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Abstract. New determinations of the important, but poorly
known a-effect are presented in the Second-Order Correlation
Approximation with both gradients of density and turbulence in-
tensity simultaneously involved. In both of the two approaches
new results appear which are — if they are confirmed by numeri-
cal simulations — relevant to the design of new dynamo models.
In our first approach the magnetic back-reaction is ignored but
no restrictions on the rotation rate are imposed. The density
stratification as well as the turbulence intensity inhomogeneity
contribute with similar power to the production of the a-effect.
The known equality of both contributions appears for fast ro-
tation only. The previously suggested change of the sign of the
a-effect in the solar overshoot region may indeed be real.

Most surprising are the results for the z-component of the
o-tensor. It is negative (in the northern hemisphere) for slow
rotation and vanishes for fast rotation. While the former case is
important for galaxies, the latter one concerns the majority of
cool main-sequence stars.

In our second approach the magnetic feedback on the tur-
bulence is considered which leads to the known a-quenching.
We give the complete quenching functions for all a-coefficients
for arbitrary strength of the magnetic field. We find different
quenching for different components of the a-tensor. Addition-
ally, the quenching strongly depends on the orientation of the
mean magnetic field.

Key words: turbulence — star: magnetic field — interstellar
medium: magnetic field

1. Introduction

A central part of mean-field dynamo theory is information on the
turbulent electromotive force (EMF), which essentially domi-
nates the dynamo equation:

oB —rot (@ X B) =rot (& — nrotB)

5 (1.1)
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with

& =u xB. (1.2)
Traditionally, the EMF is split into its non-diffusive and
diffusive components,

& Y¥aoB—nrrotB+... (1.3)
Both defining parameters, o and 7, deserve equal efforts of
treatment. In a consistent mean-field dynamo theory, both ten-
sors must be derived from the same turbulence model. It makes
no sense to apply several quenching descriptions of the a-effect
if itis not clear that the corresponding turbulence model leads to
areasonable 7r-quenching. Urgently needed in dynamo theory
is ademonstration that, for a reasonable turbulence model a non-
linear EMF, & = &'(Q, B), follows allowing self-excitation.

We consider Kichatinov’s (1987) “quasi-isotropic” turbu-
lence model as a first candidate for the presented program. It
contains the influence of both density stratification and a gradi-
ent of the turbulence intensity. It remains to add the influence
of global rotation and large-scale magnetism in order to find
the a-effect. For the derivation of the turbulent diffusivity nr a
mean field inhomogeneity must be included.

The present paper concentrates upon the non-diffusive con-
tribution, i.e. the a-effect. There is a lack of discussion in the
literature as to what is as reasonable choice for modelling cosmic
dynamos. In particular, it is not definitely established whether
the density or the intensity stratification contributes primarily
to a, what the anisotropies are ( cf. Wilder et al. 1980; Riidiger
1990), and how the « behaves for non-slow rotation ( cf. Riidiger
1978). Knowledge of the proper choice for the magnetic quench-
ing of the a-effect is also lacking.

More definitely, only that part of the a-tensor will be derived
which is an odd function of angular velocity, representing the
traditional a-effect. The even part stands for the field-advection
effects and was studied elsewhere (Kichatinov 1991; Kichati-
nov & Riidiger 1992 (paper I)). Our treatment may be divided
into two parts. First we derive the kinematic a-expression ne-
glecting the mean magnetic fields influence on the turbulence.
No restrictions are imposed on the value of the angular velocity
) hence we are able to consider explicitely the case of medium
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rotation (Rossby number of order unity) or even the case of fast
rotation with very low Rossby numbers. While the first case
probably holds for accretion disks, the latter one is realized for
the majority of the main-sequence stars.

Second we turn to the well-known a-quenching, i.e. the
consequences of the magnetic suppression and deformation of
the turbulence which generally yields a numerical decrease of
the value of a. For simplicity we neglect the density stratifi-
cation in both the momentum and induction equation in these
computations.

