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10.1. INTRODUCTION

In studies of hydromagnetic oscillations of the Earth’s 
magnetosphere (geomagnetic pulsations), it is often 
considered as a giant resonator for MHD waves. A wide 
range of possibilities exist inside the magnetosphere for 
the generation, propagation, and interaction of these 
waves. Various magnetospheric processes are often accom­
panied by the generation of geomagnetic pulsations. In 
this regard the magnetospheric MHD oscillations have 
long attracted the attention of researchers, both observers 
and theorists (see Southwood and Hughes [1983]; Hughes 
[1994]; Kangas et al. [1998]). Let us note that the theo­
retical description of  MHD oscillations in an inhomo­
geneous magnetospheric plasma is very important for 
establishing links between geomagnetic pulsations and 
magnetospheric processes. This is why so much attention 
in the studies of magnetospheric ULF oscillations is 
devoted to their theoretical investigations. The basic 
theoretical concepts of magnetospheric MHD oscillations 
can be found in the reviews by Pilipenko [1990]; Allan and 
Poulter [1992]; Stasiewicz et al. [2000]; Villante [2007].

The recent appearance of multi‐spacecraft observations 
has made it possible to examine in much detail MHD 
oscillations generated and propagating in the Earth’s mag­
netosphere [Foullon et al., 2008; Agapitov and Cheremnykh 
2013]. This in turn requires a thorough theoretical research 
into such oscillations. Various branches of MHD oscilla­
tions interact in an inhomogeneous magnetospheric 
plasma, which creates a complex picture of wave fields.

The magnetotail ULF oscillations have their own 
features. The presence of the current and plasma sheets 

in this region impacts the structure and spectra of Alfvén 
waves [Rankin et al., 2000; Keiling, 2009]. During geo­
magnetic substorms, current disruption processes occur 
generating an impulse of fast magnetosonic (FMS) waves 
that are transformed into Alfvén waves at the resonance 
magnetic shells [Allan and Wright, 1998]. The Alfvén 
waves generated in the process look like pulses of  field‐
aligned currents observable as Pi2 geomagnetic pulsa­
tions [Lee and Lysak, 1999]. Resonant transformation of 
FMS waves excited in the plasma sheet into the Alfvén 
waves can also occur at the plasma sheet boundary [Lysak 
et al., 2009]. Alfvén waves generated in various magneto­
spheric processes can accelerate the charged particles in 
the auroral ionosphere and trigger structured auroras 
[Stasiewicz et al., 2000].

Similar to Alfvén waves, slow magnetosonic (SMS) 
waves propagate more or less along the geomagnetic field 
lines. These branches can interact on magnetic shells 
crossing the magnetotail current sheet [Ohtani et al., 1989]. 
Such coupled oscillations can become unstable on curved 
field lines in the presence of an outward pressure gradient 
of the background plasma [Liu, 1997; Cheremnykh and 
Parnowski, 2006; Mazur et al., 2013]. This (“ballooning”) 
instability is assumed to be able to lead to reconnection 
of magnetic field lines at the initial stage of geomagnetic 
substorms [Cheng, 2004; Saito et al., 2008].

The geomagnetic tail can be a waveguide for FMS 
waves [Mann et al., 1999]. Eigenmodes in such waveguide 
can be excited by a shear plasma flow instability at 
the  magnetopause (Kelvin–Helmholtz instability). An 
increased wave amplitude due to such an instability when 
MHD waves pass through a shear flow layer at the 
magnetopause was studied in McKenzie [1970]. The con­
ditions for the Kelvin–Helmholtz instability due to the 
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plasma velocity shear are rarely fulfilled in the mantle‐like 
boundary layer. However, unstable oscillations may arise 
there due to a resonant flow instability (RFI) [Hasegawa 
et al., 2006]. These oscillations develop in the plasma 
boundary layer with rather strong variations in Alfvén 
speed and sound speed [ErdéLyi and Taroyan, 2003].

FMS waves penetrating from the solar wind into the 
magnetosphere excite the resonant Alfvén and SMS 
waves in the magnetopause boundary layer. Due to the 
high dissipativity of SMS waves, an efficient transfer 
occurs of energy and momentum to the background 
plasma ions. As a result cells with reverse plasma convec­
tion can form in magnetospheric regions adjacent to the 
magnetopause [Leonovich and Kozlov, 2013a]. Recently 
discovered kink‐like oscillations in the magnetotail cur­
rent sheet [Zhang et al., 2002] suggest that these oscilla­
tions are unlike any known MHD oscillations, and thus 
they demand special examination.

10.2. MHD WAVES ASSOCIATED WITH A SHEAR 
FLOW AT THE MAGNETOPAUSE

A shear flow instability on the magnetopause (the 
Kelvin–Helmholtz instability) has long been regarded as a 
possible source of MHD oscillations in the Earth’s mag­
netosphere [McKenzie, 1970; Mishin, 1981; Miura and 
Pritchett, 1982]. Until recently, however, there had been 
no direct observations of magnetospheric oscillations that 
could be directly identified as such unstable MHD modes. 
It was only very recently that the THEMIS and Double 
Star spacecraft recorded oscillations that can be seen 
as  FMS surface waves driven by a Kelvin–Helmholtz 
instability [Volwerk et al., 2007]. The amplitude of these 
oscillations decreases outward of the magnetopause and 
increases in the direction of their tailward propagation.

Similar THEMIS spacecraft observations are presented 
in Agapitov et al. [2009], where the propagation velocity 
of  unstable oscillations ( 200 km/s) coincides with the 
expected propagation velocity of  FMS surface waves. 
Besides, the THEMIS 5 spacecraft inside the magneto­
sphere registered a narrowly localized jump in the oscilla­
tion amplitude identifiable as an Alfvén wave excited by 
the field line resonance (FLR) mechanism [Agapitov et al., 
2009]. This can be regarded as the first direct evidence for 
the existence of the classical FLR [Tamao, 1965; Chen 
and Hasegawa, 1974, Radoski, 1974; Southwood, 1974; 
Leonovich, 2001].

Spacecraft observations combined with local ground 
magnetometer network data have allowed wave energy 
flow to be estimated from the magnetopause to the 
ionosphere through the FLR mechanism [Hartinger et al., 
2011]. The data suggest that energy absorption in the 
ionosphere is a significant damping mechanism for 
magnetospheric MHD waves.

Most theoretical studies of shear flow instabilities 
employ models based on a tangential discontinuity of the 
medium parameters. In such models, the parameters 
change abruptly during a transition from the homogeneous 
half‐space with motionless plasma to the other half‐space 
with moving plasma. The plasma in the magnetosphere 
is, however, strongly inhomogeneous. This fact has given 
an impetus to models of  the medium where the plasma 
parameters in the half‐space simulating the magneto­
sphere change in the direction transverse to the shear 
layer direction. The easiest way to model such inhomoge­
neity is to place a reflecting wall at some distance from 
the shear layer [Miura, 1992; Leonvich and Mishin, 2005; 
Turkakin et al., 2014].

