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Abstract-A theoretical study is made of the excitation-in an axisymmetric magnetosphere--of standing 
Alfven waves by a nonstationary fast magnetosound which has a broad spectrum of frequencies. We have 
obtained formulae describing the space-and-time behaviour of Alfven waves. An analysis is made of the 
role of a weak transverse dispersion of Alfven waves and of their damping in the ionosphere. Particular 
emphasis is given to the important case of stochastic oscillations. Some examples are considered, which 
may be useful for modelling of Pi2, SSC and Pc3 phenomena. 

1. INTRODUCTION 

This paper is a direct continuation of a previous article 
by these authors (Leonovich and Mazur, 1989). Our 
intention here is to make a further attempt to develop 
the theory concerned, namely we examine the transi- 
tion from monochromatic to nonstationary oscilla- 
tions which have a wide spectrum. Such a transition 

appears to be important for oscillations of any type, 
but it is especially relevant to the AlfvCn waves of our 
interest. A monochromatic source excites an Alfven 
wave in the narrow vicinity of a resonance magnetic 
shell ; hence, a broadband source whose spectrum 
involves a frequency range, must excite a corres- 
ponding range of resonance shells. This means that 
the space-and-time behaviour of monochromatic and 
broadband Alfven waves will differ drastically. 

Generation of Alfvtn oscillations by a broadband 
source was considered in a number of earlier papers 
(Chen and Hasegawa, 1974; Krylov et al., 1981; 
Hasegawa et al., 1983; Allan et al., 1986). However, 
they used a simple magnetosphere model in the form 

of a flat plasma layer in a homogeneous magnetic 
field. Our objective here is to investigate nonstationary 
Alfvtn waves in an axisymmetric model of the 
magnetosphere. In addition, we take account of the 
transverse dispersion and dissipation of Alfven 
waves ; these effects are partly or completely ignored 
in the papers cited above. 

classes. One should include nonstationary oscillations 
with a deterministic behaviour in time, for which the 
coordinate- and time-dependence of the field can, at 
least in principle, be considered known. Such oscil- 
lations are exemplified by magnetosound waves pro- 
duced during SSC, magnetic substorms, and other 
nonstationary processes of a large scale. The other 
class involves stochastic oscillations generated by 
different instabilities such as the Kelvin-Helmholtz 
instability on the magnetopause (Kivelson and Pu, 
1984) or an instability of a proton flux reflected from 
the front of a bow shock (Gul’elmi, 1984). The time- 
dependence of the field of such oscillations is a random 
function for which only certain statistic characteristics 
can be specified. Accordingly, statistic characteristics 
of an Alfven wave are subject to a definition. This 
paper will consider both classes of oscillations. 

The purpose of this paper is to derive general for- 
mulae which define the space-and-time evolution of 
nonstationary Alfvtn oscillations. In order to apply 
these formulae for interpreting the particular kinds of 
geomagnetic pulsations, it is necessary to make special 
investigations ; so we shall confine ourselves only to 
some examples having an illustrative character. 

2. THE SPACEAND-TIME BEHAVIOUR OF A 

NONSTATIONARY ALFVfZN WAVE 

According to resonance theory, the field of a In the present paper we shall rely on results reported 
magnetosound wave serves as a source for Alfvtn by Leonovich and Mazur (1989) and shall use the 
waves. In this paper, as in the previous one, it is notations introduced therein. The transition from 
considered given. According to the character of the monochromatic oscillations to nonstationary ones 
time behaviour it seems appropriate to divide all can be performed by means of inverse Fourier trans- 
broadband magnetosound oscillations into two large formation, in accordance with the formula 
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Bi(x’,X*,X3,t) = s m I 