2. Basic equations and turbulence model

All the derivations to follow are made within the Second Order
Correlation Approximation (SOCA) which remains the princi-
pal tool of the mean-field magnetohydrodynamics. In this ap-
proximation, mean-field equations are treated in their full form,
including nonlinear terms in fluctuating fields. To calculate these
latter terms, however, linearized equations for the fluctuations
are used. We avoid detailed discussion of SOCA because it is
available elsewhere (cf, e.g. Moffatt 1978; Krause & Radler
1981). It is known from these works that SOCA strictly applies
in the case of small Strouhal numbers, S = 7.u'/l. < 1 (W
is rms turbulent velocity and 7. and [, are the correlation time
and length correspondently). Though S is usually of order unity
for real conditions, the SOCA predictions are most probably
correct in their order of magnitude.

As described in paper I, the turbulent EMF (1.1) follows
from the linearized induction equation given in Riidiger (1990).
The mean magnetic field, B, is assumed to be uniform and the
calculations are again restricted to the first-order terms of the
scale ratio oo/ L with .o and L being typical spatial scales
of the fluctuating and mean field, respectively.

We refer directly to the solution of the induction equation
of paper I (see its Eq. (2.4)). Considering this expression fo
the first order in the density gradient we obtain the following
representation in the Fourier picture,

20 = e / _tkm
proum == Cipe [T nk?

< Mp(k, w)Me (k' w') > dk dk’ dw dw’
9 kom .
+€1per / 8_kf <m) Mpe(k,W) dk dw
MY (k,w
+ eipme / fp( )

—iw + nk?
with the a-tensor defined as usual,

dk dw 2.1)

& = Olim-Bm' 22

In (2.1)m = pu’ is the fluctuating momentum density with u’
being the random velocity field, N/° is the homogeneous part of
the spectral tensor for the momentum fluctuations, G = V log p,
and the hat indicates Fourier transformation as in

m(r,t) = / ik, w) et &~ 8 dk dw . (2.3)
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To clarify the properties of the spectral tensor < 1h;1h; > we
must address the equation of motion. As indicated above, the
later equation is used in its linearized form within SOCA:

Bmz/c‘?t + Vz (p/ + (B . B/)//.L) — (]_3 . V)B;/N,
-V, (pl/(Viu; + Vjup) + pp'6;; divu’) (2.4a)

/

+26ipsﬂpms = i

where f is the random body force driving the turbulence. We
expect that the a-effect is not sensitive to a particular source of
the turbulence and prescribe the random force, f, as the source
instead of addressing the rather complicated problem of nonlin-
ear thermal convection. In the Fourier representation the above
equation reads

[—iw + vk* + iv(GK)] . + 2(k°Q) (k° X 1)

1 .. (2.4b)
- ;z(Bk)B:fs,

where the anelasticity condition, divm = 0, was used, £5 is the
non-potential part of the random force, B is the Fourier transform
of the random component B’ of the magnetic field, andk® =k/k
is a unit vector. We assume next that the (buoyancy) force, f, do
not explicitly depend on angular velocity. This allows the notion
of “original turbulence” to be introduced (cf. Riidiger 1989) and
a usual linear relation be found,

m; = Dijmgo) (2.5)
where m© is the momentum density of the original turbulence
which the random force f would drive if rotation and magnetic.
field were absent:

m® = #/ [—iw + vk® + w(kG)|. (2.6)

If the Lorentz force is neglected in (2.4), we arrive at the fol-
lowing representation for the tensor D,

2(k°Q)

[e]
D = bij + v R e Ciirkp @7
LV 1+ 4(k°Q)? ) .

(—iw + vk? + (k) )

If, on the other hand, the influence of the mean magnetic field
on the turbulence is considered, Eq. (2.5) can still be used but
the tensor D changes to

ma, 1 (kOQ) <]
Dz] 9 = ]—V_— (61] + 2 m Gijpkp) (28)
with
2
N=1+ V) 2.9)

(—iw + vk?)(—iw + nk?)

and V = B/,/fip as the Alfven velocity. Equation (2.9) only
holds for slow rotation and for neglected density stratification.
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With (2.5) the spectral tensor for the momentum density can
be expressed in terms of the spectral tensor for the original”
turbulence:
< my(z,w) ’ﬁ’Lj(Z/, w/) > = Din(z, w)D]p(z,7 wl)

2.10
< m(o)(z w) m“”(z , W ( )

>,

where all the effects which a magnetic field or rotation produce
in the turbulence are involved in the tensors D.

