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Abstract. We present a straightforward comparison of model calculations for the α-effect, helici-

ties, and magnetic field line twist in the solar convection zone with magnetic field observations at

atmospheric levels. The model calculations are carried out in a mixing-length approximation for the

turbulence with a profile of the solar internal rotation rate obtained from helioseismic inversions. The

magnetic field data consist of photospheric vector magnetograms of 422 active regions for which

spatially-averaged values of the force-free twist parameter and of the current helicity density are

calculated, which are then used to determine latitudinal profiles of these quantities. The comparison

of the model calculations with the observations suggests that the observed twist and helicity are gen-

erated in the bulk of the convection zone, rather than in a layer close to the bottom. This supports

two-layer dynamo models where the large-scale toroidal field is generated by differential rotation in a

thin layer at the bottom while the α-effect is operating in the bulk of the convection zone. Our previous

observational finding was that the moduli of the twist factor and of the current helicity density increase

rather steeply from zero at the equator towards higher latitudes and attain a certain saturation at about

12 – 15◦. In our dynamo model with algebraic nonlinearity, the increase continues, however, to higher

latitudes and is more gradual. This could be due to the neglect of the coupling between small-scale

and large-scale current and magnetic helicities and of the latitudinal drift of the activity belts in the

model.

1. Introduction

The α-effect is generally considered as the central mechanism of a mean-field
dynamo (Moffatt, 1978; Parker, 1979; Krause and Rädler, 1980; Zeldovich,
Ruzmaikin, and Sokoloff, 1983; Roberts and Soward, 1992; Ossendrijver, 2003;
Rüdiger and Arlt, 2003). In astrophysical bodies this effect, along with differential



186 K.M. KUZANYAN, V.V. PIPIN, and N. SEEHAFER

rotation, provides for the generation of magnetic fields from turbulent convective
motions under the influence of rotation. While for the solar convection zone rather
reliable and detailed information on the variation of the rotation rate with radius
and latitude can be obtained using helioseismic inversions of solar oscillations mea-
surements (e.g., Schou et al., 1998), there is presently no comparable method to
probe the α-effect. Also, detailed theoretical predictions concerning the α-effect in
the solar convection zone are still missing.

The α-effect corresponds to a mean electromotive force (emf), E = α〈B〉 pro-
portional to the mean magnetic field 〈B〉 (angular brackets denote averages) due to
fluctuations of the velocity and magnetic field; the coefficient α occurring here is
in general a tensorial quantity. This effect was introduced by Steenbeck, Krause,
and Rädler (1966) as a mechanism linked to the mean kinetic helicity density of
turbulent fluid motions. The densities (per unit volume) of kinetic, magnetic, and
current helicity are defined by

hk = v · (∇ × v), hm = A · (∇ × A), hc = B · (∇ × B), (1)

where v is the fluid velocity and A a magnetic vector potential; hm and hc are closely
related. For isotropic situations, where α is a scalar, traditionally the estimate

α ≈ −τcor

3
〈u · (∇ × u)〉 (2)

is used (Steenbeck, Krause, and Rädler, 1966; Krause and Rädler, 1980), where
τcor is the correlation time of the velocity fluctuations u. Relations between the α-
effect and magnetic as well as current helicity were noticed by Frisch et al. (1975)
and Pouquet, Frisch, and Léorat (1976); see also Moffatt (1978), Kleeorin and
Ruzmaikin (1982) and Zeldovich, Ruzmaikin, and Sokoloff (1983). More recently
it was found that the α-effect is connected with the current helicity of the fluctuations
by a relation of the form∑

i, j

αi j 〈Bi 〉〈B j 〉 = −η〈b · (∇ × b)〉 (3)

(Keinigs, 1983; Matthaeus, Goldstein, and Lantz, 1986; Rädler and Seehafer, 1990;
Seehafer, 1994, 1996), valid if the magnetic fluctuations b are statistically homo-
geneous in space and time; η is the magnetic diffusivity. In the isotropic case, α is
then a scalar given by

α = − η

〈B〉2
〈b · (∇ × b)〉 , (4)

while Equation (3) reduces to the approximate relation

αϕϕ〈Bϕ〉2 ≈ −η〈b · (∇ × b)〉, (5)