These models allow for the presence of a waveguide for 
FMS waves propagating between the reflecting wall and 
the magnetopause [Mann et al., 1999]. Since the magneto­
pause is only a partially reflective wall (a free boundary), 
the basic harmonic in such a waveguide is a quarter‐wave, 
meaning its frequency is lower than in the waveguide with 
two perfectly reflecting walls. That frequency ( 1 mHz) 
falls into the range of “magic frequencies.” However, a 
threshold for the plasma velocity shift at the magneto­
pause exists for FMS waves, which when exceeded gives 
rise to their instability. Under certain conditions, however, 
this threshold disappears [Turkakin et al., 2013].

More complicated are models that include a monotonic 
change of  the medium parameters in the half‐space 
describing the magnetosphere [Walker, 2005]. In such 
models the role of a reflecting wall is played by the sur­
face separating the transparency from the opacity regions 
for FMS waves in the magnetosphere. In the opacity 
region behind the turning point, there is a resonance 
surface for Alfvén waves partially absorbing the energy 
of the FMS wave propagating in the magnetospheric 
waveguide [Mazur and Chuiko, 2011].

Such a waveguide can be excited by an FMS wave 
incident on the magnetopause from the magnetosheath. 
The reflection coefficient in this case has pronounced 
peaks at frequencies corresponding to the magneto­
spheric waveguide eigenmode frequencies [Mazur, 2010]. 
The maximum reflection coefficient can exceed unity, 
that means the wave reflected from the shear layer has an 
amplitude greater than the incident wave. Increased 
amplitude is due to the energy transferred from the 
plasma shear flow to the wave. Such a wave is referred as 
a negative energy wave [Mann et al., 1999; Walker, 2005; 
Mazur and Chuiko, 2013].

Yet another group of  models are those with a smooth 
transition layer between the magnetosheath with moving 
plasma and a magnetosphere [Miura, 1992; Leonovich, 
2011a]. In these models the resonance surfaces for 
Alfvén and SMS waves appear not only in the opacity 
regions of  FMS waves in the magnetosphere but also in 
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the magnetopause transition layer. FMS wave energy is 
absorbed at each of  those surfaces, which affects their 
growth rate and spatial amplitude distribution.

The problem of Kelvin–Helmholtz instability developing 
at the magnetopause wrapped around by the solar wind 
flow was solved in Leonovich [2011a, b] by way of a cylin­
drical model of the magnetotail with an inhomogeneous 
plasma distribution over the radius and a boundary in 
the form of a smooth transition layer (see Figure 10.1). 
The magnetopause radius in this model is r r Rm E30 . 
This model includes all of the above‐mentioned features 
of Kelvin–Helmholtz instability in an inhomogeneous 
magnetosphere. The plasma distribution typical of the 
magnetotail lobes is such that the plasma cylinder can act 
as a waveguide for the FMS waves, and turning points for 
the FMS waves appear in the plasma cylinder for any 
plasma distribution over the radius.

Such a model ignores the presence of the current sheet 
separating the magnetotail lobes. The current sheet plays 
a key role in the propagation of small‐scale (compared to 
the sheet thickness) MHD oscillations [Allan and Wright, 
1998; Lysak et al., 2009]. For large‐scale oscillations, it 
can be regarded as thin so that its presence can be 
neglected in the first approximation.

Let us consider the harmonic of a wave in the form 
exp( )ik z im i tz , where kz is the component of the 
wave vector in the z axis direction, m 0 1 2, , ,  is the azi­
muthal wave number, ω is the wave frequency. The equa­
tion describing the radial displacement, ζ, of  a plasma 
element has the form [Leonovich, 2011b]:

	 r k r
r
rr

0
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0	 (10.1)

where v t tr d d/ / ( )v0  is the radial velocity 
component, v0 is the plasma velocity, ρ0 is the plasma 
density, 2 2 2 2k vz A, v BA 0 04/  is the Alfvén speed, 
B0 is magnetic field strength, k vz 0,
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is the square of the wave vector radial component in the 
WKB approximation, v Ps 0 0/  is the sound speed in 
plasma, P0 is plasma pressure, γ is adiabatic index.

Equation (10.1) has singularities at the resonance 
surfaces, where the coefficient of the highest derivative 
vanishes. This occurs at points where 2 2 2k vz A (the Alfvén 
resonance point) and 2 2 2k cz s  (the magnetosonic reso­

nance point, c v v v vs A s A s/ 2 2  is the SMS wave speed). 
MHD wave energy is transferred to the background 
plasma near the resonance surfaces. Note that since, in an 
inhomogeneous plasma, all MHD modes are interre­
lated, (10.1) describes the unified MHD oscillation field. 
Away from the resonance surfaces, the oscillation field 
can be regarded as an FMS wave; near the Alfvén reso­
nance surface its polarization is similar to the Alfvén 
wave polarization in a homogeneous plasma, while near 

Figure 10.1  (a) Model of the geomagnetic tail in the form of a plasma cylinder wrapped around by the solar wind 
flow. (b) Radial distribution of the Alfvén, υA, and SMS wave speed, cs, as determined from the condition that the 
plasma configuration is in equilibrium. The Alfvén resonance point (rA) and the magnetosonic resonance point (rs) 
correspond to / ( )k rz A A  and / ( )k c rz s s .
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the magnetosonic resonance surface it is similar to the 
SMS wave polarization.

In the instability problem for the MHD waves in ques­
tion, the boundary conditions are reduced to the require­
ments that their amplitude be finite on the plasma cylinder 
axis (r 0) and only waves carrying the energy away from 
the magnetopause shear layer be found at infinity (r ). 
The last boundary condition can be formulated as

	 r
ikr 	 (10.2)

where the sign of k k rr r
2 ( )  is defined by the con­

dition Re vgr( ) 0, with v kgr r( / ) 1 as the group 
velocity of FMS waves. Figure 10.2a gives an example of 
a calculated oscillation field having two resonance sur­
faces in the magnetopause transition layer: for Alfven 
(r rA) and SMS waves (r rS). In the figure, the singu­
larities of the wave field (logarithmic singularities for the 
ζ function) on resonance surfaces are clearly evident in 
the magnetopause transition layer, as in FLR theory. 
We found that the waveguide modes propagating in the 
magnetotail lobes can become unstable in the model only 
for a large enough plasma velocity shift at the magneto­
pause v vAm0 , where vAm 6000 km/s is the Alfvén speed 
in the magnetospheric regions adjacent to the magneto­
pause. Such high‐speed solar wind flows are nonexistent 
at the Earth’s orbit. This conclusion is fully consistent with 
the one in Fujita et al. [1996], employing Cartesian coordi­
nates for a 1D inhomogeneous magnetosphere model.

The surface waves driven by the Kelvin–Helmholtz 
instability have a lower threshold for the plasma velocity 

shift. However, there is one exception. The threshold 
disappears for oscillations with k B0t , where kt is the 
wave vector component along the shear layer [Leonvich 
and Mishin, 2005]. In this case, the Kelvin–Helmholtz 
instability develops in a way similar to the classical fluid 
shear flow. Such conditions are achieved, for example, in 
the region of the low‐latitude boundary layer (LLBL) for 
the axisymmetric mode ( )m 0  [Hasegawa et al., 2006; 
Foullon et al., 2008].

