
J. Plasma Physics: page 1 of 23. c© Cambridge University Press 2010

doi:10.1017/S0022377810000346

1

A theory of MHD instability of an
inhomogeneous plasma jet

A N A T O L Y S. L E O N O V I C H

Institute of Solar-Terrestrial Physics (ISTP), Russian Academy of Science,
Siberian Branch, Irkutsk 33, P.O. Box 4026, 664033, Russia

(leon@iszf.irk.ru)

(Received 19 March 2010; revised 2 June 2010; and accepted 14 June 2010)

Abstract. A problem of the stability of an inhomogeneous axisymmetric plasma
jet in a parallel magnetic field is solved. The jet boundary becomes, under cer-
tain conditions, unstable relative to magnetosonic oscillations (Kelvin–Helmholtz
instability) in the presence of a shear flow at the jet boundary. Because of its
internal inhomogeneity the plasma jet has resonance surfaces, where conversion takes
place between various modes of plasma magnetohydrodynamic (MHD) oscillations.
Propagating in inhomogeneous plasma, fast magnetosonic waves drive the Alfven
and slow magnetosonic (SMS) oscillations, tightly localized across the magnetic
shells, on the resonance surfaces. MHD oscillation energy is absorbed in the
neighbourhood of these resonance surfaces. The resonance surfaces disappear for
the eigenmodes of SMS waves propagating in the jet waveguide. The stability of the
plasma MHD flow is determined by competition between the mechanisms of shear
flow instability on the boundary and wave energy dissipation because of resonant
MHD-mode coupling. The problem is solved analytically, in the Wentzel, Kramers,
Brillouin (WKB) approximation, for the plasma jet with a boundary in the form of a
tangential discontinuity over the radial coordinate. The Kelvin–Helmholtz instability
develops if plasma flow velocity in the jet exceeds the maximum Alfven speed at
the boundary. The stability of the plasma jet with a smooth boundary layer is
investigated numerically for the basic modes of MHD oscillations, to which the
WKB approximation is inapplicable. A new ’unstable mode of MHD oscillations
has been discovered which, unlike the Kelvin–Helmholtz instability, exists for any,
however weak, plasma flow velocities.

1. Introduction
Shear plasma flows in magnetic field are encountered in many problems in magneto-
hydrodynamics. Of most interest are usually unstable oscillations developing in a
shift layer. Thus, many kinds of geomagnetic field oscillations related to the Kelvin–
Helmholtz instability develop on the Earth’s magnetospheric boundary when the
solar wind plasma flows around it (McKenzie 1970a; Kivelson and Pu 1984).
Similar instabilities arise in differentially rotating plasma shells of stars (Watson
1981). The problem of the instability of the plasma configuration boundary in
experimental installations, where the plasma was confined magnetically, has been
discussed widely enough (Rosenbluth and Longmire 1957; Lukiyanov 1975). In
such installations, plasma injected along the magnetic field lines becomes unstable
(Perkins and Post 1963).
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Analytical studies devoted to shear flow stability are often stated for two-layer
medium models where fluid, gas or plasma move in two homogeneous half-spaces
separated by a flat shift layer of velocity (McKenzie 1970a; Landau 1944). Using
such models enable one to progress far enough in constructing analytical solutions to
hydrodynamic (or magnetohydrodynamic) equations describing unstable oscillation
modes. However, real shear flows occur, as a rule, in an inhomogeneous medium
in a layer of finite thickness. Constructing analytical solutions in such models is
only possible for several extreme cases (Thorpe 1969). Solutions to corresponding
equations are often obtained by numerical integration (Miura 1992). As a rule, all
effects related to medium inhomogeneity are ascribed, in these models, to the shift
layer, while the medium away from it is supposed to be homogeneous. The solutions
obtained in this way have a rather strong limitation regarding their applicability
area as well.

In many real events, the medium remains inhomogeneous (though the scale of the
inhomogeneity is smaller than in the shift layer) even far from the shift layer. This
inhomogeneity can also play a considerable role in forming the conditions under
which the unstable oscillation modes develop in the shift layer (Fujita et al. 1996).
For example, in the inhomogeneous layer, the resonance surfaces can exist where
there is a coupling of various modes of MHD oscillations. When fast magnetosonic
(FMS) waves propagate in inhomogeneous plasma they can drive the Alfven and
slow magnetosonic (SMS) oscillations tightly localized across magnetic shells, on
the resonance surfaces. This results in the oscillation energy absorbed by particles
of the background plasma, heating up in the process (Chen and Hasegawa 1974;
Erdelyi 2004). The mechanism stabilizes the unstable modes.