if the toroidal component 〈Bϕ〉 of the mean magnetic field is large compared to the
other components, as is presumably the case for the Sun.
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Both the kinetic (Rüdiger, Brandenburg, and Pipin, 1999; Duvall and Gizon,
2000) and current helicities are observable at the surface of the Sun. In this paper
we use data deduced for the current helicity. The observational material available for
the kinetic helicity is too sparse at present. Current helicity can be determined on the
basis of magnetic field measurements both in the atmosphere (Seehafer, 1990; Rust
and Kumar, 1994; Pevtsov, Canfield, and Metcalf, 1995; Abramenko, Wang, and
Yurchishin, 1996; Bao and Zhang, 1998; Zhang and Bao, 1998; López Fuentes et al.,
2003; Hagino and Sakurai, 2004) and in interplanetary plasma clouds ejected from
the Sun (Rust, 1994; Bothmer and Schwenn, 1998; Dasso et al., 2003; Ruzmaikin,
Martin, and Hu, 2003; Leamon, Canfield, and Pevtsov, 2004). In addition, there are
indirect indicators of current helicity, for instance chirality patterns in and around
sunspots (Hale, 1927; Richardson, 1941; Ding, Hong, and Wang, 1987) or filaments
(Martin, Bilimoria, and Tracadas, 1994) as well as sigmoids, i.e., S or reverse-S-
shaped brightenings (Rust and Kumar, 1996; Canfield, Hudson, and McKenzie,
1999; Pevtsov, 2002); see also reviews by Zirker etal. (1997), Martin (1998), Rust
(2001) and Low (2001).

At superphotospheric levels the magnetic force dominates over all other forces,
except for times of explosive events. Therefore the magnetic field is approximately
force-free there in general, satisfying

∇ × B = αffB, αff = hc

B2
, (6)

where αff is a (pseudo) scalar that is constant along magnetic field lines. From the
observations it is found that αff and hc are predominantly negative in the northern
and positive in the southern hemisphere of the Sun. If the parameter αff of the
force-free field is spatially constant, hm and hc have the same sign (cf. Seehafer,
1990). This can be expected to be still approximately valid if αff has a predominant
sign within individual active regions, as indicated by the observations. Thus, the
magnetic helicity density hm is presumably also predominantly negative in the
northern and positive in the southern hemisphere.

The α-effect corresponds to the simultaneous generation of magnetic helicities
in the mean field and in the fluctuations, the generation rates being equal in magni-
tude and opposite in sign (Seehafer, 1996). The mean total magnetic helicity, which
is an invariant of ideal magnetohydrodynamics, is not influenced by the α-effect.
The two magnetic helicities generated by the α-effect, that in the mean field and
that in the fluctuations, have either to be dissipated in situ or to be transported
out of the generation region. The latter can explain the observed appearance of
magnetic helicity in the solar atmosphere and in interplanetary space. A similar
segregation of magnetic helicities with opposite sign occurs in a scenario termed
the �-effect (Longcope, Fisher, and Pevtsov, 1998; Longcope et al., 1999; Long-
cope and Pevtsov, 2003). Here the action of a helical turbulent velocity field on
isolated magnetic flux tubes generates twist of one sign which is compensated by a
generation of writhe (helical deformation of the tube axis) with the opposite sign.
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This process is assumed to operate during the rise of the flux tubes through the
convection zone.

Besides the α-effect (or the �-effect), the �-effect (that is, differential rotation)
may also generate magnetic helicity in the convection zone (Berger and Ruzmaikin,
2000). In a number of studies the generation of magnetic helicity by the differen-
tial rotation of the photospheric footpoints of coronal magnetic structures was
considered (Raadu, 1972; van Ballegooijen and Martens, 1990; van Ballegooijen,
Cartledge, and Priest, 1998; DeVore, 2000; Démoulin et al., 2002). In the model
calculation presented in this paper the generation of small-scale helicity due to the
shear action of the differential rotation in the convection zone is included.

The close connection between current helicity and α-effect on the one hand and
the present level of observational resolution on the basis of systematic studies of
magnetic fields and their current helicity on the other hand provide an opportunity
to gain insight into the dynamo operation in the convection zone and, in particular,
the role of the α-effect. The objective of this paper is to develop theoretical models
for the α-effect and to adjust them to its available observational tracers.

The natural sources of helicity and the α-effect in cosmical bodies are the ac-
tion of Coriolis forces on turbulent fluid motions and a stratification of the mean
mass density and/or turbulence intensity (Moffatt, 1978; Krause and Rädler, 1980;
Rüdiger and Kichatinov, 1993). The Coriolis forces may be due to rigid or differ-
ential rotation. Hitherto in most calculations of the α-effect, rigid rotation has been
assumed. However, a gradient of the rotation rate, or velocity shear, may signifi-
cantly influence the turbulence in a small layer near the base of the solar convective
zone and thus the turbulent electromotive force. This has to be distinguished from
the direct effect of differential rotation on the large scale, i.e., the generation of a
mean toroidal field from a mean poloidal one.