In the model describing the magnetotail lobes, the same 
conditions are reached for oscillations with kz 0. The 
unstable oscillations propagate in the azimuthal direction 
across the magnetic field lines. For these oscillations, on the 
contrary, an upper threshold appears in shear velocity, 
exceeding which the surface modes become stable. If  we 
consider the shear layer as a tangential discontinuity, the 
range of shear velocities for which the surface wave insta­
bility develops is
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where m 1 2 3, , ,  is the azimuthal wave number, B0m is the 
magnetic field in the magnetospheric region adjacent to 
the magnetopause, B0w is the magnetic field in the magne­
tosheath. In other words, an unstable surface wave cannot 
be generated when the solar wind velocity exceeds the max­
imum Alfvén speed in the magnetopause transition layer. 
As for the azimuthal harmonic m 0, this harmonic is 
unstable almost throughout the entire range of the shear 
velocities, even though its growth rate is much smaller than 
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Figure 10.2  (a) Radial distribution of the oscillation field with two resonance surfaces, for the Alfvén waves (r rA) 
and SMS waves (r rs). (b) Alfvénic Mach number (MA Am0 / ) dependence of the surface mode growth rate for 
azimuthal harmonics with m 0 1 2 3, , , . The vertical gray bar corresponds to the velocity range of the solar wind 
in the Earth’s orbit.
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that for the other harmonics. We performed a numerical 
integration of (10.1) with boundary conditions (10.2) for a 
magnetospheric model with a smooth transition layer at 
the magnetopause. Figure 10.2b shows the dependence of 
the growth rate for different azimuthal harmonics on the 
Alfvénic Mach number M v vA Am0/  for the finite value of 
k rz m 0 1. , which corresponds to oscillation frequency 
f 0 1.  mHz. The vertical gray bar shows the solar wind 
velocity range in the Earth’s orbit. Interestingly, the ampli­
tude of such surface oscillations remains virtually 
unchanged, with the radius inside the magnetosphere. 
Therefore this instability can be regarded as a possible exci­
tation mechanism for global modes in the magnetotail.

The same cylindrical model magnetosphere was used in 
Leonovich [2012] to successfully solve the problem of the 
momentum transfer from the solar wind to the magneto­
spheric plasma ions via FMS waves. Unfortunately, this 
model does not take into account the presence of a current 
sheet separating the tail into two lobes. Using it for the above 
wave processes can be justified as follows. The magnetotail 
current sheet can be considered as thin, for global oscilla­
tions, with virtually no effect on their structure. For oscilla­
tions penetrating from the solar wind into the magnetosphere, 
all processes we are interested in occur in regions adjacent to 
the magnetopause. The current sheet is located far enough 
from these regions so that its presence can be neglected.

The momentum is transferred at resonance surfaces for 
SMS waves excited by FMS waves penetrating into the 
magnetosphere from the solar wind. We examined how 
the ion distribution function varied under the impact 
of  SMS waves with a stochastic phase distribution. 
The  following diffusion equation was used to describe 
this process (see Akhiezer et al. [1975]):

	

f
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It is applicable for waves with linear dispersion similar to 
SMS waves k cs
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tribution function, v
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is the diffusion coefficient related to the effect of waves in 
resonance with the background plasma ions ( k vz 

, i.e., 
v cs

), B ik Br z 0  is the magnetic field r‐component of 
resonant SMS oscillations.

The equilibrium Maxwellian distribution function
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is used as the initial condition for solving (10.3), where n0 
is the plasma ion concentration, v T mTi i i2 /  is ion 
thermal velocity. Equation (10.3) can be integrated with 
respect to v , resulting in
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Multiplying (10.5) on the left by f  and integrating over 
v


, we obtain
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This implies that if  a new equilibrium state is reached in 
the plasma ( f t/ 0) at the t asymptotic, then a plateau 
must form on the distribution function ( f v/



0) for 
those v



 ranges where D is nonzero.
Analysis of possible k



 ranges within which the solar wind 
is a transparency region for FMS waves, and SMS resonance 
surfaces exist in the magnetosphere, arrives at the following 
conclusion. There are three ranges where a plateau forms on 
the distribution function f c v c c v vs s s: ,max || min min || 2, 
and v v cs1 || max, where csmin 8 km/s is achieved on the 
plasma cylinder axis and csmax 2000 km/s near the transi­
tion layer, v v v v v vsw sw1 0 2 0, , where vsw 177 km/s is 
the sound speed in the magnetosheath.

The c v vsmin  2  area corresponds to “downstream” 
FMS waves, while the two other areas correspond to 
“upstream” FMS waves in the solar wind. The corre­
sponding f v( )



 distribution is presented in Figure 10.3a. 
Since the distribution function becomes asymmetric over 
v


, the previously motionless magnetospheric plasma 
achieves an average velocity.

	
v

n
v f v dv0

0

1
  

( )
	

Variations in the radial distribution of the plasma velocity 
under the impact of MHD waves are shown in Figure 10.3b. 
In the regions adjacent to the magnetopause, a plasma flow 
is seen to appear directed against the solar wind velocity. 
In the high‐latitude magnetosphere, this effect manifests 
itself as reverse plasma convection cells during periods of 
prolonged Northern Bz component of the IMF, when the 
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mechanism of magnetospheric convection associated with 
magnetic reconnection at the magnetopause is missing 
[Sergeev et al., 1996; Förster et al., 2008].

10.3. OSCILLATIONS WITH A DISCRETE 
SPECTRUM OF “MAGIC FREQUENCIES”

A most interesting phenomenon investigated for the past 
two decades are ULF oscillations with a discrete spectrum. 
These oscillations were first registered on ground‐based 
networks of HF radars and magnetometers [Ruohoniemi 
et al., 1991; Samson et al., 1992]. Due to the repeatability 
of the frequency spectrum (0.8, 1.3, 1.9, 2.6, … mHz) in 
various observations and its stability in each of these 
observations, they were called “magic” frequencies. Such 
oscillations are recorded usually in the midnight–morning 
sector of  the magnetosphere at 60 to 80 latitudes. 
Oscillations with similar spectral characteristics were 
recently discovered by spacecraft near the dayside magne­
topause [Plaschke et al., 2009; Archer et al., 2013], and even 
in the solar wind [Viall et al., 2009].

Several theoretical concepts have so far been proposed 
in order to explain the nature of these oscillations. As 
assumed in Samson et al. [1992], the observed oscillations 
with a discrete frequency spectrum are the eigenmodes of 
a waveguide in the magnetotail lobes. Some difficulties 
are, however, encountered within the confines of such a 
concept. The main is the fact that the polarization of the 
observed oscillations is typical of a standing wave rather 

than of waves traveling through a waveguide [Samson and 
Rankin, 1994].

A mechanism was suggested [Kepko et al., 2002; Viall 
et al., 2009] for the “magic frequency” spectrum oscillations 
penetrating from the solar wind directly to the magneto­
sphere. These oscillations are considered [Plaschke et al., 
2009; Archer et al., 2013] as the eigenmodes of Alfvén waves 
excited at the magnetopause by pulses due to solar wind 
inhomogeneities. Note the difficulties involved in these two 
concepts. Since the dayside magnetosphere is an opacity 
region for the oscillations in question, the oscillation ampli­
tude decreases exponentially from the magnetopause into 
the magnetosphere [Leonovich and Mazur, 2000]. Therefore 
it is difficult to explain the presence of such oscillations in 
the midnight–morning sector of the inner magnetosphere, 
where they were originally discovered.