$(x’,xZ,x3,W)e-‘“‘dw. FN(X’,X2, t) = s p,,r(x’, x2, t')QN(x', t-t’) dt’ 
-cc -cc 

We put 

m /&(x1,x2, t) = 
f 

j&(x’, x2, o) e-‘“‘dw 
-Cc 

5 
co 

= o ~N(x’,x2,t-7)QN(x’,t)d7 (4) 

is satisfied ; the value of the field at time t is determined 
by the source behaviour for the preceding period of 
time t’ < t. as3(x’,x*,x3, t) 

ax* 
dx3. (1) 

From formulae (19) (24) and (27) of the previous 
paper we readily obtain 

B2(x’,x2,x3,t) = C~~(X’,x*,t)HN(X’,X3), (2) 
N 

where 

FN(X’, x2, t) = 
s 

cc 
j&(x’, x2, w&(x’, w) eCO’dw 

-m 

5 

Cc 
= _m /&‘,x*, fIQ&', t-0 dt. (3) 

Here we have designated 

Qzdx’, 7) = - in 
s 

-1 &,(x’, w) eeio’do. 

The function Q,(x’, Z) is as important in the theory 
of nonstationary oscillations as &(x’,w) is in the 
theory of monochromatic oscillations. Basically, the 
problem of the time evolution of an Alfven wave 
implies calculating Q,(x’,z). This function has a 
number of properties associated with those of its Fou- 
rier-transform C&(X’, w). The function Qnr(x’, r) is 
real. Let us introduce the designations 

Qk-)(x’, 7) = - lz ', &(x',w)e-im do. 
5 

It is easy to see that [Qj,?)(x’,z)]* = Qk)(x’, 7). This 
yields the equality 

Q.&x', 4 = Q'N+'(x', t)+[Q!$)b', Ol*, 

from which it is evident that in order to determine QN, 
it is sufficient to calculate Qg). 

Analyticity of the function &(x’, o) in the upper 
half-plane of the complex variable w means that 
Q,(x’, 7) = 0 when 7 < 0. Owing to this property, the 
causality principle 

Let us consider several simple examples. For a 
monochromatic source with frequency w,,, we have 
~~((x’,x*,w) = M,(x’,x*)~(w--w,). Then 

FN(x’,x2, t) = MN(x’,x2)&(x’, coo) e-‘“0’ 

= MN(x~(oo), x*)&(x’, coo) eC’“o’. 

In the last equality it is assumed that a typical scale 
of variation of the function M,., in variable x’ is much 
greater than that of the function &. Thus, we again 
obtain the result we know from the theory of mono- 
chromatic oscillations (see Leonovich and Mazur, 
1989), that the function &,(x’,o,) describes the 
transverse structure of a monochromatic wave. If the 
source has the character of an instantaneous impulse 
p,&x’, x2, t) = m,(x’, x2)8(t), then 

F,,,(x’,x’, t) = m,(x’,x2)Q,(x’, t). (5) 

Thus, the function QN(x’, t) represents the response 
of Alfven eigen-oscillations of the magnetosphere to 
an impulsive source. It is possible to generalize, to a 
significant extent, this result, and this is of practical 
interest in this case. We first remember that at a fixed 
value of x’ the function 0,(x’, o) is concentrated in 
the variable w in the vicinity of points w = +&(x’) 
on small intervals, whose typical size will be denoted 
as wN. Let the magnetosound wave be a time-bounded 
impulse, i.e., its amplitude is different from zero within 
the range (0, At), with At << w; ‘. A typical scale of 
variation of the Fourier-transform P,,(x’, x2, w) in the 
variable w, equal to (At) ‘, is much larger than CD,,,. 
Therefore, from (3) it is easy to obtain 

F‘V(x’, x2> 0 = l&(x’, x2, %)I 

X [Qlv+‘(xl, t) ei+~(X’42) +Qk’(x’, t) e-%,(X’.X2)], (6) 

where $,,(x’,x’) = arg,&(x’,x’,C&(x’)). Note that 
the condition At c w, ’ is a not too restrictive one 
because the value of w, ’ is quite large. 