We calculate the α-effect in the framework of mean-field magnetohydrodynam-
ics using a realistic profile �(r, θ ) of the solar internal rotation rate as a function of
radius r and co-latitude θ obtained by means of helioseismic inversions by Schou
et al. (1998). Radial profiles of other quantities needed are derived from a standard
model of the solar interior (Stix, 2002). In this way, in particular, the important
effects of both the mean density stratification and of the stratification of the tur-
bulence intensity in the convection zone are included into the calculations. The
turbulent velocity fluctuations are assumed to be driven by (i) a prescribed random
body force resulting from thermal convection and (ii) the Lorentz force due to pre-
scribed magnetic background fluctuations. The two driving forces give rise to two
contributions to the α-effect, termed the hydrodynamic and the magnetic part of
the α-effect. Helicity develops in a natural way if the driven background velocity
fluctuations, as present in the absence of rotation and a mean magnetic field, are
acted upon by Coriolis forces and velocity shear.

In this study we extend work by Rüdiger and Kichatinov (1993), Rüdiger and
Pipin (2000), Rüdiger, Pipin, and Belvedere (2001), and Pipin (2003). We also
extend and partially correct results from a preceding step of our investigations
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(Seehafer et al., 2003) where (i) only the magnetic part of the α-effect was calculated
and, more important, (ii) stratification effects were not taken into account – helicity
generation and α-effect were due to compressibility effects instead (i.e., density
fluctuations and buoyancy effects connected with them), which turned out, however,
to be in general (i.e., except for the near-surface layers of the convection zone)
much weaker than the stratification effects that are included in the present study.
Therefore, (i) the conclusion concerning the region in the convection zone where
the α-effect works was different and (ii) the strength of the α-effect and the helicity
generation rate were about an order of magnitude smaller in the preceding study
compared to the present one. For a model of the evolution of magnetic helicity
over a solar activity cycle, over which we average in the present study, we refer to
Kleeorin et al. (2003).

The plan of the paper is as follows. In Section 2 we review magnetic field
observations relevant for our study, followed by the presentation of the theoretical
calculations in Section 3. Then, in Section 4, we estimate some important model
parameters and compare them with observations. In Section 5, finally, we discuss
our results.

2. Review of the Analysis of Observational Tracers of the α-Effect

Recently in a number of papers, systematic studies of magnetographic observations
in solar active regions were reported aiming at identifying observational tracers of
the α-effect. We here briefly describe the results of Kuzanyan, Bao, and Zhang
(2000) and Zhang, Bao, and Kuzanyan (2002).

The coefficient αff of the force-free magnetic field, defined by the first part
of Equation (6), is a very useful quantity for studying the atmospheric fields. It
is a simple function of the field-line geometry (cf. Boström, 1973) and can be
interpreted as the torsion of neighbouring field lines about each other or field line
twist. Kuzanyan, Bao, and Zhang (2000) and Zhang, Bao, and Kuzanyan (2002)
calculated both a mean force-free coefficient

〈αff〉 ≈
〈

(∇ × B)‖
B‖

〉
(7)

and a mean current helicity density

〈hc〉 ≈ 〈B‖ · (∇ × B)‖〉 (8)

(the index ‖ denotes longitudinal, i.e., line-of-sight components of vectors). In
Equation (8) the contribution of the transverse component of the electric current
is neglected, as it cannot be determined from magnetographic observations at a
single photospheric level. The dataset used consists of 422 photospheric vector
magnetograms of active regions obtained with the vector magnetograph at the
Huairou Solar Observing Station in the period 1988 – 1997. It includes most of the



190 K.M. KUZANYAN, V.V. PIPIN, and N. SEEHAFER

Figure 1. Observed absolute values of the mean current helicity, |〈hc〉| = |〈B‖ · (∇×>B)‖〉| (left
panel) and the mean twist parameters |〈αff〉| (right panel) versus absolute latitude in degrees. The

variable hc is measured in 10−3 G2 m−1 and αff in 10−8 m−1. Averages were taken over nine latitude

intervals between the equator, 2.5◦, 5◦, 8◦, 11◦, 13◦, 16◦, 20◦, 26◦, 38◦ in each hemisphere. Vertical

lines show 95% confidence intervals. The latitudinal intervals were chosen such as to have approxi-

mately equal numbers of observational points in each interval, and thus a high level of confidence.

large active regions in this time period. 〈αff〉 and 〈hc〉 were computed as in Bao and
Zhang (1998), that is, mean values were obtained by averaging over spatial scales
of the order of 5◦ in solar latitude, which is a scale slightly smaller than the size of
active regions, and times of the order of one Carrington rotation, i.e., 27 days.

In Figure 1 the moduli of the two tracers of the α-effect show a steep increase
from zero at the equator towards higher latitudes. This steep increase ends at about
12 – 15◦ where a kind of first local maximum or plateau is probably attained and the
variation with latitude becomes more gradual. This observation was reported earlier
in Seehafer et al. (2003). We wish to note here that, since the data are very noisy,
the existence of the plateau needs to be confirmed by the analysis of additional
observational material in the future.