A magnetospheric resonator model proposed in 
Leonovich and Mazur [2005], Mazur and Leonovich [2006] 
may explain most features of the observed oscillations of 
the “magic” frequency spectrum. This resonator for FMS 
waves forms in the near‐Earth part of the plasma sheet, 
where a global minimum in the Alfvén speed distribution 
exists in the magnetosphere (see Figure 10.4a). The struc­
ture and spectrum of these oscillations were determined 
by solving the following approximate equation:
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Figure 10.3  (a) “Plateau” formation on the plasma ion distribution function f  under the impact of MHD waves 
penetrating into the magnetotail lobes from the magnetosheath. (b) Plasma flow velocity 0 0 distribution over 
radius, in the magnetosheath (r rm) and in the magnetosphere (r rm), where υ0 is the velocity of undisturbed 
solar wind flow, 0 is the change in the plasma velocity due to a FMS wave flux into the magnetosphere. Curves 1, 2, 3 
correspond to 0 200 400 800, , /km s.

(a)

0

f

f2

f1

f3

–CS min–CS max CS maxCS min �2 �II�1

0

200

400

600

(km/s)

1

2

3
(b)

0 0.4 0.8 1.2 1.6 r/rm

υ0+ υ0



MHD Oscillations in the Earth’s Magnetotail: Theoretical Studies   167

where Φ is any component of the oscillation wave field. 
The equation successfully describes FMS oscillations in 
“cold plasma” models, in the WKB approximation, and 
is also qualitatively applicable to describing FMS oscilla­
tions in more complex magnetospheric models.

To describe the resonator in the near‐Earth part of the 
plasma sheet, an axisymmetric parabolic magnetosphere 
model was used (see Figure 10.4b). The magnetospheric 
model used in these calculations takes into account the 
2D plasma inhomogeneity in the meridional plane. 
However, it does not describe the real configuration of 
the plasma sheet in the middle and far magnetotail. Its 
use for the FMS resonator oscillations relies on the fact 
that the resonator eigenmodes are localized in the near‐
Earth part of the plasma sheet, and its middle and far 

parts are opacity regions for them. Therefore the plasma 
distribution in these remote regions has little effect on the 
oscillation structure in the resonator.

The FMS oscillation harmonics have the form 
( , , ) ( , )exp( )im , where ϕ is the azimuthal 

angle, m 0 1 2, , ,  is the azimuthal wave number, and 
ξ,  η are the parabolic coordinates in the const plane. 
Equation (10.7) in such parabolic coordinates has the form

	
	 (10.8)
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Figure 10.4  (a) Alfvén speed, υA, distribution in the Earth’s magnetosphere in the meridional noon–midnight 
plane. (b) Parabolic coordinates (ξ, η) and Alfvén speed distribution in the parabolic magnetosphere model 
(in 103km/s).
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where  is the distance from the focus (Earth’s center) to 
the vertex of the paraboloid, 1, corresponding to the 
magnetopause. If  the Alfvén speed is presented as

	
v

v

a bA
A2 0
2

,
	

where vA0 is a constant with the dimension of velocity, 
and a(ξ) and b(η) are any functions of the variables ξ and 
η, then (10.8) can be shown to be an equation with sepa­
rable variables. vA0, a(ξ) and b(η) can be chosen such as to 
model the vA(ξ, η) distribution typical of the near‐Earth 
part of the magnetotail, as shown in Figure 10.4b [Mazur 
and Leonovich, 2006].

In solving the problem of eigen‐oscillations in a reso­
nator in the near‐Earth part of the plasma sheet, we 
chose the boundary conditions to be in the form of per­
fectly reflecting oscillations at the magnetopause and the 
finiteness of their amplitude in the entire domain of 
existence. Numerical integration of (10.8) produced a 
spectrum of eigenfrequencies fmnl mnl / 2 , where 
l m n, , , , , ,0 1 2 3  are the harmonic wave numbers for 
each of the parabolic coordinates (ξ,  ϕ,  η).

An interesting feature of this spectrum is that the eigen­
frequencies are not distributed uniformly, but are grouped 
into clusters. For example, clusters f000 0 73.  mHz 
and  f100 1 04.  mHz consist of one frequency only. 
Clusters ( f f f001 010 2001 41 1 36 1 32. , . , .  mHz) and 
( f f f101 110 3001 66 1 66 1 59. , . , .  mHz) consist of three 
harmonics with mean frequencies f 1 35.  mHz and 
f 1 6.  mHz, respectively. The other harmonics can be 
pooled into clusters with mean frequencies f 1 95.  mHz, 
f 2 2.  mHz, f 2 6.  mHz, f 3 1.  mHz, and so on.

Clearly, the frequency spectrum found for the resonator 
under study is quite similar to the spectrum of the observed 
“magic frequencies.” The localization of ground‐observed 
oscillations at latitudes 60  to 80  are easy to explain as 
well. It is into this ionospheric region that the resonator 
in the near‐Earth part of the plasma sheet is mapped 
along magnetic field lines. Due to magnetospheric 
convection, it is shifted to the midnight–morning sector 
of the magnetosphere.

The following reasonable assumption can be made 
about the stability of the observed frequencies. Since 
these oscillations are usually observed under quiet enough 
geomagnetic conditions ( )Kp 3 , the parameters of the 
near‐Earth part of the plasma sheet remain about the 
same. A resonator for FMS waves that forms under these 
conditions always has nearly identical characteristics.

These oscillations are transmitted to the Earth by 
Alfvén waves excited in the FLR [Rankin et al., 2006; 
Kozlov et al., 2006]. The typical eigenfrequencies of the 
toroidal Alfvén waves on the magnetic shells under study 

( )10 20L  fall into the basic mode range of the FMS 
wave resonator [Sarris et al., 2009]. The characteristic 
wavelengths of the basic harmonics of this resonator are 
comparable with the transverse magnetospheric scales. 
Therefore, under certain conditions, oscillations in these 
harmonics can be observed even at low enough geomag­
netic latitudes ( )L 4 6  in the midnight–morning sector 
of the magnetosphere. These conditions are (1) sufficiently 
long existence of  the resonator ( 5 7  hours) as 
defined by a time interval with small Kp 1 and (2) the 
simultaneous presence of  a pumping mechanism in 
the resonator such as the solar wind flow causing the 
magnetopause Kelvin–Helmholtz instability.

The following mechanism is suggested to explain the 
oscillations with spectral peaks at “magic frequencies” in 
the solar wind and in the dayside magnetosphere. In the 
localization region of the resonator, its side walls are 
located near the plasmapause. For this reason the resona­
tor cannot be regarded as ideal. It is partially permeable 
for the incident oscillations from the solar wind. Its own 
eigen‐oscillation energy also partially escapes to the solar 
wind [Leonovich and Mazur, 2008].