3. CALCULATING THE FUNCTION Q&,z) 

The expressions for &(x’,w) which we obtained 
in our previous paper, permit us to define the function 
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Q,(x’,7). Using formulae (29) and (30) from our 
previous paper, in the region of monotonic variation 
of the function ON(x’) we have 
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Equations (8) are known to retain the frequency 
w(x, KX) along the trajectory of the motion of the 
packet. This means that at time t at point x the field 
oscillations will proceed with such a frequency as at 
time t = 0 at point x,, = x+i?l~p,$*/21,, i.e., with the 

frequency 

x exp (-X&z-y,7 -iz3/67i). 

Whence 

Q,(x’, 7) = -l2,(x’)O(7) eC’N@‘)’ 

x sin [Q,(~‘)7+7~/67~]. (7) 

The relationships (2), (4) and (7) solve the problem 
of the evolution of the AlfvCn wave field in the region 
of monotonic variation of the function R(x’). 

In formula (7) the transverse dispersion is involved 
in the term 73/67i in the sine argument. It begins to 
have effect when 7 3 zN. In order that Q,(x’, 7) should 
then differ substantially from zero, it is necessary that 
the condition ~~7~ 6 1 we know from a previous 
paper be satisfied. 

A clear interpretation may be given to the 
expression (7). As follows from the example given 
above, Q,(x’, t) can be regarded as a response of the 
AlfvCn wave field to a source of the type of an impulse 
which is instantaneous in time and constant in coor- 
dinates : pN(x’, x2, t) = h(t). From (5) it is evident that 
such a source produces a disturbance F,., = QN(x’, t) 
which when t > 0 is evolving freely. It may be treated 
as a set of a large number of one-dimensional wave 
packets which, at the initial moment of time, are uni- 
formly distributed along the axis x = xl-x;. The 
subsequent dynamics of the packets is defined by the 
equations 

dx ao dK, ao 

dt=i?K,’ dt 
- --. 

ax (8) 

Here w = w(x, K,) is a local frequency. For it, in the 
region of the monotonic variation of n,(x’), one can 
adopt the following model expression 

(9) 

From (8) and (9) it follows that the packet shows a 
uniformly accelerated motion. Let, when t = 0, the 
initial coordinate of the packet be x = xg and let the 
initial wave vector be K, = 0 (this latter corresponds 
to smoothness of the initial disturbance). Then, at 
time t 

ii&X’, t) = c&(x,) = n,(x) + $. 
N 

On the other hand, the expression (7) may be written 
as 

Q,,,(x’,t) = -ONR(t)e-Y”sin[~fi,(x’,t’)dt’], 

i.e., as the oscillations with variable frequency 

@v(x, r). 
In order to get a clear idea of the behaviour of 

Alfven waves excited in the magnetosphere by a non- 
stationary magnetosound, we consider a specific 
example. We choose the source function pN(x’, x2, t) 
in the form 

P.&X’, x2, t) = MN(x’, x2) emrl’l sinw,t. (10) 

Such a source simulates a broad class of magneto- 
spheric phenomena including type Pi2 pulsations and 
oscillations associated with SSC. Using for the func- 
tion QN(x’, 7) the expression (7) we can write (3) as 

FN(x’,x2, t) = - 
MN(x’,x*) IN 2’3 

2 
0 2PN 

s 

m 

X exp[--YN7N~-~7Nl~-~OII II 

x cos 
[ ( 

l43 
w,t-((o,--R,)z,u+ 6 

> 

-cos mot-((w,+Q,)z,u-; 
( >I du, 

where ug = t/TN. It will be assumed that yN << I and 
T7, >> 1. Then, the expression under the integral has 
a sharp peak when u = ug and one may put u3 = u: 
in the argument of cosines. After that, the integral is 
easily calculated to give 

FJx’Vx2T t, = - (r2+(Wg-nN)*)(r*+(00+nN)*) 

x [(2rw,c0sm,t+(w;-fi,:-r*)sino,t)e-r1~1 

+4rw,fl(t) eCN’ cos (i&t+ t3/67,$)]. (11) 