As in the Paper I, we adopt the quasi-isotropic model by
Kichatinov (1987) for the original turbulence as the simplest
representation for spatially inhomogeneous and divergence-free
(anelastic) random fields (see also Roberts & Soward 1975):

E(k,w, K)
16mk?
kp — Kpkn)/2K* 1,

< M@, w) M@, ") > = Sw + W)

[57747_

(2.11)
knkp/K* + (ky,

where k = z — 2')/2, k =z + Z'. Equation (2.11) is valid
within the linear approximation in the scale ratio l.orr/ L. Eis
the Fourier transform of the local spectrum E, i.e.

E(k,w,r) = / Bk, w, k) e dk, (2.12)
and
m®2? > = //E(k,w,r)dkdw. (2.13)
0 0

It has been shown in Paper I, that the local spectrum E factorizes
in the first-order approximation in the scale-ratio so that

Ek,w,r) = p*(r) q(k,w,1) (2.14)
holds with q being the local velocity spectrum
<u(@r)>= // q(k,w,r) dk dw. (2.15)

Only this property allows the separation of the a-effects caused
by the inhomogeneity of the turbulence intensity and the density
stratification.

3. The a-tensor for slow and fast rotation

We proceed with the consideration of the kinematic c-effect
if the back-reaction of the magnetic field on the turbulence is
neglected. The non-magnetic representation (2.7) for the tensor
D is used, which is valid for arbitrary rotation rate €.

Due to (2.14) the resulting « tensor splits into two parts
which separately involve the effects of the inhomogeneities of
turbulence intensity and density:

a=ao +a".
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Both tensors have the same structure:
%m = — 5;m(2G) oz1 — QnG; + QG a2
Q; 3.1
— QG — QGr) of — Q — (QG) o ,
Oégm = —6im(QU) Ol’iL — (QmUZ + QZUm) Oég
Q,Q (3.2)

— QU = QiUp) of — = (QU) o,

where U is the relative gradient of the turbulence intensity,
Vgq/2 = Uq. We assume U independent of wave-number and
frequency and write U = Vlogu' with u’ as the rms velocity,

u' =< u? >. Then:

ot = // q(k,w,r) nk*
o ) (W? + 2k (Ww? + n2kY)

W2
[VAU(Q k,w)+ T——C“(Q k,w)| dk dw
forn=14,
w_ o q(k,w, r) w? u
03 = 0f //(w2+1/2k'4)(w2+n2k4)B3(Q’k’w) dkdw ,
0 0
oy = af — of (3.3)

q(k,w,r) vnk*
V2k* + W)(W? + n*kY)

6A*(Q, k,w) dk dw ,

q(k,w, ) vik?
(W? + V2 kM) (Ww? + n?k%)

AP(Q, k,w) dk dw

forn=1,2,4

The dependence on the angular velocity €2 enters the relations
through the kernels A, B and C which are rather complicated
expressions (see Appendix). Only special realisations shall be
discussed in the present paper.

The equality o = o§ means that both inhomogeneities can
be combined in a common gradient, V log(pu'), in the antisym-
metric part of the a-tensor. For the axisymmetric geometry of
a star this antisymmetric part corresponds to a transport of the
mean magnetic field in the azimuthal direction similar to the in-
ducing action of differential rotation. The differential rotation,
hovewer, is more powerful than the antisymmetric part of the
a-effect, so that the latter is most probably of minor importance.

The combination of the inhomogeneities of the turbulence
intensity and the density into a common gradient, V log(pu’),
is believed to appear for the entire a-effect (Steenbeck et al.
1966; Krause 1967). In general, however, this is not exactly true
and the relative contribution of the two basic inhomogeneities
depends on the angular velocity. We introduce a weight factor,
S, which characterizes the relative contribution of the density
inhomogeneity into the a-coefficient, o = a,,,, of the af2-
dynamo:

a = —a¥QViog(p ).

(3.4)
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S depends on the angular velocity (note, however, that the V-
operator in (3.4) does not differentiate S).