The spectrum of the solar wind oscillations has fre­
quencies corresponding to the resonator eigenfrequencies 
[Kepko et al., 2002; Potapov et al., 2013]. The resonator 
may be powered by FMS waves falling from the solar 
wind onto the magnetopause and may store energy in its 
eigen‐oscillations. Besides, as follows from the results in 
the previous section, the resonator eigen‐modes may be 
related to the instability of the magnetotail global modes. 
These oscillations may propagate as surface waves along 
the plasmapause to the dayside magnetosphere. Since the 
typical spatial scale of such oscillations is comparable to 
the magnetospheric scale, the oscillations are observed 
deep enough in the dayside magnetosphere.

10.4. COUPLED ALFVÉN AND SLOW 
MAGNETOSONIC WAVES IN THE MAGNETOTAIL

Another type of MHD oscillations typical of the magne­
totail is the coupled Alfvén and SMS waves on stretched 
magnetic field lines passing through the current sheet. Each 
of these modes can propagate along paths that almost coin­
cide with the magnetic field lines. Under certain conditions 
this results in their interaction leading to the formation of a 
coupled mode of MHD oscillations [Southwood and 
Saunders, 1985; Walker, 1987; Voronkov et al., 1997].

Particular interest in such coupled modes is also due 
to the fact that they can become unstable under certain 
conditions [Ohtani et al., 1989; Hameiri et al., 1991; 
Klimushkin et al., 2012; Kozlov et al., 2014]. This occurs in 
the presence of a plasma pressure gradient directed 
against the curvature radius of the magnetic field lines. 
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This instability is of a threshold nature and is called a 
“ballooning instability.” It develops when the curvature 
of magnetic field lines is high enough, which can be 
achieved in the magnetotail current sheet under pre‐sub­
storm conditions. Therefore this instability is regarded as 
one of the mechanisms leading to magnetic field line 
reconnection in the near‐Earth part of the current sheet 
at substorm onset [Liu, 1997; Cheng and Lui, 1998; Cheng, 
2004; Zhu and Raeder, 2014].

Until recently these coupled modes were chiefly the 
subject of  theoretical studies because they are difficult 
to separate from other MHD oscillation modes during 
observations. The data of  multi‐spacecraft systems like 
THEMIS, Cluster, and Double Star provided the 
opportunity to analyze oscillations at various closely 
spaced points, and therefore made it possible to sepa­
rate different modes of  MHD oscillations and study 
their interrelationships.

Low‐frequency MHD oscillations observed at the 
equator by the GEOTAIL spacecraft after substorm 
onset were analyzed in detail in Saito et al. [2008]. It 
was shown that the FMS mode is distinguishable 
enough in observations, but Alfvén and SMS waves are 
difficult to separate. Both onboard and ground mag­
netometer observations of  pre‐substorm Pi2 pulsations 
are presented in Keiling [2012]. Pi2 are regarded in that 
work as a signature of  a pre‐substorm ballooning insta­
bility at pseudo‐breakup stage. An SMS wave with a 
period of  ~30 s was observed by the Cluster satellites in 
Cao et al. (2013), associated with periodic reconnection 
in the magnetotail. These observations can be consid­
ered as the first evidence that unstable coupled MHD 
modes do exist.

A number of other observations appear to have observed 
oscillations of this type. Monochromatic (~10mHz) giant 
Pg pulsations were observed in Takahashi et al. [2011] 
with polarization typical of standing poloidal Alfvén 
waves. Simultaneous Alfvén and SMS oscillations in the 
same frequency range (period ~100s) were discovered by 
the THEMIS satellites near the current sheet (distance 
from the Earth 11RE) in Du et al. [2011]. No significant 
plasma pressure gradient was observed, making it 
unlikely for these oscillations to be unstable. Wave‐like 
structures were observed in Saka et al. [2014], by an all‐
sky imager at Dawson City (65 7. ILAT) pre‐substorm 
onset with azimuthal wave number m 76 and period 
T ~120s as are typical of coupled MHD modes.

Coupled Alfvén and SMS oscillations in the observa­
tions can be identified by specific features in their spatial 
structure. The total spatial structure of such oscillations 
was studied in Leonovich and Kozlov [2013b, 2014] on 
magnetic shells with closed magnetic field lines. Those 
studies addressed the structure of monochromatic waves 
driven by external ionospheric currents.

Due to the high conductivity of the ionosphere, these 
oscillations are standing waves along geomagnetic field 
lines [Mager et al., 2009]. They can propagate across mag­
netic shells in the transparency region located between 
the poloidal and toroidal resonance surfaces for Alfvén 
waves. Outside that area are opacity regions where the 
oscillation amplitude decreases. The coupled modes are 
waves propagating in the transparency region from the 
poloidal resonance surface toward the toroidal resonance 
surface. They are absorbed completely near the toroidal 
surface due to the finite conductivity of the ionosphere.

The presence of the toroidal resonance surface makes 
it impossible for poloidal eigen‐oscillations (and coupled 
modes can be classified as such) to exist in magneto­
spheric regions with monotonically changing medium 
parameters. The poloidal resonance surface separates 
the transparency and opacity regions for Alfvén waves 
in the direction across magnetic shells. As was shown 
in  Leonovich and Mazur [1990], both the incident and 
reflected waves are necessary for constructing the eigen­
mode structure in the transparency region. However, 
waves escaping from the poloidal resonance surface are 
completely absorbed near the toroidal surface so that the 
incident wave (traveling toward the poloidal surface) is 
absent [Leonovich and Mazur, 1993]. The only chance for 
poloidal eigenmodes to exist is the presence of a resonator 
in magnetospheric regions with nonmonotonically chang­
ing medium parameters [Leonovich and Mazur, 1995].

Here, we will consider oscillations in a magnetotail 
model with monotonically varying parameters. Figure 10.5 
shows the magnetotail axisymmetric model with a ring 
current sheet used in Leonovich and Kozlov [2013b, 2014]. 
The magnetic field in this model consists of a magnetic 
dipole in the near‐Earth part of the magnetosphere, and 
the field of an axisymmetric current sheet in its remote 
regions. This model allows us to calculate the field of 
the coupled modes in the meridional plane and their instability‐
related growth rates. This axisymmetric model, of course, 
only vaguely resembles the real magnetotail, but for 
azimuthally small‐scale oscillations with m1 the 
large‐scale magnetotail structure has little effect on the 
oscillation structure in the meridional planes. To calcu­
late the field of individual oscillation harmonics, we can 
therefore use any model with such basic elements as a 
dipole magnetic field near the Earth, the current sheet 
stretching the magnetic field lines in the meridional plane, 
and a balanced large‐scale plasma distribution. For the 
same reason we can ignore the presence of  the magnet­
opause located far from the current sheet.

The oscillation field in this model can be represented as 
a series of azimuthal harmonics of the form exp(ik2x

2), 
where x2 is the cyclic coordinate over which the parame­
ters of the medium are homogeneous, k2 is the azimuthal 
component of the wave vector (if  x2 , where ϕ is the 
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azimuthal angle, then k m2 0 1 2 3, , , ,  is the azimuthal 
wave number). This model is applicable to oscillations 
with m1.

In the ideal MHD approximation, the oscillations 
under study have no field‐aligned electric field compo­
nent. An electric field without field‐aligned components 
can be represented as a decomposition.