Latitudinal distributions of the force-free factor and the current helicity were
also presented in previous studies using other data sets, e.g., Longcope, Fisher, and
Pevtsov (1998), Pevtsov and Canfield (1999), Pevtsov and Latushko (2000), and
Pevtsov, Canfield, and Latushko (2001). In these studies latitudinal distributions
were determined both for the magnetic fields of active regions and for the large-scale
solar magnetic field, but latitudinal profiles as presented in this paper for the active-
region fields, obtained by taking averages over appropriate latitudinal intervals,
seem to have been computed only for the large-scale field. The computations for the
large-scale field were based on time series of line-of-sight full-disk magnetograms.
Pevtsov and Latushko (2000) calculated latitudinal profiles of the current-helicity
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density using two different data sets. The hemispheric sign rule – negative helicity in
the north and positive helicity in the south – is confirmed only for higher latitudes
ouside of the active-region belts. On the other hand, our data are restricted to
latitudes below ±30◦. For these low latitudes, the helicity of the large-scale field
computed by Pevtsov and Latushko (2000) shows strong noise and sign reversals. At
least for one of their two data sets, the calculated helicity at low latitudes is clearly
positive in the North and negative in the South. This confirms the expectation (see
Section 1) that the magnetic helicity of the large-scale field should be opposite in
sign to that of the small-scale field (which presumably appears in the form of active
regions). Moreover, the modulus of the calculated helicity of the large-scale field
increases from the equator towards higher latitudes to reach a local maximum at
about 15◦. Altogether this seems to be in reasonable agreement with the observation
that the moduli of 〈αff〉 and 〈hc〉 increase steeply from zero at the equator to reach
some kind of plateau at about 12 – 15◦.

3. Theoretical Calculation of αϕϕ, 〈hc〉 and 〈hk〉

3.1. GENERAL FORMALISM

In our theoretical derivations we use a co-rotating frame of reference and assume
the existence of a background turbulence that is independent of the mean flow
(i.e., the differential rotation) and the mean magnetic field. The magnetic field is
decomposed into mean and fluctuating parts according to

Bi = 〈Bi 〉 + bi , (9)

and the equation for the fluctuating part b reads

∂b

∂t
= ∇ × (u × 〈B〉 + V × b + ε) + η∇2b + G , (10)

where u denotes the fluctuating velocity and V the velocity of the differential rota-
tion, ε is a fluctuating electric field driving the magnetic background fluctuations
and G stands for the nonlinear contributions of the fluctuating fields u and b.
Neglecting fluctuations of the mean mass density (ρ) and taking the density strat-
ification scale vector (G = ∇ log(ρ)) as well as the mean magnetic field (〈B〉) as
constant vectors, we get for the fluctuating momentum density, m = ρu

∂mi

∂t
+ 2 (Ω × m)i = (〈B〉 · ∇) bi

μ0

− ∇ j (Vi m j + Vj mi )

− ∇i

(
p + (〈B〉 · b)

μ0

− ν
(G · m)

3

)
+ ν(∇2mi − (G · ∇) mi ) + fi + Fi , (11)
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where Ω is the angular velocity of the solar rotation, p the fluctuating pressure,
ν the kinematic viscosity, f a random body force describing the effects of thermal
buoyancy (cf. Kichatinov and Rüdiger, 1992; Rüdiger and Kichatinov, 1993) and
F stands for the nonlinear contributions of the fluctuating fields.

Decomposing into Fourier modes, ∼ exp{i(z · x − ωt)} with wave vector z
and frequency ω, Equations (10) and (11) are transformed into equations for the
spectrum amplitudes (indicated by circumflexes) of the fluctuating fields:

ηb̂i = ı (〈B〉 · z) + (〈B〉 · z)

ρ
Gn

∂m̂i

∂zn
+ 〈Bi 〉 (G · m̂)

ρ

+ Vinb̂n + Vlnzl
∂ b̂i

∂zn
+ ı (z × ε̂)i + Ĝi , (12)

(ν + ıν (Gz)) m̂i = −2
(�z)

z2
(z × m̂)i + ı

(z · 〈B〉)
μ0

b̂i − πinVnlm̂l

+ πi f Vlnzl
∂m̂ f

∂zn
+ f̂ (s)

i + F̂
(s)
i , (13)

where the equation of mass conservation, ∇ · m = 0, has been employed and the
abbreviations, η = ηz2 − iω and ν = νz2 − iω, are used; Vi j is the velocity
gradient tensor (i.e., Vi j = ∂Vi/∂r j , with r denoting the position vector), which is
taken as homogeneous, πi j = πi j (z) = δi j − zi z j/z2 is the solenoidal projection

tensor and f̂ (s)
i = πi j f̂ j and F̂

(s)
i = πi j F̂ j are the solenoidal parts of f̂i and F̂i ,

respectively (in the following the index (s) always denotes the solenoidal part of a
vector). The random force (f) and the random electric field (ε) can be expressed by
the background turbulence as driven in the absence of rotation and mean magnetic
field by using the relations