3.1. Slow rotation

Explicit representations of the ¢+ for the slow-rotation case are
given in Riidiger (1978) and we do not reproduce them here. We
concentrate upon the contribution of the density stratification:

o = 4 / / vnk*BrPk* + 5w%) q b do
1715 (W? + 12kH2(W? + n2kY) ’

0 0

xR 3, 1.8 3.5
o/’=—§// vk g dk dw
2 15 (w? + V2" (W? + n2kY) ’

0 0

af =0.

Note the opposite signs of of and o to which we shall return
below.

As we know, the a-effect also exists in perfect conduc-
tors. We speak of the high-conductivity limit if the magnetic
Reynolds number of the fluctuations is much larger than unity.
In this case the relations provide in the limit n — 0

w 4 7
af = 5o q(k,0,r)k~2 dk,
0
w 27T 7 _2
oy = ~ 35, q(k,0,)k~“dk
0 (3.6)
B 2 / / q(k,w r)
3 w? + V2k4 ad
00
of = ?r q(k,0,00k=2 dk ,
0
47 7
P _
of T q(k,0, k2 dk .
0
From these relations the value
S=3/2 3.7

can be found for the weight factor. For the relative contribu-
tion of density and turbulence intensity to o, we find only an
inequality, i.e.

ooy < 2/3.

Though the above numbers differ from unity, the difference is

not large. Therefore, the importance of the two inhomogeneities
for the a-effect depends mainly upon the gradients themselves.
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3.2. Fast rotation

If the parameter W = 2Q /v v2k* + w? is large for those wave-
numbers and frequencies which produce the dominant con-
tributions to the integrals, we may keep only the lowest or-
der terms in W~ in (3.3). For this case of rapid rotation,
of =af =ay, o) = —as, ap = a3 =0. Then

Q.
W = =1 ((G+U)Q/Q) (6im — o ) (3.8)
with
_m™m 7T (W 2+ 0%kY ¢
1 // 2(772k4+ ) dk dw. 3.9
0 0

The fast-rotation approximation is probably applicable to the
deep regions of the solar convection zone. Both basic inhomo-
geneities combine into a common gradient in (3.8) leading to
S = I as the weight factor. Since the turbulence intensity inho-
mogeneity is dominant in the bottom layers of the convection
zone — and in the overshoot region below the convection zone
— one expects that the c-effect changes its sign to negative in
these layers (Krivodubskij 1984).

The a-effect for the inhomogeneous intensity is known to
become two-dimensional under rapid rotation (Riidiger 1978).
We notice from Eq. (3.8) that this remains valid with density
stratification included. The a-effect vanishes in z-direction.

3.3. Rossby-number dependence

The above representations of the a-effect include spectral func-
tions and other parameters which are poorly known for the
solar convection zone. Hence, some simplifying assumptions
are needed to derive explicite expressions. The simplest known
model spectrum is

qk,w,r) = 2 < W > 6k — 07Hs(w),
1/=17=€2/7', (310)

where ¢ and 7 are correlation length and convective turnover
time. Equation (3.10) can be understood as a transition to
the mixing-length approximation ( cf. Durney & Spruit 1979;
Kichatinov 1991).

Inserting (3.10) into (3.3) one finds the results expressed in
terms of global parameters. The non-trivial dependence is that
of the Rossby number. We prefer to use the Coriolis number,
Q* =271, the inverse of the Rossby number. For the a-tensor
component o, Which is the basic one in af2-dynamos, we find
Qpp = — %7’ <u? > QTTHQY)

d (3.11)
7 log(p>“*") ') cos 6

— written in spherical coordinates. The weight factor S in the
above equation is a function of the Coriolis number,

S(QF) = TP(Q)/THQ), (3.12)
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where
*2 _ (x4
\I]P(Q*) - (Q*2 6_+_3_Q___i tan—l Q*) ,
QO*
94402 — Q4
UOF) — *2 _ —1 O*
\I/(Q)—Q4<Q +9 — 0 tan Q)

In spite of the 2** in the denominators the functions tend to
constant values when Q* approaches zero (slow rotation):

P = 4/5, U* = 8/15. (3.13)

In the opposite limit of rapid rotation (2* > 1) we have

™

Vo= U=
207

(3.14)

Note that the a-coefficient (3.11) approaches a constant value
for large 2%, i.e. there is no quenching of the c,, in the fast-
rotation limit (Fig. 1).

