ 400;800 km=s, in the absence of ‘‘upstream’’ FMS waves in the magnetosheath, and curves 6–8 (v0 ¼ 200;400,800 km=sÞ are the magnetospheric convection

velocities for equal fluxes of ‘‘downstream’’ and ‘‘upstream’’ FMS waves in the magnetosheath. Panel (b) shows the distribution of complete velocity v0þv0 (curves 1–3 for

v0 ¼ 200;400,800 km=s) when the flux of ‘‘downstream’’ FMS waves prevails over that of the ‘‘upstream’’ FMS waves in the magnetosheath.
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The obtained values of t can be regarded as the upper bound of
the time needed for the asymptotic regime to set in the plasma flow.
Time t decreases quadratically when the amplitude of turbulent
plasma oscillations in the magnetosheath increases. Moreover, a
more accurate approach to solving the initial problem (15) must
take into account contribution from MHD oscillations related to the
evolution of a Kelvin–Helmholtz instability at the magnetopause.
The solar wind being opaque for such oscillations (see Leonovich,
2011a,b), the problem would be formulated in a different manner
than in this work. If the flux of unstable waves in the geotail is
assumed to be comparable with that considered in this work, we
may expect a 2–3-fold decrease in the characteristic time t as well
as a somewhat wider range of magnetic shells on which the
asymptotic regime of magnetospheric convection can set in.

7. Conclusion

Let us list the main results of this work.

1. The spatial structure of monochromatic MHD waves was
calculated in a cylindrical model of the geotail the plasma
distribution in which is typical of the tail lobe. It is shown that
there is a rather wide (in frequency and wave numbers) range
of waves for which the conditions for magnetosonic resonance
are satisfied in the geotail. The highest concentration of
resonance shells is achieved in the geotail regions adjacent to
the magnetopause.

2. In the framework of quasilinear theory, an approximate solution
is obtained to Eq. (15), describing the evolution of the plasma ion
distribution function under the impact of an MHD wave flux. It is
shown that, on the time asymptotic (when t-1), an Earthward
plasma flow moving at 50–150 km/s is established in the geotail
lobe regions adjoining the magnetopause.

3. The characteristic time t needed for the asymptotic regime to set
in the plasma flow is calculated for the average amplitude � 1 nT
of FMS oscillations in the magnetosheath and for a spectrum

typical of well-developed turbulent oscillations. In the regions
adjoining the magnetopause, the time t was found to be
comparable with the mean time interval between two successive
substorms � 326 h, during which the geotail configuration can
be regarded as stable, but increased sharply on the inner
magnetic shells. Such interaction is most effective for solar wind
of an average velocity v0 � 400 km=s for which the interval of
magnetic shells with to5 h extends to r� 0:8rm.

Thus, we conclude that the FMS wave flux moving from the
magnetosheath onto the magnetopause transfers a momentum to
plasma ions in the geotail lobes which is capable of forming an
Earthward flow of magnetospheric convection. This process is
most effective in the region of open field lines adjoining the
magnetopause, where the concentration of resonance shells for
SMS waves is highest. This mechanism may explain the formation
of an Earthward flow of magnetospheric convection in the geotail
lobes (on open field lines) during prolonged periods of the
Northern IMF component.
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