ηb̂(0)
i = ı (z × ε̂)i + Ĝ

(0)
i , (14)

(ν + ıν (G · z)) m̂(0)
i = f̂ (s)

i + F̂
(s,0)
i , (15)

obtained from Equations (12) and (13); the index (0) refers to the background turbu-
lence. In the sense of the mixing-length approximation, the sums of time derivatives
and nonlinear terms are replaced by τ -relaxation terms with the relaxation time τ

given by the correlation time τcor of the turbulence (Durney and Spruit, 1979), i.e.,
−ıωb̂ − Ĝ = b̂/τcor, −ıωm̂ − F̂(s) = m̂/τcor. In addition, assuming the kinetic and
magnetic Reynolds numbers to be high, the diffusive terms proportional to ν or η

are neglected. The resulting system of equations reads

b̂i = b̂(0)
i + ıτcor (〈B〉 · z) + τcor

(〈B〉 · z)

ρ
Gn

∂m̂i

∂zn
+ τcor〈Bi 〉 (G · m̂)

ρ

+ τcorVinb̂n + τcorVlnzl
∂ b̂i

∂zn
, (16)
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m̂i = m̂(0)
i − 2τcor

(Ω · z)

z2
(z × m̂)i + ıτcor

(z · 〈B〉)
μ0

b̂i

− τcorπinVnlm̂l + τcorπi f Vlnzl
∂m̂ f

∂zn
. (17)

The system of Equations (16) and (17) can be solved using a perturbation pro-
cedure for small values of G and Vi j .

The background turbulence is assumed to be stationary and quasi-isotropic as
modeled by Kichatinov (1987) (see also Kichatinov, 1991; Kichatinov and Rüdiger,
1992; Rüdiger and Kichatinov, 1993):〈

m̂(0)
i (z, ω)m̂(0)

j (z′, ω′)
〉 = Ê (k, ω, κ)

16πk2
δ(ω + ω′)

×
(

πi j (k) + 1

2k2
(κi k j − κ j ki )

)
, (18)

where k = (
z − z′) /2, κ = z + z′ and the function Ê(k, ω, κ) is the Fourier trans-

form of the local energy spectrum function (E(k, ω, r)), with the wave vector
(κ) describing a large-scale inhomogeneity of the background turbulence. The
relations〈

m(0) 2
〉 =

∫
E (k, ω, r) dk dω , E (k, ω, r) =

∫
Ê(k, ω, κ)eiκ·rd3κ,

〈u(0) 2〉 =
∫

q (k, ω, r) dk dω , E (k, ω, r) = ρ2 (r) q(k, ω, r)

apply where q(k, ω, r) is the local velocity spectrum function, assumed to be given
in the mixing-length approximation by

q (k, ω, r) = 2
〈
u(0) 2(r)

〉
δ (ω) δ

(
k − �−1

cor

)
, (19)

where �cor is the correlation length of the fluctuations or mixing length, which is

connected with the correlation time τcor by �cor/τcor ≈ uc =
√

〈u2〉 (cf. Kichatinov,
1991). Similarly, the spectrum of the magnetic background fluctuations is assumed
to satisfy〈

b̂(0)
i (z, ω)b̂(0)

j

(
z′, ω′) 〉 = B̂ (k, ω, κ)

16πk2
δ(ω + ω′)

×
(

πi j (k) + 1

2k2
(κi k j − κ j ki )

)
, (20)

〈
b(0)2

〉 =
∫

B (k, ω, r) dk dω, (21)

with a local magnetic energy spectrum function (B(k, ω, r)) and its Fourier trans-
form (B̂(k, ω, κ)). Furthermore, we use an equipartition assumption for the local



194 K.M. KUZANYAN, V.V. PIPIN, and N. SEEHAFER

kinetic and magnetic energy spectra, that is

B (k, ω, r) = 2
〈
b(0) 2(r)

〉
δ (ω) δ

(
k − �−1

cor

)
, (22)

with〈
b(0) 2(r)

〉 = ρμ0

〈
u(0) 2(r)

〉
. (23)

The coefficient of the α-effect is calculated as the tensorial coefficient of pro-
portionality between the turbulent emf (E) and the mean magnetic field (〈B〉). The
emf (E) can be written as the sum of a hydrodynamic and a magnetic contribution:

ρE = 〈m × b〉(h) + 〈m × b〉(m) . (24)

In Equation (24), the label (h) means that the corresponding part is calculated for
the case of no magnetic background fluctuations, while the label (m) means that
the external force (f) is neglected but the electric background field (ε) drives the
turbulence. That is to say, we are using a perturbation expansion with |〈B〉| as a
small parameter, taking into account only terms linear in 〈B〉.