We do not reproduce the mixing-length expression for the
complete a-tensor here. It may be easily found by the use of
(3.3) and (3.10). We only note that all the above findings could
be qualitatively reproduced in this way. Equations (3.13) and
(3.14), for instance, lead to the limits

. . 3
i SO =73

Q1im SQ*) =1 (3.15)

for the weight factor which we have already derived above .

Hor tzon tal
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5 10
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Fig. 1. The influence of the rotation rate (2* = 272) on the ae-
component which is active in a€2-dynamos. There is no Q2-quenching.
The weight-factor S approaches unity
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3.4. Astrophysical applications

Let us consider the a-tensor in Cartesian geometry and for slow
rotation, which is the usual constellation for galactic dynamos.
In the equatorial plane the a,, is active, in the vertical direction
itis a,,. We write

Oze = — (4G +a2U) Q, (3.16)
0z = — (026G + a2U) Q (3.17)
and obtain in the high-conductivity limit
3. 1,
af = 7% aof = 54 (3.18)
R L4 q(k,w,r)
ar =4, 26 — §//w2+y2k4dkdw (3.19)
with the positive factor
A 9k, 0,1) ,
&=1e / R dk. (3.20)

0

(cf. Eq. (3.6)). The occurrence of the spectral function q taken
at the zero-frequency w = 0 is quite characteristic for the high-
conductivity limit. It only vanishes for wave-like motions.

We find - in the northern hemisphere — the a-effect to be
positive in the x-direction and negative in the z-direction. This is
a surprising result. The galactic dynamo seems to work with dif-
ferent signs of « in different directions. The finding confirms the
result of the numerical simulations of Brandenburg et al. (1990)
who first found opposite signs for the a-effect in the two di-
rections. Nonlinear simulations and the analytical second-order
correlation-approximation lead now to the same result. Bran-
denburg etal. find a; /o, = —0.25. This result is reproduced
here by Eq. (3.19) rather than Eq. (3.18).

Ferriere (1992) with quite another method also gives the
same signs. The negativity of the a-effect in z-direction is, how-
ever, in contrast to the result in Riidiger (1990), where the mag-
netohydrodynamical consequences of the action of an isotropic
random force field has been analysed. Obviously, the differences
between the two turbulence models are stronger than imagined.

Interesting for stellar dynamos is also the knowledge of the
a-components in spherical coordinates. From Egs. (3.1), (3.2)
and (3.6) we derive the expressions

= apg = —& QV log(p>u/
Oy = agg = —G OV og(p; U/), 3.21)
apr = G QV log(p”ru'),

— written ‘in the form of (3.4). Note the different signs of the
components. One easily finds that &, > 24 and S, < 1/4
hence the density stratification only plays a minor role for the
radial a-effect. The consequences of this unexpected behaviour
are still unknown.
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4. Alpha-quenching

On using Eq. (2.8), the a-tensor for slow rotation but magnetic
field of arbitrary strength can be derived. It is not convenient,
however, to work with tensorial representation for the nonlinear
a-effect. This is because in the nonlinear case different tensor
structures may provide the same contributions to the mean EMF.
For this reason, we prefer here to address the mean EMF itself
instead of the a-tensor.

The general nonlinear expressions are extremely bulky and
we do not reproduce them here. Some simplifying cases will
be considered demonstrating the main physical findings. In par-
ticular, the results for distributed turbulence intensity are de-
velopped as they seem to be of higher relevance to the galactic
dynamo than the influence of density stratification ( cf. Ferriere
1992).

For the weak-field limit our results approach those discussed
above. It remains to consider the opposite case of strong fields.

4.1. Strong field

For the strong-field limit only those terms in the EMF must be
found which do not diverge for B — co. No positive power in
the mean magnetic field exists. Only two terms survive in this
case. They do not depend on the magnetic amplitude at all:
BQ)(BU) _
(BO)( >B>

= @.1

& =A <(]'3U)Q —
The general expression for A is rather involved. For simplicity,
the magnetic Prandtl number is assumed to be unity, v = 7. The
result is

m -3
81/V// q(k,w, )k~ dk dw ,
00

where again V = B/,/iip is the Alfven velocity.