The first term in square brackets represents induced 



If the region of variation of x’ considered here is 
located inside the dissipative layer, then formula (34) 
from a previous paper is valid for &(x’,w). Using 
also the results presented in the Appendix to that 
paper we have 

Alfven oscillations associated with the direct action 
of magnetosound waves. Their lifetime is bounded by 
the time of action of the source and when t >> r-’ 
(but t < 7~ ‘) in the magnetosphere there remain only 
Alfven-eigen modes described by the second term in 
the square bracket. Note that this last result can be 
obtained directly from formula (5) describing the 
response of the eigen-oscillations of the magneto- 

Qp)(xi,z) = zexp (-i*,z+i T) 

sphere to the action of a short-duration source. As is 
apparent in (1 l), if yN K z; ‘, then at 1 3 tN the mag- X 

netic shell under consideration shows a growth in 
frequency of the eigen-oscillations associated with dis- 
persion effects. As far as the amplitude of the excited 
oscillations is concerned, it depends largely on the 
relation of frequencies wO and fi,,,. The amplitude Hence 
becomes largest when ]wO-!&] << r, which cor- 
responds to the resonance condition for induced and 
eigen-oscillations. When wO >> R, and wO << fiN the 
amplitude of waves is considerably smaller. Quali- 
tatively, the oscillations excited by a source of the 
form (7) are depicted in Fig. 1. 

Q,(x’,r) = -5&&r)exp 

FIG. 1. THE TIME BEHAVIOUR OF STANDING ALFV~N WAVES 

EXCITED IN THE MAGNETOSPHERE BY A NONSTATIONARY 

MAGNETOSOUND SOURCE OF THE FORM (a). 

Shown arc different cases : (b) the frequency of the excited 

wave, uO, is much higher than the frequency of Alfvkn eigen- 

oscillations, C&; (c) Iw,,-&,I << r resonance of forcing and 

eigen-oscillations ; and (d) w0 CC L&. 
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(12) 

This expression differs substantially from (7) by the 
presence of a term describing the super-exponential 
damping of the function QN(x’,r). The dissipative 
layer is notable for the value of sin c(,.,, N 1. If yN << 1, 
then the damping time of the function Q,(x’,r), on 
the order of magnitude, is Z~ In this case integration 
in formula (4) of a source acting for a long time yields 
an AlfvCn wave amplitude smaller than that outside 
the dissipative layer. 

Near the extremum of the function &2,(x’) the 
expression for 0,(x’, o) is given by formula (35) from 
a previous paper. When calculating Q,(x’,r), the 
integral over w leads to the sum of residues at the 
poles w = f R, - iy,, which gives 

Q,,(x’, z) = -!&@(z) emyNT f C,y,(x/%?) sin (sZ,z). 
n=O 

Let us obtain for this series a closed expression. We 
rewrite it as 

Q,,(x’, z) = - in,.,@(r) eeyNT [e@N’ q(c, v]) 

-einNzq*(Lrl)l, (13) 

where r) = Af&,,z, [ = xl%, and the function q(<, q) is 
defined by the equality 

4(1,r) =~~OC~~~(i)exp(-i~~1!2). 

It satisfies the following equation and initial condition 
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The solution of the last problem is sought in a class 
of expressions q = exp (a[‘+%?), where the functions 
a = a(q) and %? = V(q) depend only on 9. They satisfy 
simple differential equations, whose solutions are 
readily determined. As a result, we obtain 

q&q) = ]cosq]-“2exp [ - f<‘tanq]. 

Substitution of this expression into (10) gives 

C&(X’, 7) = -Zi,@z) e_Yn ]cos AR,71 - ‘I2 

x sin [!&7 - (x2/2V2) tan A$7]. (14) 

The relationship (14) may also be given a clear 
interpretation in terms of wave packets. Near 
the maximum of our interest the dynamics of wave 
packets is determined by a local frequency 

o = n,(l -xz/2n&K,2p;/2). (15) 

From (15) and (8) follows the law of motion of a wave 
packet with initial values x = x0 and K,y = 0 : 

x = xocos A&t. 