Equation (24) implies that the tensor α can also be written as the sum of a
hydrodynamic part (α(h)) and a magnetic part (α(m)). These can in turn both be
written as the sum of two contributions resulting from the stratification of density
and turbulence intensity, respectively, so that

α = α(h,ρ) + α(h,u) + α(m,ρ) + α(m,u) , (25)

where the upper indices ρ and u denote contributions due to the stratification
of density and turbulence intensity, respectively. For the case of rigid rotation,
the hydrodynamic part of the α-effect, which corresponds to the usual kinematic
contribution and is given by the first and the second summand on the right-hand
side of Equation (25), was calculated using a slightly different turbulence model
by Rüdiger and Kichatinov (1993).

The mean values of the fluctuating parts of the kinetic and current helicity
densities are calculated according to

〈hk〉 = 〈u · (∇ × u)〉(h), (26)

〈hc〉 = 〈b · (∇ × b)〉, (27)

where in Equation (26) u is the fluctuating velocity as driven by the force f in
the absence of magnetic fields; here and in the following hk and hc refer to the
small-scale helicities, rather than to the sum of small-scale and large-scale ones.

3.2. EXPLICIT EXPRESSIONS

For the solar dynamo, the azimuthal α-effect, i.e., the component αϕϕ of the tensor
α is most important. This component is responsible for the generation of the mean
poloidal from the mean toroidal field and is presumably large compared to the
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other components. The final expression for αϕϕ , including all contribution given in
Equation (25) and taking into account the effect of differential rotation for each of
them, reads

αϕϕ = − 〈
u(0) 2

〉
τcor

(
cos(θ )� (u) ∂

∂r
log

(
ρS

〈
u(0) 2

〉
τcor

)
− ∂

∂r
log

(
ρ

〈
u(0) 2

〉
τcor

) [
�α1 cos(θ ) sin2(θ )

∂ log(�)

∂ log(r )

+ sin(θ )
∂ log(�)

∂θ
(�α2 + cos2(θ )�α1)

])
, (28)

where �∗ denotes the Coriolis or inverse Rossby number, defined by �∗ = 2�0τcor

with �0 = 2.87 × 10−6 s−1 being the surface rotation rate, and � (u), S, �α1 and
�α2 are functions of �∗ given in the Appendix.

Similarly, using Equations (26) and (27) we get for the fluctuating parts of the
kinetic helicity and current helicity

〈hk〉 = 〈
u(0) 2

〉 (
cos(θ )F1

∂

∂r
log

(
ρ

√〈
u(0) 2

〉)
+ �∗ ∂

∂r
log

(
ρ

〈
u(0) 2

〉) [
�h1 cos(θ ) sin2(θ )

∂ log(�)

∂ log(r )

+ sin(θ )
∂ log(�)

∂θ
(�h0 + cos2(θ )�h1)

])
, (29)

〈hc〉 = − sin(θ )
�∗

12

〈
b(0) 2

〉 ∂

∂r
log

(
ρ

〈
u(0) 2

〉) ∂ log(�)

∂θ

+ 〈B〉2

(
cos(θ )F2

∂

∂r
log

(
ρ

√〈
u(0) 2

〉)
+ ∂

∂r
log

(
ρ

〈
u(0) 2

〉) [
�h2 cos(θ ) sin2(θ )

∂ log(�)

∂ log(r )

+ sin(θ )
∂ log(�)

∂θ
(�h3 + cos2(θ )�h2)

])
, (30)

where �h(0−3) and F1,2, are further functions of �∗ given in the Appendix.
For a qualitative discussion of limiting cases, such as the limits of slow (�∗ � 1)

and fast (�∗  1) rotation, and of the influence of the different contributions to
the α-effect and the helicities, we refer to a companion paper (Pipin, Seehafer, and
Kuzanyan, 2005). In Section 4, Equations (28) and (29) are evaluated numerically
for the case of the solar convection zone using input data from a standard model of
the solar interior and from helioseismic measurements.
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As a theoretical quantity to be compared with the magnetic field line twist
observed at the solar surface we define, in analogy to the force-free parameter αff

of the atmospheric magnetic field, a magnetic-twist parameter γ by

γ = 〈hc〉/〈b2〉. (31)

As is seen from Equation (30), the small-scale current helicity has two distinct
contributions. One is due to the shear action of the mean velocity field V on the
magnetic background fluctuations and is independent of the mean magnetic field
(〈B〉). The other one results from the interaction of the mean magnetic field with
helical velocity fluctuations (driven mechanically or magnetically) and is propor-
tional to 〈B〉2. Then, in order to get rid of the unknown field 〈B〉, the twist parameter
is approximated by normalising the two contributions separately, so that

γ ≈ γ (shear) + γ (〈B〉) , (32)

where γ (shear) is the twist of the field generated by the action of shear on the
background field b(0), and γ (〈B〉) that of the field generated by the interaction of u
with 〈B〉 (which is influenced by the shear too).