The EMF (4.1) is normal to the mean field B and thus in-
volves no effective . It can be reduced to the advection-type
term, & = @ x B and describes a transport of the mean field
with the effective velocity

BU) ,_
e

A= 4.2)

a=A x Q). 4.3)
This EMF is not capable of producing a dynamo. For the usu-
ally assumed symmetry about the rotation axis it is strictly im-
possible due to the anti-dynamo theorem because of the axial
symmetry of the ’velocity’ (4.3).

The EMF (4.1) vanishes for parallel orientation of the angu-
lar velocity and the mean magnetic field. Remember that it also
does so under fast rotation but weak field with B||Q2. A possible
explanation of these two findings is the tendency of the turbu-
lence field to become two-dimensional under the influence of
a strong magnetic field as well as under the influence of a fast
rotation. In both cases the random velocity field does not vary
along the direction of the mean-field vectors. 2D flows are not
influenced by the basic rotation so that no mean EMF is induced.
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To find the real effect in the strong-field limit we thus only
have to concentrate upon the negative powers of the magnetic
field strengh. This is done in the next Section in the framework
of a “mixing-length approximation”.

4.2. Mixing-length approximation
With the velocity field (3.10) we find
& = —rP<u’>

8 _ BO)(BU) -
(S uHOUE + () "2

4 _ 4 _
- s L(HBYU — g\l’s(ﬂ)(BU)Q),

(4.4)

with 3 = B/Beq and Beq = \/fip!/T as the equipartition field.
The functions ¥, ¥, and V3 are normalized to unity at 3 = 0.
They must be understood as the quenching functions for the
corresponding kinematic a-coefficients.
The function ¥,
43 1-p?

15 1
3254 3(1 + 32)? 8
is of major importance because it describes the magnetic

quenching of the a.,,-coefficient which is essential for the af2-
dynamo:

e = ¥ (B) .

o here stands for the 'non-magnetic’ value, i.e. § = 0. Note
that for large 3 the function W is proportional to 573,

_ 15w
T o64pd’

which is a stronger quenching than that described by the func-
tion ¥(B) = (1+ (3%)~1, which is often adopted in sophisticated
dynamo models. The B~3-quenching has already been estab-
lished by Moffatt (1972) and by Riidiger (1974) and has recently
been reproduced by Gilbert & Sulem (1990). Also the compli-
cated model analysis by Brestensky & Ridler (1989) leads to
very similar results.
The other quenching functions in (4.4) are

v(B) = tan—lg) @.5)

(4.6)

Vg 4.7

1 25 46°34° - 1)
v = 45 (8-S s e
4
+ > -I,-@ﬂ tan~! ﬁ),
5 28°(35* - 1)
v = i (1
5 (4.8)
+ ! -‘-ﬂﬂ tan~! 3 ),
5 26°(1 - pB%)
U3(6) = To7 (ﬁz—l“m
4
+ ! -Fﬂﬂ tan ™! [3).
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In the weak-field case we find

12 4
V=1-=6, U= 2—?62,
4.9

\Ilz—l——ﬁz U, —1——[32.
All the functions (except ¥) decrease with 3 in the weak-field
case. For the opposite limit of strong fields (8 > 1) only ¥,
and U3 survive,

=7/80, W3=51/320, U, =0(577), (4.10)
reproducing the result (4.1).

The essence of (4.4) appears if the a-quenching is consid-
ered in components:

4 2d <u? > 15 B2
= _— T+ =7, | Q, 4.11
Qe =775 T4z B! “.10)
8 ,d<u?> 15 B2
=t | T =20, Q. 4.12
Q=T T, ERTY: (4.12)
Here the combination
1 3 3
‘I’z=—§\I/+Z\I'2+Z\I’3 (413)

has been introduced. Also ¥, approaches unity for vanishing
field. For strong fields it is proportional to 1/ quite differ-
ent from ¥. With (4.11) and (4.12) we find the a-quenching
very different for different components. As the second terms
in these relations demonstrate, the quenching is even stronger
anisotropic. Fig. 2 displays the numerical results for the case
that 72QV < 42 >= —1. Notice that the quenching is highly
non-uniform with the following limits:

=07 if  BLQ,
=07 if  B|Q,
azzﬂ= op™hH if BLQ,
=07 if B[ Q

In the latter case the quenching is so strong that practically no
a-effect exists for § > 1 (Fig. 2).