Shear flows bounded in space also have their specific features. Such jet flows arise,
for example, when plasma clusters are injected into magnetic traps along the magnetic
field lines (Azovsky et al. 1967). The same conditions arise when plasma filaments
erupt from the Sun surface in the corona (Filippov et al. 2009), and also when the
solar wind plasma flows round a planet’s magnetosphere (McKenzie 1970a, b). The
model of a cylindrical plasma jet propagating parallel to the magnetic field lines is
obviously closest to reality in all these situations. There are a few studies devoted to
the stability of hydrodynamic and magnetohydrodynamic flows in cylindrical models
(see Drazin and Howard 1966; McKenzie 1970b).

This work tackles the problem of stability of a cylindrical plasma jet in a parallel
magnetic field. The plasma in the jet is assumed to be homogeneous over the azimuth
and inhomogeneous over the radius. The velocity of plasma in the jet is supposed to
be homogeneous. The shear flow occurs in a layer of finite thickness at the plasma
jet boundary. For a qualitative understanding of the structure and dynamics of the
unstable oscillation modes, this problem is solved in the WKB approximation over
the radial coordinate. The boundary of the plasma jet is assumed to be in the form
of a tangential discontinuity. The solution to the problem when the boundary has
the form of a smooth transition layer is obtained numerically for the first harmonics
of unstable oscillations, for which the WKB approximation is inapplicable.

This paper is structured as follow. The model of the medium is presented and
the basic equations of the problem under study are derived in Sec. 2. Section 3 is a
qualitative examination of the structure of the radial component of the wave vector
in the WKB approximation, as well as deriving the boundary conditions and the
matching condition on the jet boundary for unstable MHD oscillations in question.
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Figure 1. A model of cylindrical plasma jet whose plasma motion is directed against the
background magnetic field B0. The distributions of the velocity profile of moving plasma v0(r)
and of the Alfven speed A(r) are presented schematically.

Section 4 examines the structure of the forced modes and eigenmodes of the MHD
oscillations of the plasma jet in the WKB approximation. The dependence on the
plasma flow velocities of the increment of unstable oscillations of the plasma jet
(with a boundary in the form a tangential discontinuity) is analytically studied in
Sec. 5. Section 6 provides a numerical solution to the same problem for a plasma jet
with its boundary in the form of a smooth transition layer. Section 7 explores the
instability of the ‘global modes’of plasma jet oscillations. The Conclusion lists the
main results of this work.

2. Model medium and basic equations
Let us consider a model cylindrical plasma jet presented in Figs 1 and 2. Let us
introduce a cylindrical coordinates system (r, φ, z), where the origin r = 0 coincides
with the jet axis. We assume the background magnetic field to be directed along the
z axis and be homogeneous (but not identical) inside and outside the plasma jet. In
calculations for the jet boundary in the tangential discontinuity approximation, the
parameters of the medium on its conventional boundary r = rb will have a subscript

I - inside and II outside. We will consider the plasma in the jet to be moving along
the z axis at velocity v0, and the plasma outside of the jet to be immobile (see
Fig. 1). Transition from the jet parameters to the parameters outside occurs within a
narrow transition layer of thickness Δr � rb. The plasma density distribution over the
radius will be considered as maximum at the jet axis and decreasing to a minimum
toward the boundary. We assume the magnetic field inside the jet to be greater
than outside. The distribution of the Alfven speed A = B0/

√
4πρ0 over the radius

has the form presented qualitatively in Figs 1 and 2. Such a distribution of plasma
parameters occurs in magnetic arches on the Sun and in the magnetotail of the
Earth’s magnetosphere.
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Figure 2. Distribution of the Alfven speed A(r) and velocities of the SMS waves Cs(r) inside
and outside of the plasma jet (the thin lines and right-hand vertical axis). Distribution of
the squared WKB component of the wave vector k2

r (r) in the plasma jet (the thick lines; for
the mode m = 0 dashed line, left vertical axis). The rA and rS coordinates correspond to the
resonance surfaces for the Alfven and SMS oscillations in the jet, respectively; r0, r01, r02 are
the turning points. The numerals and shades of grey demonstrate the transparency regions:
(1) for SMS waves, (2) for FMS waves (m �= 0) and (3) m = 0.