Thus, ASZ, has the sense of the oscillation frequency of 
a wave packet near the maximum az,(x’). By analogy 
with the above reasoning, for a variable oscillation 
frequency at point x, we have : 

r&(x, t) = c&(x,) = 0, I- g ( > N 

x2 
2ai cos2 AC&t > ’ 

This expression agrees with formula (14) which can 
be rewritten as 

Q,(x, 7) = -&B(7) ee+’ ]cos AR,z]- iI2 

x sin[l&(x,t)dt]. 

The pattern of motion of the wave packets suggests 
another, intriguing, conclusion. As a consequence of 
the independence of the oscillation period of a har- 
monic oscillator of the amplitude, all packets which 
are initially uniformly distributed along the x-axis, 
at time z0 = x/2AR, as well as following any whole 
number of periods, will be located at point x = 0. This 
just explains the singularity of the function Q,(x, 7) 

when 7 = z,,. Incidentally, this singularity is integrable 
and does not lead to complications in the relationship 
(4). Besides, if the oscillator’s anharmonicity at finite 
values of x is taken into account, then the oscillation 
period of the packets will become dependent on ampli- 

tude and their simultaneous “incidence” on point 
x = 0 will not occur. As a result, the magnitude of the 

field at time 7 = zO, though it increases greatly, 

remains a finite one. 
Resonator properties of the maximum f&(x’) 

manifest themselves when yN << An,,, [we have already 
obtained this result by considering the function 
f&(x’, co)]. In the inverse case yN >> An, it s&ices to 
limit attention to times 7 << (A!&- ’ because when 
7 3 (An,)- ’ we have yN7 >> 1 and the expression (14) 
is virtually zero. Using the smallness of the value AR,7 
we obtain 

Q,(x’,z) = -n,0(7) eeYNrsin [R,(~‘)7-7~/67:]. 

(16) 

Here 

Q,(x’) = a,(1 -x2/2&), 7.J = (z‘JpN)2’3nN’, 

1; ’ = x/a;. 

We want to stress that the last definition of the par- 
ameter I,,, agrees with formula (31) from a paper of 
Leonovich and Mazur (1989). The difference of the 
expression (16) from (7) is caused by the different sign 
of dispersion. Thus, when yN >> AfiN relationships of 
the form (16) or (7) are also applicable near extrema 
of the function a(~‘). In the immediate vicinity of 
the extrema the dispersion is unimportant, but at a 
distance from them the parameter IN increases ; also 
where ~~7~ 3 1 the dispersion plays its role. 

4. EXCITATION OF ALEYEN WAVES BY A STOCHASTIC 
SOURCE 

In many practically important cases the magneto- 
sound wave field has a stochastic character. Formula 
(3) in this case cannot be regarded as a final solution 
of the problem because the quantity nN(x’,x2, t) 
involved in it is a random function of time and cannot 
be considered given. Statistic characteristics of an 
ensemble of random functions describing a magneto- 
sound wave should be considered given. We shall 
assume the ensemble to be a stationary one. For the 
present purposes it is sufficient to know a pair cor- 
relator of field B3(x’, x2, x3, o) : 

(@(X )X2, x3, W)B”)(X”, XT, x3’, co’)) 
^ 

= 9*(x’,x’,x’,w)k?(x”,x2’,x3’,W)8(o-co’). (17) 

An important feature in (17) is the statement about 
factorization (into two terms) of the correlation 
function. 