The relatively weak decrease of the functions ¥ and W3
with § in the strong-field limit as compared to that of the ¥
poses the question whether the strong-field case may be de-
scribed within the o€2-dynamo. The a-coefficient o, of the
af)-dynamo is more strongly quenched than the coefficients for
other directions. A more close consideration of the quenching
functions, however, shows that one remains in the af? regime
if the poloidal field does not exceed the equipartition field B,
irrespective of how large the toroidal field is. In any case, how-
ever, we should favour a?Q2-dynamos over a/§2-dynamos.

587
8.6
o 4
Z
Eﬁ@.z—/\ Hor tzontal alpha
O
Z
LL’ 4
D S e T
C-0.0 4
]
< 4
T
G. 4
_
<-9.3
| Vertitcal alphe

-0.6 . ; . — : .

4
MACGNETIC ENERGY

Fig. 2. The anisotropic magnetic quenching of the anisotropic alpha.
Solid lines hold for B L §2 while dashed lines denote the case B || Q.
Asteriks represent the heuristic quenching function 1/(1+B?). It seems
to underestimate the real quenching

Appendix

The kernels in (3.3) depend on the angular velocity, the wave-
number and the frequency through two basic parameters, i.e.

W = itsms andcos ¢ = VK —w With the abbreviations
W?2 —2W sin(¢/2) + 1
LN =1
o8 ( W2+ 2W sin(¢/2) + 1 >
_1 (W —sin(¢/2) _1 (W +sin(¢/2)
AR =t "= t L AR s
" ( cos@/2 ) T\ Teost@fa) )

A= WH+2W?cosp+1,
we find
W24+ cos ¢
2 cos?(¢/2)
(1 — cos p)(6 — 2cos p — W?)
4W sin(¢/2)
+ (W* — 4W? + W2 cos ¢(cos ¢ — 1)

2
A} = WA [6 2005¢+

LN

AR
4W cos3(¢/2) |’
3cosp (W? — 121+ W?)
0s2(¢/2) 2cos*(9/2)A
(1 — cos $)(—30+ 10 cos ¢ + 3W?)
4W sin(¢/2)
+ (= W* +3W?(4 +cos ¢ — cos® §)

— cos ¢(7 + 4 cos ¢ — 2 cos? ¢))

2
A = W —29 + 10cos¢>—

LN

+5cos ¢(7 +4cos ¢ — 2cos’ qﬁ)) AR ]

4W cos3(¢/2) |’

-1
* 2W cos(¢/2) AR] ’

1 w2

64 = - W2 cos2(¢/2)
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. L[ _IN AR
37 W2 |4Wsin(¢/2)  2W cos(¢/2)]’
u 4 [ W?2—1+2cos¢
Of = ~wa |2~ “awsngy N
2
B w +1+Zcos¢AR ,
2W cos(¢/2)
4 7 3W? =5+ 10cos ¢
wo_ " | _ L
R By R
2
R1%%4 +5+1000sq§AR ,
2W cos(¢/2)
1 1 W?+cos¢p 1 —cosg
AP = A + — |1 LN
LT M T T cos(9/2) T 2W sing/2)
W4 —2W? + 1 —2cos ¢(1 + cos ¢) AR
4W cos3(4/2) ’
AL = AY + 6A,
4 - lA“ . L[_ 3 W2 +5cos¢p S(cos¢p —1)
4T T e 2cos2(¢/2)  2W sin(¢/2)
_Ww4 2 _
N W?*+6W 5+IOCOS¢(1+COS¢)AR].
4W cos3(¢/2)
They are reduced in the slow-rotation limit to
A} = B(Z—cosq&), Al =0, 6A= 3
B; =§, G =T§’ Cy =0,
AP = i(4—cos¢) AP = —i(l +cos @), A? =0.
P71s 2T s P
while for fast rotation
A = —A% = —§A = AP = — P T
! 4 s =4, A 2W cos3(¢/2)’

By =Cr=Cl=AL=0.

holds. In the mixing-length approximation ( cf. Section 3.3),
cos¢p=1and W =Q* =270Q.
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