	 E 	

where  is the gradient across magnetic field lines, φ and 
( ), ,0 0  are, respectively, the scalar and vector poten­

tial of the perturbed electric field.
The following equation was obtained in Leonovich and 

Kozlov [2013b] for the scalar electric field potential of the 
oscillation in question.

	
ˆ ˆ ˆ ˆ ˆL L k L L LS T S P C1 1 2

2 0	 (10.9)

where i
ix/  and the following operators in the 

longitudinal x3 coordinate are introduced:
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are the longitudinal toroidal and poloidal operators 
describing the structure of Alfvén oscillations with toroidal 
(m 0) and poloidal (m ) polarization in a “cold” 
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Figure 10.5  Magnetotail model with a current sheet and magnetic field lines for different magnetic shells. 
(a) Distribution of Alfvén speed υA(km/s) in the meridional plane and the curvilinear coordinates (x1, x2, x3). (b) SMS 
speed cs(km/s) and the shapes of the magnetic field line inflection surfaces (1).
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plasma, p g g2 1/ , g g g g1 2 3 , where g1,2,3 are the 
metric tensor components;
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where P0 is the plasma pressure, 1/ , and 5 3/  is 
the adiabatic index.

During a transition to a homogeneous plasma case, 
the L̂P  and L̂T  operators produce a dispersion equation 
for Alfvén waves 2 2 2k vA

, and the L̂S operator a disper­
sion equation for SMS waves 2 2 2k cS

. Coupling of 
these waves is described by the L̂C  operator containing 
logarithmic derivatives of the medium parameters:

	
1 1 3g gln

	


 1 1 3 0 1 1 3 0 0B Pg B g P Bln , ln /

	

Here g Rg c1
1 2

1 1/ /  is the magnetic field line curvature, 
where Rc is the curvature radius.

The relation between potentials φ and ψ for MHD 
oscillations with m1 in the main order of perturbation 
theory has the form

	
ik B

g
B L k B Lg

T P2 0
1

3

1 0 1 2
2

0


 ˆ ˆ 	 (10.10)

where  g g g g k g3
1 2

1 2
1 2

1 2
2

2
1/ / . Note that the right 

side of (10.10) consists of the operators that give a disper­
sion equation for the Alfvén waves in a homogeneous 
plasma, k A

. Therefore oscillations of the scalar 
potential φ can be treated as Alfvén‐type oscillations. The 
left side of  (10.10) contains the vector potential compo­
nent ψ that, in the limit m1, describes the SMS oscilla­
tions. In this approximation the ψ potential is proportional 
to the field line curvature radius, Rc. It has singularities at 
field line inflection points, where Rc . In the higher 
orders of perturbation theory, the oscillation field is regu­
larized at inflection points, but some characteristic peaks 
will be observed in the distribution of the oscillation 
amplitude.

Obviously, each of the field lines passing through the 
current sheet has four such points. Two are located near 
the current sheet, and the other two in the transition 
region between the dipole magnetic field and the current 
sheet magnetic field. The set of such points forms an 
inflection surface of  magnetic field lines. Their cross 

section in the meridional plane is shown by thin black 
and white lines in Figure 10.5b.

We can express the oscillation field components in 
terms of the φ and ψ potentials:
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For oscillations with m1, the first term in (10.9) can be 
neglected near the poloidal resonance surface, in the lead­
ing order of perturbation theory, and the remaining 
equation

	 ˆ ˆ ˆL L LS P C 0	 (10.13)

describes the longitudinal structure of the oscillation 
field of the coupled modes. Equation (10.13) is a fourth‐
order equation in the longitudinal x3 coordinate, describ­
ing two oscillation modes, the Alfvén and SMS waves. 
Accordingly, it has two eigenfrequency sets. Both were 
studied in Leonovich and Kozlov [2013b] in the WKB 
approximation. The SMS oscillations have lower frequen­
cies and are easily absorbed by the background plasma 
ions. Therefore we are more interested in the Alfvén 
oscillation type, which we will consider in accordance 
with Leonovich and Kozlov [2014].

Due to the high conductivity of the ionosphere, these 
oscillations have the structure of standing waves along 
geomagnetic field lines. The transverse structure of the 
main harmonics of these waves is much smaller scale than 
their longitudinal structure. In this setup, the multiscale 
method is valid and the scalar potential can be written as 

U x H x x( ) ( )1 1 3, , where the U(x1) function describes 
the small‐scale structure of the oscillation field across 
magnetic shells, and H(x1,  x3) describes its large‐scale 
structure along magnetic field lines.

Eqaution (10.13) is here the equation for the H(x1,  x3) 
function, reducible to the canonical form.

	 3
4

3 3
3

2 3
2

1 3 0 0H 	 (10.14)

with rather complicated coefficients κi, whose expres­
sions were obtained in Leonovich and Kozlov [2014]. 
Equation (10.14) describes the wave field structure of  the 
coupled modes along geomagnetic field lines. On most 
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of the stretched magnetic field lines, except a narrow 
region of  the current layer, the first two terms in (10.14) 
are small compared with the last three (of  the order 
1, where 8 0 0

2P B/  is the ratio of  the gas–kinetic 
plasma pressure to the magnetic pressure). When solving 
the problem of the large‐scale longitudinal structure of 
the oscillations, the small terms in (10.14) can be 
neglected, whereas the remaining terms describe the 
poloidal Alfvén waves.

However, the k2coefficient varies strongly along the 
magnetic field line and passes through zero at some points 
in the current sheet. Near these points small terms with 
higher derivatives in (10.14) must be taken into account. 
They describe the interaction between the Alfvén and 
SMS waves. These points are the special points of equa­
tion (10.14). In their vicinity the characteristic scales of 
Alfvén and SMS waves are the same and a mutual partial 
linear transformation of these waves takes place. In other 
words, if  an Alfvén wave only is incident away from the 
transformation point, then the reflection from the trans­
formation region is the sum of the Alfvén and SMS 
waves. The same happens when the Alfvén wave passes 
through the transformation point—where the field of the 
waves passing through this point consists of Alfvén and 
SMS waves. Unlike resonance points, the oscillation 
amplitude exhibits no sharp increase near the transfor­
mation points.

As a result the total oscillation field on the field lines 
passing through the current sheet is the sum of the Alfvén 
and SMS wave fields. Their amplitudes and phases are 
coupled through the linear transformation mechanism in 
the current sheet. In the zeroth‐order of perturbation 
theory, the ionosphere can be regarded as a perfectly con­
ductive boundary. Then the boundary conditions on the 
ionosphere for potential φ are of the form.
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where x3 are the points where the field line intersects the 
ionosphere of  the Northern and Southern Hemispheres, 
 lp p3

1(ln ). For the numerical integration of  (10.14), 
we also have to specify the derivatives, 3 3|x  and 3

3
3|x . 