In order to prove this statement, we must note that 
the Fourier-component fi3 (x’, x2, x3, o) is a random 
function of frequency but a nonrandom function of 



(@(x’,x2,x3,u)&(x’,x2,x3,w’)) 

= P(x’,x2,x3,u)S(u-co’), 
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coordinates. With a given frequency, it satisfies a cer- 
tain equation with appropriate boundary conditions 
and matching conditions on resonance surfaces [more 
specifically, equation (8b) and the matching con- where 
ditions (38) in a paper of Leonovich and Mazur 
(1989) in this issue]. Consequently, it is proportional 
to some standard, normalized in a certain manner, 
solution @(xl, x2, x3, o) of this equation : 

P(x’,x*,x3,0) = cH;(x’,x3) 
N 

&(x’,xZ, x3, w) = q(w)$(x’, x2,x3, w), (18) 

where r](w) is a random complex-valued function of 
frequency which specifies the amplitude and phase 
of a magnetosound harmonic. By virtue of statistic 
stationarity of the process its pair correlator has the 
form 

This quantity has the meaning of a spectral function 
of AlfvCn oscillations. 

The obtained result allows us to easily calculate the 
mean square of the field amplitude of an Alfven wave. 
We have 

(rl(w)r(w’)) =f(w)&-e0 (19) 

The functionf(o) is real and non-negative. On denot- 
ing @(x’,x2,x3, 0) =f”‘(w)$(x’, x2, x3, o), from 
(18) and (19) we obtain the desired relationship (17). 

Thus, the function @(x’,x2,x3,w) at a given fre- 
quency describes the spatial dependence of the field of 
a monochromatic magnetosound wave. Its amplitude 
specifies the spectral composition of the field ; in other 
words, the quantity ]V(x’, x2, x3, w)]’ can be regarded 
as a spectral function at point (x’, x2, x3). 

We shall confine ourselves to calculating two statis- 
tical characteristics of an AlfvCn wave, namely a cor- 
relation function of two Fourier-harmonics at one 
point of the space and a mean square of the field 
amplitude. For the first one, we have 

m 
(@(xl, x2, x3, t)) = 

s s 

co 
do dw’ 

-cc --m 

x (&(x1, x2,x3, o)&(x’,x*, x3, 0’)) ei(“-o”r 

=2 
s 

cc 
P(x’, x2, x3, w) do. 

0 

We shall assume that formula (34) from a paper of 
Leonovich and Mazur (1989) is applicable for the 
values of x’ of interest. Then, using results of the 
Appendix in that paper we obtain 

s m ]&(x’,m)(‘dW = 2 $ 
z/3 m 

0 (>S -m 

(&(x’, x2, x3, 0)&(x’, x2, x3, w’)) = 1 
N,N 

x l~[e’“d3(5+i2”3y,z,]lZdr = 5 

x HN(X’,X3)HN.(X’,X3) x &~(x’,o)&(x’,w) 

x ~~(x’,x2,w)~~~(x’,xz,o)8(o-w’). 

Here it is designated 

Therefore 

(@(x’,xZ,x3,t)) = 2”37cCff;(X’,X3) 
N 

/r&(x’, x2, w) = e,(x’, x’) 
a@(x’, x2, x3, 0) 

ax2 dx3. 

x *[ (s::;;l,3]. (21) 
Let us consider the values w > 0. At a given x’ the 
functions &(x’,w) and &,(x’,u) are localized in 
variable w in the narrow vicinities of points 
o = 0,(x’) and w = Q,(x’), respectively. Therefore, 
their product can be assumed equal to zero if N # N’. 
For the same reason, one can consider the dependence 
of BN(x’,x’, w) on w to be much smoother than Wx’) 
&(x1, w) and can put 

@:(x’,x2,x3,0) = j&c 7 
N YN(X ) 

/%(x’,x2, ek%vo’, w) = /%(X’>X2, Q&‘))&(x’, w). 

If yNrN >> (sin Q) ‘I3 for all harmonics N of interest, 
then we have 

x fG(x’, x3) I/%(x’, x2, Qdx’>)I 2. (22) 

As a result, we obtain In the inverse limit yNrN << (sin aN) ‘/3 
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(B;(x’, x2, x3, t)) = 7161i31- 

x H~(x’,x3)~~~(x’,x2,~zN(x’))(2. (23) 

Formulae (20)-(23) resolve the question of the dis- 
tribution in the magnetosphere of the spectrum and 
amplitude of AlfvCn oscillations excited by a stoch- 
astic stationary source. 