To describe such a plasma configuration, we used a set of ideal MHD equations
of the form

ρ
dv̄

dt
= −∇P̄ +

1

4π
[curl B̄ × B̄], (2.1a)

∂B̄

∂t
= curl[v̄ × B̄], (2.1b)

∂ρ̄

∂t
+ ∇(ρv̄) = 0, (2.1c)

d

dt

P̄

ρ̄γ
= 0, (2.1d)

where B̄, v̄ are vectors of the magnetic field and velocity of the plasma motion, ρ̄, P̄
are the plasma density and pressure, γ = 5/3 is the adiabatic index. Let us assume
the wave-related disturbance to be weak enough, allowing for the initial set of
equations to be linearized. Let us denote the parameters of the unperturbed plasma
with a subscript of zero, while leaving the wave-related parameters unindexed:
B̄ = B0 + B, v̄ = v0 + v, ρ̄ = ρ0 + ρ, P̄ = P0 + P . In the zero approximation, the r
component of (2.1a) in steady state (∂/∂t = 0) yields the equilibrium condition for
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a plasma configuration

P0 +
B2

0

8π
= const, (2.2)

which determines an equilibrium distribution of the plasma pressure P0(r) for a
fixed distribution of B0(r). This pressure determines the distribution of the sound
velocity in plasma S =

√
γP0/ρ0 and a corresponding distribution of SMS-wave

velocity Cs = AS/
√
A2 + S2 in Fig. 2. Let us assume the magnetic field to be

almost constant inside and outside the plasma jet, changing only in a thin transition
layer of thickness Δr � rb. Then it follows from the equilibrium condition (2.2) that
the plasma pressure also varies inside the transition layer only. We denote the
component of the vector of the disturbed plasma velocity in a wave in the r axis
direction vr = dζ/dt ≡ ∂ζ/∂t + (v0∇)ζ, where ζ is the displacement of a plasma
element. Let us consider the harmonic of a wave in the form exp(ikzz + imφ− iωt),
where kz is the component of the wave vector in the z axis direction, m = 0, 1, 2, 3, . . .
is azimuthal wave number, ω is wave frequency. Linearizing the set of (2.1a)–(2.1d)
and expressing the other components of the oscillation field through ζ, we obtain:

vr = −iω̄ζ, vφ = − 1

K2
s

(
A2 +

K2
AS

2

χ2
S

)
m

ω̄r2
∂rζ

∂r
, (2.3a)

vz = −kzK
2
AS

2

ω̄χ2
S r

∂rζ

∂r
− v′

0ζ,

Br = −ikzB0ζ, Bφ = −kzB0

ω̄
vφ,

Bz = −K2
AB0

χ2
S

(
1 − k2

z S
2

ω̄2

)
1

r

∂rζ

∂r
− B′

0ζ, (2.3b)

P = −γP0
K2
A

χ2
S

1

r

∂rζ

∂r
+

(
B2

0

8π

)′

ζ, (2.3c)

where

K2
A = 1 − k2

zA
2

ω̄2
, K2

s = K2
A − m2A2

r2ω̄2
,

χ2
S = 1 − m2/r2 + k2

z

ω̄2

(
A2 + S2 − k2

zA
2S2

ω̄2

)
,

ω̄ = ω − kzv0 is an oscillation frequency modified by Doppler’s effect. For the
displacement ζ, we obtain the equation

∂

∂r

ρ0Ω
2

k2
r

1

r

∂rζ

∂r
+ ρ0Ω

2ζ = 0, (2.4)
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where Ω2 = ω̄2 − k2
zA

2,

k2
r =

ω̄4

ω̄2(A2 + S2) − k2
zA

2S2
− k2

z − m2

r2

= k2
z

(
ω̄4
A/(1 + β∗)(
ω̄2
A − ω̄2

S

) − 1 − m2

k2
z r

2

)

=
k2
z

1 + β∗

(
ω̄2
A − ω̄2

A1

)(
ω̄2
A − ω̄2

A2

)(
ω̄2
A − ω̄2

s

) , (2.5)

and the notations are ω̄A = ω̄/kzA(r), ω̄S =
√
β∗/(1 + β∗), β∗ = S2/A2, whereas

ω̄2
A1, ω̄

2
A2 are the roots of a biquadratic (with respect to ω̄A) equation k2

r = 0.
Note that the expression β∗ coincides, within a factor close to unity, with the

well-known parameter β = 8πP0/B
2
0 – the gas-kinetic plasma to magnetic pressure

ratio. It can be seen from (2.4) that k2
r is the square of the r-component of the wave

vector in the WKB approximation when the solution to (2.4) may be presented in
the form ζ ∼ exp(i

∫
krdr).