The first derivative, 3 3|x , defines the total amplitude 
of  the oscillations and can be chosen arbitrarily, but 

3
3

3|x  is not determined from any other boundary con­
ditions. Since the boundary conditions (10.15) must be 
satisfied for either ionosphere, (10.14) must have two 
free parameters, the eigenvalues for which are to be 
determined. We will choose the oscillation frequency ω 
as one such parameter and the derivative 3

3
3|x  as 

the other.
The solution of (10.14) with boundary conditions 

(10.15) is a set of standing waves between the magneto‐

conjugated ionospheres described by a set of HN(x1,  x3) 
functions and corresponding eigenfrequencies N, 
where N 1 2 3, , ,  are the wave numbers of longitudi­
nal harmonics. Note that these are not the frequencies 
of  the plasma eigen‐oscillations, but they are functions 
of  the transverse coordinate ( N N x( )1 ) and deter­
mine the structure of the wave field along the magnetic 
field lines.

Figure 10.6a shows the field‐aligned distributions of 
the main components of  the electromagnetic oscillation 
field calculated numerically for the basic harmonic (N 1). 
The distributions correspond to the poloidal resonance 
surface on magnetic shell L a RE/ 15, where a is the 
equatorial radius of  the field line, RE is the Earth’s 
radius. The geomagnetic latitude θ as counted from 
the equatorial plane is used as the longitudinal coordi­
nate (see Figure  10.5a). An interesting feature of  the 
wave field is the SMS‐related small‐scale structure of 
the oscillations. This structure manifests itself  in the 
E E gy 2 2/  and B B gx 1 1/  components near the 
ionosphere only (not shown in the figure) and also in 
the compressible B B gz 3 3/  component near the 
equatorial plane, prevailing up to the ionosphere (shown 
in the separate plot).

A similar spatial structure of coupled oscillations has 
already been obtained [Cheremnykh and Parnowski, 
2006; Mazur et al., 2014] for some components of  the 
oscillation field. According to our calculations, the 
SMS‐related small‐scale structure manifests itself  for 
all  oscillation field components near the ionosphere. 
Moreover, in the distribution of the Bz component, 
amplitude peaks stand out sharply at the field line inflec­
tion points: two near the current sheet and another two in 
the transition region between the dipole magnetic field 
and the current sheet field.

The distribution of the basic frequency of the coupled 
modes and toroidal Alfvén waves over magnetic shells are 
shown in Figure  10.6c. Note the jumps in the ΩN(x1) 
distribution in the transition region between the dipole 
magnetic field and the current sheet field. This is no inac­
curacy of numerical calculation. These jumps are due to 
the following circumstance. Large‐scale poloidal Alfvén 
waves are coupled in the current sheet with different 
small‐scale harmonics of SMS waves having almost the 
same frequency. The distribution of the eigenfrequencies 
across magnetic shells has the form of a “bunch” of lines 
that merge into a single line in the transition layer. Therefore 
the eigenfrequency quantification technique that we use 
produces jumps between different oscillation branches 
in the transition region. They are impossible to avoid. We 
can only minimize the number of such jumps by selecting 
proper initial parameters when finding the eigenvalues.

The poloidal oscillation frequency in the current sheet 
has an imaginary component (growth rate) due to a 



MHD Oscillations in the Earth’s Magnetotail: Theoretical Studies   173

ballooning instability. Note that this instability is not a 
consequence of Alfvén and SMS wave coupling. It also 
appears in uncoupled oscillations [Leonovich and Kozlov, 
2013b]. In this problem we ignore the fact that SMS waves 
decay strongly in the magnetosphere due to their interac­
tion with background plasma ions [Leonovich and Kozlov, 
2009]. If  this damping is included, the coupled mode can, 
conversely, become damped.

In the direction across magnetic shells, the transpar­
ency region for monochromatic waves with frequency ω is 
located between the poloidal xP

1  and toroidal xT
1  reso­

nance surfaces (see Figure 10.6c). We have to use the full 
form of (10.9) to describe the oscillation structure across 
magnetic shells. After a special integration procedure 
of  (10.9) along the field line involving the boundary 

conditions that take into account the finite conductivity 
of and the presence of external currents in the ionosphere 
[Leonovich and Mazur, 1996] and linearizing the coeffi­
cients near the poloidal resonance surface, we obtain the 
equation
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describing the small‐scale structure of the coupled modes 
across magnetic shells near the poloidal resonance 
surface. Here ( ) /x xP

1 1 , where a ky
1 3 2 3/ // , a is the 

characteristic scale of ΩN(x1) near the poloidal surface, 
k ky 2, N N N yk a2 2 3( ) /( ) / , δN is the ballooning 
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instability growth rate, γN is the decrement due to the finite 
ionospheric conductivity, I N  is the oscillation source 
determined by external currents in the ionosphere.

If  the localization scale of source I N  is much larger 
than the localization scale of the oscillations, the right‐
hand side in (10.16) can be assumed constant, and the 
solution has the form
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where the Gi(z) function is the solution of an inhomoge­
neous Airy equation decreasing into the opacity region 
like z 1.

The total structure of the unstable oscillations ( N 0) 
across magnetic shells is shown in Figure 10.6b. The wave 
is excited at the poloidal resonance surface by external 
currents in the ionosphere and moves away from it toward 
the toroidal surface. The amplitude of the oscillations 
increases due to the ballooning instability, but near the 
toroidal resonance surface the oscillations are completely 
absorbed due to their dissipation in the ionosphere.

Thus we can use the following features in the spatial 
structure of these coupled modes on closed magnetic 
field lines to identify them. Since these oscillations are 
standing waves along magnetic field lines, the phase shift 
between their E E gy 2 2/  and B B gx 1 1/  compo­
nents is π/2, as follows from (10.10). If  we do not take 
into account possible small‐scale oscillations near the 
ionosphere, the transverse Bx,  By and Ex,  Ey components 
of the electromagnetic field are large scale for the basic 
harmonics of standing waves, while the B B gz 3 3/  field‐
aligned component is small scale, along the field line.

In the opacity region along the radial x1 coordinate and 
near the poloidal resonance surface (x xP

1 1 ), the phase shift 
between the B B gx 1 1/  and B B gy 2 2/  components is 
also π/2, which corresponds to a standing wave over x1. 
However, in the transparency region (x x xP T

1 1 1 ) away 
from the poloidal resonance surface and closer to the toroidal 
one, the phase shift between these components changes grad­
ually to π, which is typical of a running wave along the radial 
coordinate. If the oscillations are unstable, the amplitudes of 
all components first increase and then decrease toward the 
toroidal surface. The polarization of the oscillations changes 
from poloidal (with dominant Bx and Ey components) to 
toroidal (with dominant By and Ex components).

And finally, sharp narrowly localized peaks in the oscil­
lation amplitude distribution should be observed at 
points where the field line crosses the inflection surfaces, 
especially noticeable in the Bz component distribution. 
Two such peaks are located at the current sheet bounda­
ries, and the two others in the region where the field line 
crosses the transition region between the dipole magnetic 
field and current sheet field.

10.5. FLAPPING OSCILLATIONS OF THE 
CURRENT SHEET

Last, let us address the recently discovered kink‐like 
oscillations of the magnetotail current sheet [Zhang et al., 
2002]. These oscillations differ fundamentally from eigen 
MHD oscillations that propagate in the current sheet 
without changing its configuration [Fruit et al., 2009; 
Wright and Allan, 2008; Dmitrienko, 2013]. On the con­
trary, the discovered kink‐like oscillations are oscillations 
of the current sheet itself, similar to a piece of fabric flut­
tering in the wind. In this regard they are called “flapping 
modes”.