4. Estimates for αϕϕ , γ and 〈hk〉 in the Solar Convection Zone

To get estimates for αϕϕ , γ and 〈hk〉 in the convection zone, we use radial profiles
of the turbulent convective velocity (uc) and of the correlation length (�cor) of the
turbulence derived from a standard model of the solar interior (Stix, 2002). For
details of the procedure applied here, which treats the turbulence in the mixing-
length approximation with the standard value 1.6 for the mixing-length parameter
(αM LT = ratio of correlation length to pressure scale height), we refer to Kitchati-
nov and Rüdiger (1999). Also used is a realistic profile �(r, θ ) of the solar internal
rotation obtained by means of helioseismic inversions by Schou et al. (1998) in
the form of an analytical fit given by Belvedere, Kuzanyan, and Sokoloff (2000).
The profiles of the internal differential rotation rate (�), the Coriolis number (�∗),
and the mean convective velocity (uc) through the convection zone are shown in
Figure 2.

The convective velocity from the standard model is continued downward through
the thin transition or overshoot layer between the convection zone and the rigidly
rotating radiative interior by means of an analytical model of the form

u(r ) = ub

(
1 − tanh

rb − r

d

)
, (33)

where rb marks the bottom of the convection zone, ub is the convective velocity at
r = rb and d the half width of the overshoot layer. The values used in the numerical
calculations are rb = 0.715R� and d = 0.014R� and the overshooting is followed
down to 0.69R�. The Coriolis number �∗ is fixed to its value at r = rb throughout
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Figure 2. (Left panel) Contours of the rotation rate � in the convection zone. (Right panel) Radial

profiles of the Coriolis number �∗ (non-dimensional, left scale, solid line) and the convective velocity

uc (in cm s−1, right scale, dashed line). The radius is given in units of R�. Similar to Seehafer et al.
(2003).

the layer. A similar model for the transition region has been earlier used by Rüdiger
and Brandenburg (1995).

With the above profiles as input data, αϕϕ , the helicities and the twist parameter
γ were calculated numerically using Equations (28) – (30) and (32). Results of the
calculations are given in Figures 3 – 5. Figure 3 shows, by means of greyscales and
contour lines, the general distributions of 〈hk〉, αϕϕ and γ in the solar convection
zone for the northern hemisphere. The best-known observational fact here is the
hemispheric sign rule for the current helicity at the surface (negative helicity in the
northern and positive helicity in the southern hemisphere). Therefore the sign of
the calculated quantities in the convection zone is of particular interest. It is seen in
Figure 3 (upper left and bottom left) that both 〈hk〉 and γ are negative in the upper,
larger part of the convection zone, but are positive in a layer close to the bottom (the
sign of γ coincides with that of the current helicity, see definition of γ by Equation
(31)). In accordance with the expectation that the coefficient of the α-effect should
in general be opposite in sign to both kinetic and current helicity – cf. Equations 2
and 5 – αϕϕ is found to be positive in the bulk of the convection zone and negative
in a layer close to the bottom (Figure 3, middle left). This behaviour of 〈hk〉, γ

and αϕϕ is further illustrated in Figure 4, where radial profiles of these quantities
at a latitude of 30◦ are shown. Altogether, these results lead us to conclude that the
current helicity and the magnetic field line twist observed at the solar surface are
generated in the middle or upper parts of the convection zone rather than in a layer
close to the bottom where the dynamo for (at least) the toroidal solar main field is
believed to operate.
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Figure 3. Computed distributions of the mean value of hk (upper left), αϕϕ (middle left) and γ

(bottom left) in the northern hemisphere. On the right the contributions of differential rotation to these

quantities are shown. Solid (dashed) lines refer to positive (negative) values.

A typical absolute value for the observed magnetic field line twist, i.e., for
the factor αff, is (1, . . . , 1.5) × 10−8 m−1 (see Figure 1(b) in Section 2). In the
theoretical model such values of the line twist, i.e., of the modulus of the factor γ

(Figure 4, left panel) are obtained at about 0.8 R�. Here we have implicitly assumed
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that the twist (γ ) of the magnetic field in the convection zone propagates upward to
atmospheric levels where it is observable as the twist (αff) of the force-free magnetic
field. We wish to emphasise that the physical processes by which magnetic flux
generated in the convection zone is transported to the surface are poorly understood
at present. Thus the direct comparison of convection-zone and atmospheric twists
can only be preliminary from which, perhaps, guidance for future studies can be
obtained.