3. The distribution of k2
r (r), the matching conditions on the plasma

jet boundary and boundary conditions
Solving the problem in the WKB approximations is determined by the magnitude of
the wave vector component k2

r (r) on both sides of the plasma jet boundary presented
in the form of a tangential discontinuity. We will analyze the behaviour of k2

r (r)
inside and outside the jet. For convenience, our subsequent calculations will involve
the frame of reference moving with the flux plasma at velocity v0. In this frame
of reference plasma is immobile in the plasma flux rope, while moving at velocity
−v0 outside of it. The distribution of k2

r (r) in the plasma flux rope is presented
qualitatively in Fig. 2. This figure presents the distribution of k2

r (r) for such values of
m, kz and ω for which all possible resonance surfaces and turning points are present
in the plasma flux rope.

The turning points are determined by zeros of the function k2
r (r). In the distribution

in Fig. 2, their number can vary from one (r0) to three (r0, r01, r02). The number
of turning points is determined by the parameters m, kz and ω. Thus, for the
axisymmetric mode m = 0, the turning point r02 is absent, whereas another one −r01
coincides with the point rA, that determines the location of the resonance surface for
Alfven wave when m �= 0. A transparency region (where k2

r (r) > 0) can exist for the
FMS waves in the plasma flux rope – this region is located in the range r01 � r � r02
when m �= 0, and in the range 0 � r � rA when m = 0. The transparency region for
SMS waves is located in the interval r0 � r � rs (where rs is a resonance surface for
the SMS oscillations).

Resonance surfaces are determined by the singular points of (2.4) where the
coefficient of the higher derivative reduces to zero. One of them – the Alfven
resonance point rA determined by the equation Ω2(rA) = 0 – is located in the opacity
region in the interval (r02, r0). When m = 0, the point rA is the turning point and is
not singular (the coefficient of the higher derivative here does not reduce to zero).
The second singular point – magnetosonic resonance point rs – is determined by
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the denominator in the expression (2.5) becoming zero, yielding a local dispersion
equation for SMS waves when |k2

r | → ∞: ω2 = k2
zC

2
s (rs). The point rs is located

farther along the radius than the turning point r0, and the transparency region for the
SMS waves is located between them. The opacity region is in the range rs < r < rb.

It is evident from (2.5) that the behaviour of k2
r (r) in the range 0 < r < rb depends

on the magnitude of ω̄A(r) at the ends of the interval. It is possible to see the
distribution of k2

r (r) mentally moving the function k2
r (r) shown in Fig. 2 from left to

right. When ω2
0 < ω2

SI (where ω2
0 ≡ ω̄2

A(0), ω2
SI = const is the magnitude of ω̄2

S in a
plasma flux rope), we have k2

r (r) < 0 over the entire cross section of the jet, i.e. the
entire jet is an opacity region. It is possible to regard the entire interval 0 < r < rb
as the part of the k2

r (r) plot, presented in Fig. 2, corresponding to the opacity region
rs < r < rb. The point of magnetosonic resonance rs is absent from the system –
the rest of the plot in Fig. 2 can be imagined on the left of the point r = 0. When
ω2

0 increases (due to growing parallel phase velocity ω/kz), this plot moves from
left to right in the range 0 < r < rb. The resonance surface for SMS waves rs (for
ω2
SI < ω2

0), the turning point for SMS waves r0 (for the case m �= 0, the points rs and
r0 appear only together), the resonance surface for Alfven waves rA, and turning
points r01 and r02 (for m �= 0) appear sequentially in the system.

Similarly, for ω2
SI < ω2

b (where ω2
b ≡ ω̄2

A(rb)) the resonance surface for SMS waves
disappears (rs is virtually displaced to the right of rb) from the system. When ω2

b

then increases, the points r0, rA (for m = 0 the entire jet becomes a transparency
region) and r01 disappear sequentially. The point r02 → 0 when ω2

b → ∞. This may
be imagined by shifting the function k2

r (r) plot, presented in Fig. 2, farther to the
right through the point r = rb. Thus, depending on the magnitude of ω/kz , both
the transparency region and the opacity region for the waves in question can adjoin
the boundary inside the jet.

To picture the behaviour of k2
r (r) outside the jet, we will consider the functions

ω̄2
A1(r), ω̄

2
A2(r), presented in Fig. 3. As follows from the last expression of (2.5), when

ω̄2
AII < ω̄2

SII (where ω̄2
AII ≡ ω̄2

A(r → ∞), ω̄2
SII ≡ ω̄2

S (r → ∞)), the outside jet region
adjoining the boundary r = rb is an opacity region for the waves in question. When
ω̄2
SII < ω̄2

AII < ω̄2
A2b, the outside region is transparent, and for ω̄2

A2b < ω̄2
AII < β∗

II , the
transparency region shifts to r > r1 > rb. In the interval β∗

II < ω̄2
AII < 1+β∗

II , the out-
side region adjoining the boundary is opaque, but is transparent when ω̄2

A1b < ω̄2
AII .