If for numbers N of our interest the inequality 
yNtiV >> 1 is satisfied, then the expression (22) is valid, 
which describes in this case the field amplitude both 
outside and inside the dissipative layer. Of more inter- 
est is the inverse limit y,,r,,, << 1, when outside the 
dissipative layer where since, = 0, formula (23) is 
again applicable, and inside it when sin a,,, >> (y,g,J 3, 

formula (23) applies. It is remarkable that despite the 
inequality yNrN K 1 the dependence on the dispersion 
parameter vanishes in formula (22). This fact can be 
given the following explanation. Transverse dis- 
persion causes the wave to move across the magnetic 
shells and, therefore, leads to energy escape from the 
initial shell. But for a broadband source the neigh- 
bouring shells are also filled with oscillations and the 
energy input there compensates for the output. In 
other words, the real dissipation is determined only 
by damping in the ionosphere, which is just reflected 
in (22). The presence of the dispersion parameter tN 
in (23) is due not to the dispersion as such but to the 
fact that wave damping on electrons in the dissipative 
layer is associated with this parameter. 

As has already been pointed out, an extensive 
interpretation of the different types of geomagnetic 
pulsations on the basis of the formulae obtained is 
beyond the scope of the present study ; however, we 
shall briefly discuss one phenomenon. The question is 
concerned with an important class of daytime Pc3 
pulsations. A review of Gul’elmi (1984) presents evi- 
dence that their source is an instability in a flux of 
protons reflected from the front of a bow shock. The 
instability generates a magnetosound wave which then 
penetrates into the magnetosphere. Using a model of 
a stochastic stationary source for interpretation of 
this phenomenon appears to be quite justifiable. 

An important role in the formulae derived above is 
played by the function a”,(x’,x*,w) which is deter- 
mined by the field of magnetosound. We shall consider 
the magnetosphere for it to be an opacity region. This 
means that p”,(x’,x*,w) as a function of x’ drops 
monotonically into the magnetosphere. As a function 
of w it has a maximum at the frequency f = 0727~ 
where the wave excitation mechanism is the most 
effective. This is illustrated in Fig. 2, in its upper part 
on the left. Plots of the functions&(x’) = C&(x’)/27r 

are shown on the right. The horizontal bar corres- 
ponds to the range of frequencies excited by the insta- 
bility. Estimates show that the central frequency 7 
coincides roughly with the value of the minimum of 
the function Q,(x’)/2rr on the inner edge of plasma- 
pause. Using this figure, one can gain a qualitative 
idea of the spatial behaviour of the functions 
pN(x’, x2, Q,(x’)) for x2 = const. Relevant schematic 
plots are shown in the lower part of Fig. 2. Two 
maxima of the function /?l(x’, x2, C&,(x’)) in variable 
x’ are due to the fact that the horizontal band in two 
places intersects curve Q,(x’), i.e., the last argument 
of the function b,(x’, x2, o) in two places affords a 
maximum for it. The left-hand maximum lies below 
the right-hand maximum because of the drop of the 
function B,(x’, x2, o) inward to the magnetosphere 
in the first argument. The heights of maxima of the 

functions, p2, B;, . . . decrease because of the increase 
of number N. 

Let us turn now to formulae (20)-(23). The first of 
them describes the pulsation spectrum. The presence 
in it of the terms 1 f&,(x’, w) I* means that the spectrum 
consists of narrow peaks near frequencies w = C&(x’) 
of width Aw = r; ‘. This conclusion agrees well with 

0 L 

FIG. 2. THE UPPER PLOT SHOWS THE DEPENDENCE9 OF FRE- 

QUENCIES OF THE THREE FIRST HARMONICS OF THE EIGEN- 

OSCILLATIONS OF THE MAGNETOSPHERE fN ON THE PARAMETER 

L AND A SPECTRAL FUNCTION OF THE SOURCE OF FMS WAVES 

/%a) (LEFT). 