From the observational data presented in Section 2, we could see that the modulus
of αff (like that of the current helicity) increases rather steeply from zero at the
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Figure 5. Calculated latitudinal profile of γ for a depth of 0.8R�. Also shown are measurements of

the force-free twist factor (αff), including error bars.

equator towards higher latitudes and attains a certain saturation at about 12 – 15◦.
In Figure 5, the calculated latitudinal profile of γ at a depth of 0.8R� is shown. The
variable |γ | is seen to increase more gradually and up to high latitudes. Thus we
have to state that the observed latitudinal profile of the magnetic twist is not well
reproduced in our model calculations.

5. Discussion

In the mean-field concept of the solar dynamo, the mean magnetic field does not
reflect the magnetic fields of individual active regions. Although these fields con-
tribute to the mean field, they are presumably mainly fluctuations. The magnetic
fields observed in active regions and their helicities thus primarily give informa-
tion on the fluctuating part of the magnetic field. On the basis of this assumption,
we have presented a straightforward comparison of model calculations for the α-
effect, helicities, and magnetic field line twist in the convection zone with magnetic
field observations at atmospheric levels. The model calculations were carried out
in a mixing-length approximation for the turbulence in the convection zone using
a realistic profile �(r, θ ) of the solar internal rotation rate obtained by means of
helioseismic inversions. The profiles of further quantities needed to evaluate the
model, namely of the turbulent convective velocity (uc) and of the correlation length
(�cor) of the turbulence, were derived from a standard model of the solar interior.

The magnetic field data used were photospheric vector magnetograms of 422
active regions observed with the Vector Magnetograph at Huairou Solar Observing
Station in the period 1988 – 1997. From these data, averaged values of the force-free
twist parameter αff and of the current helicity hc were calculated. This provided us
with the latitudinal fine structure of these two tracers of the α-effect.
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Thus, in this paper we carried out simultaneous calculations of the α-effect factor
(αϕϕ), the mean small-scale kinetic and current helicity densities (〈hk〉 and 〈hc〉)
and the twist factor (γ ) of the small-scale magnetic field for the solar convection
zone. In the model calculations, all of these quantities were found to change their
sign with latitude across the equator (hemispheric rule) and with depth close to
the bottom of the convection zone. Coincidence with the hemispheric sign rule for
the current helicity and the magnetic field line twist observed at the surface of the
Sun is obtained if these quantities are generated in the bulk of the convection zone,
rather than in a layer close to the bottom. Accepting the general conviction that the
large-scale toroidal field is generated by the �-effect close to the bottom, where the
velocity shear is strong, this supports two-layer dynamo models where the �-effect
and α-effect are operating in different layers – the �-effect in a thin layer at the
bottom and the α-effect in the middle or upper parts of the convection zone. The α-
effect could, for instance, come about by the action of helical turbulent convection
on rising magnetic flux tubes, similar to the �-effect scenario (Longcope, Fisher,
and Pevtsov, 1998; Longcope et al., 1999; Longcope and Pevtsov, 2003).

Our previous observational finding was that the moduli of the average twist
factor (αff) and of the current helicity density increase rather steeply from zero
at the equator towards higher latitudes and attain a certain sort of saturation at
about 12 – 15◦. These latitudinal profiles could not be reproduced in the model
calculations – in the model the increase is more gradual and continues to higher
latitudes. This clearly indicates that the model needs to be developed further. For
instance, the coupling between small-scale and large-scale current and magnetic
helicities and the time evolution over the solar cycle, i.e., the latitudinal drift of
the activity belts, are still completely left out. However, whether the inclusion of
these additional effects actually solves the discrepancy between theory and obser-
vations can only be answered by evaluating refined models in the future. On the
other hand, the the existence of the plateau in the data still needs to be confirmed
by the analysis of more additional observational material. Also observational im-
provements would be helpful, e.g., direct or indirect information on transverse
photospheric currents. This all must be left for future studies aimed at bridging
the still large gap between the theory of the solar dynamo and solar magnetic field
measurements.
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Appendix

S = � (ρ)/� (u)
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Rädler, K.-H. and Seehafer, N.: 1990, in H.K. Moffatt and A. Tsinober (eds.), Topological Fluid
Mechanics, Cambridge University Press, Cambridge, England, p. 157.

Richardson, R.: 1941, Astrophys. J. 93, 24.

Roberts, P.H. and Soward, A.M.: 1992, Ann. Rev. Fluid Mech. 24, 459.
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