Thus, depending on the magnitude of ω̄2
AII determined by the wave phase velocity

given the Doppler displacement of frequency for the oscillations under study ω̄/kz ,
the boundary can also adjoin both the transparency and the opacity region
outside the jet. As was shown above, the transparency or opacity of the region
adjoining the boundary inside the jet is determined by the magnitude of the parallel
phase velocity ω/kz . The solutions describing the oscillations in the transparency
and the opacity regions adjoining the boundary outside and inside the jet can be
combined in all possible combinations in the matching condition.

It is easy to obtain the matching condition for the solutions on the plasma jet
boundary by integrating the (2.4) in a narrow interval (rb − ε, rb + ε):

ρ0Ω
2

k2
r

∂ ln ζ

∂r

∣∣∣∣
rb−ε

=
ρ0Ω

2

k2
r

∂ ln ζ

∂r

∣∣∣∣
rb+ε

, (3.1)

where ε → 0. Using the expressions (2.3b) and (2.3c), it is possible to show that (3.1)
is similar to the requirements for the plasma to be identically displaced on both
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Figure 3. Distribution of the functions ω̄2
A1(r), ω̄

2
A2(r) and transparency regions (shown in

grey) for SMS (1) and FMS waves (2, 3, 4), when r > rb. Two possible magnitudes of
ω̄2
AII ≡ ω̄2

A(r → ∞) (horizontal bold dashed lines) are presented, for which the turning points
r1,2 exist in the regions outside of the jet.

sides of the boundary (ζrb−ε = ζrb+ε is the condition of impermeability) and for the
total perturbed pressure to be sustained across the boundary ((P + BzB0/4π)rb−ε =
(P + BzB0/4π)rb+ε).

Now let us define the boundary conditions for the problem. When r → 0, the
finite magnitude of the desired solution is a natural requirement. As to the boundary
condition for r → ∞, its determination is related to the causality principle. In this
problem, we will be interested in solutions to (2.4), describing unstable modes of the
plasma jet oscillations. For such solutions, oscillations far from the shift layer are
running away from the shear flow that generated them, according to the causality
principle. In other words, the energy flux of these waves should be directed out of
the shift layer.

It should be noted when dealing with unstable oscillations that the wave vector
component kr in the asymptotics is complex. For any weak unstable oscillations, it
is formally possible to introduce the concept of waves running from the shift layer,
for which Re(vgr) > 0 when r → ∞, where vgr = ∂ω/∂kr is the group velocity with
which the wave energy is transferred over the radius r. The energy conservation law

∂E
∂t

+
1

r

∂

∂r
(rvgrE) = 0,

where E is wave energy density, quadratic on the oscillation amplitude, implies that
Im(kr) > 0 when r → ∞ for monochromatic unstable oscillations (Im(ω) > 0). This
results in an exponentially decreasing amplitude of oscillations escaping from the
shift layer. A specific expression for the group velocity when r → ∞ can be obtained
by differentiating the expression (2.5) with respect to ω:

vgr = AII
1 + β∗

II

kz
RekrII

[
ω̄2
A − ω̄2

SII

]2

ω̄3
A

[
ω̄2
A − 2ω̄2

SII

] . (3.2)
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The boundary condition for the wave running from the shift layer when r → ∞ has
the form

∂ζ

∂r
= ikrIIζ, (3.3)

and the sign of krII = ±
√
k2
rII ≡ kr(r → ∞) is determined by the requirement

Re(vgr) > 0.

4. Structure of MHD oscillations in the jet in the WKB
approximation

In order to understand qualitatively the structure of the oscillations in the plasma jet,
let us consider a problem for the MHD oscillations with parameters permitting us
to use the WKB approximation far from the turning points and resonance surfaces.
We will search for solutions in the neighbourhoods of these points by linearizing
the coefficients in (2.4) and subsequently matching the solutions with the solutions
obtained in the WKB approximation. To make a complete picture of the wave
field structure, let us consider oscillations with parameters corresponding to the
distribution of k2

r (r) in Fig. 2, presenting all possible singular and turning points.
Let us consider the structure of the forced and eigen oscillations of the plasma jet
separately.