Flapping modes are detected in in situ observations as 
the spacecraft is repeatedly crossed by the current sheet 
[Zhang et al., 2002]. A statistical study in Sergeev et al. 
[2006] shows that their occurrence increases sharply with 
distance from the Earth, reaching a maximum in the 
middle tail. Flapping modes are often observed during 
the substorm expansion phase. The average frequency of 
these oscillations is 0 035 1. s , their wavelength is 2–5 
RE, their group velocity is ~ /30 70 km s, and their vertical 
oscillation amplitude reaches 2–3 RE [Runov et al., 2009].

Several theoretical interpretations have been set forth 
to explain the observed flapping modes. In Golovchanskaya 
and Maltsev [2005], the flapping modes are regarded as 
unstable “ballooning modes” (i.e., essentially, as coupled 
poloidal Alfvén and SMS waves). Based on an analysis of 
the local dispersion relations in Ohtani et al. [1989] and 
Liu [1997], it was shown that the group velocity of  
these waves along the current sheet, ~ /40 400 km s, is 
equal to the velocity of the observed flapping modes. 
Oscillations that are antisymmetric relative to the equilib­
rium position of the current sheet are considered as flap­
ping modes. In particular, they can be observed as 
kink‐like oscillations, unlike the symmetrical sausage 
modes. It should be noted, however, that, as follows from 
the findings in the previous section, the typical oscillation 
wavelengths along the current sheet x N m/  (where 

N TN PNx x1 1 , m1) are much smaller than the 
observed ones x N .

In Zelenyi et al. [2009], observed flapping modes are 
explained as eigen‐drift modes in a thin current sheet. 
They can be unstable like tearing modes. These modes 
differ by the direction of their wave vector. In drift modes, 
the wave vector is directed perpendicular to the plasma 
motion direction, while in tearing modes, it is parallel. It 
was noted that oscillations with any intermediate direc­
tions of the wave vectors can be unstable.

The following concept of flapping modes was devel­
oped in Erkaev et al. [2009]. It was suggested that oscilla­
tions with the observed frequencies and propagation 
velocities could be a signature of an original mode of 
MHD oscillations due to different gradients of  the 
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background magnetic field components z xB  and x zB . 
For a linear mode of the form exp( )i t ik yy , the oscilla­

tion frequency is L B Bx z x x z / 4 0 , where Δ is 
the typical current sheet thickness and Lx is the typical 
scale of Bz(x/Lx). For the typical values of the medium 
parameters Bx 20 nT, Bz 2 nT, RE, L Rx E5 , 
ky 0 7. , and z x z xB B L/ , the following estimates 
were obtained for the frequency and group velocity of the 
oscillations in question: 0 03 1. s , vg 60 km s/ , coin­
ciding with the observed values for flapping modes.

Let us note the disadvantages of all the flapping 
oscillation concept proposed above. All the above papers 
considered the flapping oscillation development in a linear 
local approximation. In other words, all the MHD oscilla­
tions proposed for the flapping modes are considered as 
small‐amplitude oscillations against an almost constant 
background. However, it is clear that the current sheet fluc­
tuations with amplitudes 2 3RE  cannot be regarded as 
small fluctuations. In all concepts proposed above the mag­
netotail is not considered as a single object. It seems natural 
that the current sheet fluctuations are associated with the 
fluctuations of the magnetotail in the solar wind flow. To be 
sure, an adequate nonlinear theory of the magnetotail 
instability in the solar wind flow is still absent. Nevertherless, 
there are numerous MHD simulations showing exactly this 
magnetotail behavior in the high‐speed solar wind flows. 
This suggests that we may hope to see an adequate theory 
of this phenomenon developed in the near future.

10.6. SUMMARY

Let us list the main results of this chapter based on the 
reviewed observational data and theoretical models of 
MHD oscillations in the magnetotail:

1. The processes under scrutiny are those involving FMS 
wave penetration from the solar wind into the magneto­
sphere and the amplification of MHD oscillations excited 
at the magnetopause under the effect of  the Kelvin–
Helmholtz instability. It is shown that in the low‐frequency 
part of the spectrum, covering the geomagnetic Pc5 pulsa­
tion range and below, oscillations with large field‐aligned 
wavelengths k rm

 1, where r Rm E20 30  is the magneto­
pause radius, can enter into an unstable regime.

Most FMS waves penetrating into the magnetosphere 
have resonance surfaces in the magnetopause transition 
layer. Intense interaction takes place between the magneto­
sonic oscillations and the background plasma ions at the 
resonance shells for SMS waves. As a result the waves are 
damped, and the ions acquire additional momentum 
and  energy. It is shown that the FMS wave flux from 
the  magnetosheath into the magnetosphere can form 
Earthward plasma flows with velocities of 50–150 km/s. 
Periods of a long‐lasting Northern IMF component show 

no momentum transfer from the solar wind into the mag­
netosphere due to a magnetic field reconnection at the 
dayside magnetopause. Observations in the high‐latitude 
ionosphere show that cells with reverse plasma convection 
form in the magnetotail areas adjacent to the magneto­
pause over the same periods. Formation of these cells can 
be explained by a mechanism for a wave transfer of the 
momentum from the solar wind into the magnetosphere.

2. The problem is solved about the eigen‐oscillation 
structure and spectrum for the FMS resonator in the 
near‐Earth part of the magnetotail plasma sheet. It is 
shown that such a resonator is formed in periods of low 
enough geomagnetic disturbance, KP 1. The resonator 
eigenfrequencies are not distributed randomly but are 
grouped into separate clusters. The mean frequencies in 
each of  such clusters are close to one of  the “magic 
frequencies” and cover the whole set of the observed 
ULF waves with a discrete spectrum.

3. Coupled Alfvén and SMS oscillations are studied on 
the tailward‐stretched closed magnetic field lines passing 
through the current sheet. It is shown that coupling of the 
modes occurs in the current sheet at the resonance surfaces 
for poloidal Alfvén waves and takes the form of  their 
partial linear transformation into SMS waves. Under 
certain conditions, these coupled oscillations become 
unstable due to the action of a “ballooning” instability 
caused by magnetic field line curvature and the plasma 
pressure gradient directed along the curvature radius. This 
instability is regarded as one of the possible trigger mecha­
nisms for geomagnetic field line reconnection in the near‐
Earth part of the current sheet during magnetospheric 
substorms. Across the magnetic shells, the coupled mode 
has the form of a wave running from the poloidal to the 
toroidal resonance surface for Alfvén waves.

4. The main theoretical concepts proposed for inter­
preting the recently discovered “flapping” oscillations of 
the magnetotail current sheet are discussed. These oscilla­
tions have many interpretations in the current theoretical 
concepts: as coupled “ballooning” modes, as “drift” 
modes in a thin current sheet, as specific MHD modes 
due to the different gradients in the geomagnetic field 
components. All these concepts are based on theoretical 
approaches studying linear oscillations of small ampli­
tude developing in a stable background plasma. However, 
it appears that these oscillations should be considered as 
strongly nonlinear current sheet oscillations occurring 
together with the magnetotail oscillations in the solar 
wind flow. An adequate theory on this phenomenon can 
be expected to be developed over the next decade.
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