The lower plot shows amplitude profiles of appropriate har- 
monics fiN for a given spectral function b(o) and the total 

amplitude profile (broken line). 
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satellite observations, both geostationary (Takahashi 
and McPherron, 1984) and those orbiting with large 
eccentricity (Engebretson er al., 1986). The heights of 
spectral peaks are determined mainly by the functions 
1 B,.,(x’, x2, f&(x’))~*. This means that the inner part 
of the magnetosphere must be dominated by a peak 
Q,(x’) and the outer part must be dominated by 
&(x1), Q3 (xl), etc., that is, the eigen-frequency which 
is roughly equal to frequency c5 = 27$ This last fact 
makes ground-based observations understandable. 
The presence of the ionosphere and atmosphere 
“washes out” the harmonic structure of the spectrum 
with the result that the dominant oscillation frequency 
proves to be the same at all latitudes (i.e., 7). 

Formulae (22) and (23) provide insights into the 
meridional profile by Pc3 amplitude. It is also deter- 
mined mainly by the functions 1 fl,,,(x’, x2, i&(x’)) 1’. 
The term with N = 1 gives two maxima, one for mid- 
latitudes and the other for high latitudes, with a sig- 
nificant valley between them lying approximately on 
the outer edge of the plasmapause. The second 
maximum is larger than the first one. Terms with 
N = 2,3, . . . somewhat expand and increase the high- 
latitude maximum. The term a,$,, does not make a 
clear contribution of its own but, most likely, cannot 
alter the overall picture drastically. As far as the dis- 
sipative layer is concerned, the decrease of amplitude 
in it is able to further deepen the minimum when 
its position coincides with the plasmapause or may 
produce another minimum in a different place. The 
theoretical picture of the behaviour of the pulsation 
amplitude described here agrees with main ground- 
based observations of the amplitude profile of Pc3 
(Pudovkin et al., 1976). 

5. CONCLUSIONS 

Let us formulate the main results of this paper. 
(1) We have obtained general formulae which 

define the space-and-time behaviour of the field of 
standing Alfvtn waves in an axisymmetric magneto- 
sphere. AlfvCn oscillations are produced by a 
magnetosound wave penetrating from outside into the 
magnetosphere, with an arbitrary behaviour in time. 
The formulae include the dispersion effect of Alfven 
waves as well as the effect of their dissipation in 
the ionosphere. They are obtained using an inverse 
Fourier-transform of formulae of the theory of mono- 

chromatic waves as developed in our previous paper 
(Leonovich and Mazur, 1989). 

(2) General relationships involve the function 
Q,,,(x’, t) which is the response of the Nth longitudinal 
harmonic of the AlfvCn wave field to an instantaneous 
impulse. This function has been calculated for all 
physically different cases of the behaviour of magneto- 
spheric parameters, namely in the region of mono- 
tonic variation of the function 5&(x’), near its 
extrema, and also in the dissipative layer in which the 
Cherenkov damping of the waves due to electrons is 
important. As a result, the general relationships 
acquire a constructive content. We have considered 
an example which is useful for modelling the Pi2 pul- 
sation, SSC, and other disturbances excited by a short- 
duration impulse. 

(3) A study has been made of the excitation of 
AlfvCn waves by a stochastic magnetosound which 
can be generated by a variety of instabilities. The 
spatial distribution of the spectrum and amplitude 
of Alfven oscillations has been determined. As an 
example of application of the formulae obtained we 
have considered geomagnetic Pc3 pulsations. It has 
been shown that the theory makes it possible to 
explain the main features of the observational picture, 
i.e., the spatial distribution of the spectrum and ampli- 
tude of the oscillations. 
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