4.1. The structure of forced oscillations in the plasma jet

Let us consider the case of forced MHD oscillations of the plasma jet, with a source
located at its boundary.

When r → 0, (2.4) can be approximately presented in the form:

r2ζ ′′ + rσζ ′ + (k2
r0r

2 − 1)ζ = 0,

where k2
r0 ≡ k2

r (r → 0) (for m �= 0, we have k2
r0 ≈ −m2/r2), σ = 1 when m = 0 and

σ = 3 when m �= 0. A solution which is finite when r → 0 has the form:

ζ = C1

⎧⎨
⎩J1(

√
k2
r0r), for m = 0,

rm−1, for m �= 0,
(4.1)

where C1 is an arbitrary constant, J1(
√
k2
r0r) is the Bessel function (J1(

√
k2
r0r)

r→0≈√
k2
r0r/2). The subsequent calculations will concern the case m �= 0.

Let us present the WKB solution in the opacity region 0 < r < r01, matched with
(4.1), in the form

ζ = C2

(
− k2

r

)1/4√
ρ0Ω2r

exp

(∫ r

r01

√
−k2

r dr
′
)
, (4.2)

where C2 is an arbitrary constant. Matching (4.1) to (4.2), we obtain a relation for

the constants C1 = C2 exp (ψ1)/r̄
m
√
ρ0Ω

2
0/m, where ψ1 =

∫ r̄
r01

√
−k2

r dr, and r̄ > 0 is

an arbitrary point in the neighbourhood of r = 0.
Solution in the neighbourhood of the turning point r = r01. Let us differentiate (2.4)

with respect to r, introduce the notation u = (1/k2
r )∂ζ/∂r and, linearizing k2

r ≈ ξ1/a
2
1
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close to r = r01 (where a−3
1 = (∂k2

r /∂r)r=r01
, ξ1 = (r − r01)/a1), will yield an equation

∂2u

∂ξ2
1

+ ξ1u = 0. (4.3)

Its solution matched to (4.2) has the form

u = C3Ai(−ξ1), (4.4)

where Ai(z) is the Airy function. Matching this solution to (4.2) yields a relation

for the constants C3 = 2C2

√
πa1/ρ01Ω

2
1r01. Hereafter, the subscripts 0,1 ,2 ,A ,S denote

the parameters at the corresponding points r0, r01, r02, rA, rS .
The WKB solution in the transparency region r01 < r < r02 matched to (4.4) has

the form

u =
C4√
ρ0Ω2krr

sin

(∫ r

r01

krdr
′ +

π

4

)
, (4.5)

where C4 = 2C2.
The solution in the neighbourhood of the turning point r = r02 may be obtained

using linearization k2
r ≈ −ξ2/a

2
2 (a−3

2 = (∂k2
r /∂r)r=r02

, ξ2 = (r−r02)/a2) and obtaining
an equation similar to (4.3) accurate within the substitution ξ1 → −ξ2. Its solution
matched to (4.5) is

u = C5Ai(ξ2) + C6Bi(ξ2), (4.6)

where Ai(z), Bi(z) are the Airy functions. We have the constants C5 =

C4

√
πa2/ρ02Ω

2
2r02 sinψ2, C6 = C4

√
πa2/ρ02Ω

2
2r02 cosψ2, where ψ2 =

∫ r02

r01
krdr. If

ψ2 = π(n + 1/2) (n = 0, 1, 2 . . .) and C6 = 0, then to the right of r02 in the opacity
region we have a solution exponentially decreasing in amplitude (the asymptot-
ics of the functions when z → ∞: Ai(z) = exp[−(2/3)z3/2]/2

√
π

√
z, Bi(z) =

exp[(2/3)z3/2])/
√
π

√
z). This condition means that the eigen-waveguide mode of

FMS waves is captured in the transparency region (r01, r02). As to the case m = 0, a
solution similar to (4.5) is obtained for the transparency region (0, rA).

The WKB solution in the opacity region r02 < r < rA will be presented in the form:

ζ =

(
− k2

r

)1/4√
ρ0Ω2r

[
C7 exp

(∫ r

rA

√
−k2

r dr
′
)

+ C8 exp

(
−

∫ r

rA

√
−k2

r dr
′
)]

. (4.7)

If an eigenmode propagates in the waveguide (r01, r02), there is only a solution
exponentially decreasing in amplitude (i.e. C7 = 0) in the opacity region r02 < r < rA.
That case will be dealt with in the following section. For the non-eigenmodes
whose source are the plasma jet boundary oscillations, an exponentially growing
solution exists in the opacity region, against the background of which, to stick to
an exponentially decreasing solution means to exceed the accuracy. In that case,

matching the solutions (4.6) and (4.7) yields C7 = C6 exp(ψ3)
√
ρ02Ω

2
2r02/πa2, where

ψ3 =
∫ rA
r02

√
−k2

r dr.

Solution near the resonance surface r = rA. When r → rA, we have k2
r ≈ −m2/r2A.

Let us linearize Ω2 ≈ k2
zA

2(rA)[(r − rA)/aA − 2iγ/kzA(rA)] close to r = rA, where
aA = (∂ ln(A2)/∂r)−1

r=rA
is the characteristic scale of A(r) variation. Here, the imaginary

part of the frequency γ ≡ Im(ω), necessary for regularizing the solution near the
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singular point, is represented in an explicit form. From (2.4), we have the equation

∂

∂ξA
(ξA − iεA)

∂ζ

∂ξA
− (ξA − iεA)ζ = 0, (4.8)

where ξA = m(r − rA)/rA, εA = maAγ/kzrAA(rA) (we assume εA � 1). The solution of
(4.8) matched to (4.7) is

ζ = C9K0(−ξA + iεA), (4.9)

where K0(z) is the modified Bessel function, C9 = C7m
√

2aA/πρ0ArA/(kzA(rA)rA).
When r → rA, the solution has a well-known logarithmic singularity

ζ ≈ −C9 ln (−ξA + iεA),

which corresponds to the resonant Alfven wave.
WKB solution in the opacity region rA < r < r0 will be presented in the form

ζ = C10

(
− k2

r

)1/4√
ρ0Ω2r

exp

(∫ r

rA

√
−k2

r dr
′
)
. (4.10)

Matching it to the solution (4.9) relates the constants : C10 = C7.
Solution in the neighbourhood of the turning point r = r0. Let us differentiate (2.4)

with respect to r, introduce the notation u = (1/k2
r )∂ζ/∂r, and, linearizing k2

r ≈ ξ0/a
2
0

close to r = r0 (where a−3
0 = (∂k2

r /∂r)r=r0 , ξ0 = (r− r0)/a0) yields an equation similar
to (4.3), accurate within the substitute ξ1 → ξ0. Its solution matched to (4.10) has
the form

u = C11Ai(−ξ0), (4.11)

where C11 = 2C10 exp(ψ4)
√
πa0/ρ00Ω

2
0r0, ψ4 =

∫ r0
rA

√
−k2

r dr.

WKB solution in the transparency region r0 < r < rS matched to (4.11) may be
represented in the form

ζ = C12

√
kr

ρ0Ω2r
cos

(∫ r

r0

krdr
′ +

π

4

)
, (4.12)

where C12 = −C11

√
ρ00Ω

2
0r0/πa0.

Solution near the resonance surface r = rS . Let us linearize the coefficient of
the higher derivative in (2.4) representing k−2

r ≈ a2
s ξs, where ξs = (r − rS )/as,

as = (−∂k−2
r /∂r)r=rs is the characteristic scale of variation of k−2

r , close to r = rS .
Then, close to r = rS , (2.4) can be represented in the form

∂

∂ξs
(ξs + iεs)

∂ζ

∂ξs
− ζ = 0, (4.13)

where εs = masγ/kzrSCs(rS ) is the regularized factor related to the imaginary part of
the frequency. Its solution matched to (4.12) is

ζ = C13I0(2
√
ξs + iεs) + C14K0(2

√
ξs + iεs), (4.14)

I0(z), K0(z) are the modified Bessel functions. Using their asymptotic representations
when ξs → −∞, we find a relation between the integration constants: C13 =
−iC12

√
πas/ρ0sΩ2

s rs exp (iψ5), C14 = 2C12

√
πas/ρ0sΩ2

s rs cos(ψ5), where ψ5 =
∫ rS
r0
krdr.

If ψ5 = π(n+1/2) (n = 0, 1, 2 . . . ), we have C14 = 0 and the magnetosonic resonance
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disappears. In all the other cases, when r → rS , there exists a solution with a
logarithmic singularity

ζ = −C14

2
ln (ξs + iεs),

which corresponds to the resonant SMS wave.
WKB solution in the opacity region rS < r < rb for the oscillations whose amplitude

decreases from the boundary into the plasma jet, will be represented in the form

ζ = C15 exp(ψ6)

(
− k2

r

)1/4√
ρ0Ω2r

exp

(∫ r

rb

√
−k2

r dr
′
)
, (4.15)

where ψ6 =
∫ rb
rS

√
−k2

r dr. Matching it to the solution (4.14) relates the constants:

C15 = C13

√
as/πρ0sΩ2

s rs/2.

4.2. Structure of the eigenmodes of MHD oscillations in the plasma jet

The wave field of an eigenmode propagating in the FMS waveguide (r01, r02) has the
same structure in the opacity region 0 < r � r02 as in the previous case, described
by expressions (4.1), (4.2) and (4.4); in the transparency regions r01 < r < r02 by
expression (4.5). Near the turning point r02, however, we have C6 = 0 in the solution
(4.6), while in the opacity region r02 < r < rA this solution has the amplitude
decreasing from the turning point into the opacity region. The WKB solution in the
opacity region r02 < r < rA looks like (4.7), where C7 = 0. Matching this solution
to (4.6) yields C8 = C5 exp(−ψ3)(−1)n+1/2, where n = 1, 2, 3 . . . is the number of
the eigen harmonic propagating in the FMS waveguide. Near the resonance surface
r = rA, this solution is matched to the solution

ζ = C9K0(ξA − iεA), (4.16)

where C9 = iC8m
√

2aA/πρ0ArA/(kzA(rA)rA), having a logarithmic singularity on the
resonance surface. In the opacity region rA < r < r0, the WKB solution will be
presented in the form

ζ = C10
(−k2

r )
1/4√

ρ0Ω2r
exp

(
−

∫ r

rA

√
−k2

r dr
′
)
. (4.17)

Matching it to (5.2) yields C10 = iC8.
Near the turning point r = r0, the full solution for the function u = (1/k2

r )∂ζ/∂r
has the form

u = C11Ai(−ξ0) + C12Bi(−ξ0). (4.18)

To correctly match this solution to the WKB solution left and right of the turning
point, it is necessary to specify its behaviour in the opacity region r > rS , to the
right of the resonance surface r = rS . Since we are dealing with an eigenmode, we
will require the amplitude of this solution to decrease into the opacity region r > rS .
The solution in the transparency region r0 < r < rS has the form of a wave coming
to the resonance surface

ζ = C13

√
kr

ρ0Ω2r
exp

(
i

∫ r

r0

krdr
′
)
. (4.19)
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Near the resonance surface r = rS , it is matched to the solution

ζ = C14K0(2
√
ξs + iεs), (4.20)

which last continues into the opacity region r > rS by a WKB solution of the form

ζ = C15

(
− k2

r

)1/4√
ρ0Ω2r

exp

(
−

∫ r

rS

√
−k2

r dr
′
)
. (4.21)

The constants in the solutions (4.17), (4.18), (4.19), (4.20) and (4.21) are re-

lated: C12 = −iC11 = −C10 exp(−ψ4)
√
πa0/ρ00Ω

2
0r0, C13 = −C10 exp(−ψ4 + iπ/4),

C14 = 2C13 exp(iψ5 − iπ/4)/
√
πasρ0sΩ2

s rs, C15 = C13 exp(iψ5 − iπ/4). The eigenmode
propagates in the FMS waveguide and is simultaneously absorbed on the resonance
surfaces for the Alfven and SMS waves. The entire wave energy reaching the
resonance surface for SMS waves is completely absorbed in the neighbourhood of
the surface . Thus, the Q factor of oscillations in such a waveguide is less than unity
even in the absence of waves escaping from the waveguide.

5. WKB calculation of the increment of shear flow instability
on the plasma jet boundary

Let us match the internal solution for forced oscillations, obtained by the WKB
approximation in the previous section, to the external solution describing the
structure of oscillations outside the jet. We will consider the plasma jet boundary as a
tangential discontinuity when r = rb. Note that in this approximation, describable as
local, the dispersion properties of the oscillations are determined by the parameters
of the immediately adjoining medium inside and outside of the jet boundary. In this
case, the result does not depend on the variation of medium properties far from the
tangential discontinuity. The matching condition (3.1) lets us obtain the dispersion
equation in the form

b
c2 − 1

c2 −M2
A

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−
√
k2
rI/k

2
rII , for Re(k2

rI ),Re(k2
rII ) < 0,

i
√

−k2
rI/k

2
rII , for Re(k2

rI ) < 0,Re(k2
rII ) > 0,

− cotψ
√

−k2
rI/k

2
rII , for Re(k2

rI ) > 0,Re(k2
rII ) < 0,

i cotψ
√
k2
rI/k

2
rII , for Re(k2

rI ),Re(k2
rII ) > 0,

(5.1)

where the subscripts I ,II denote the values at point r = rb on the inner and outer
side of the jet, respectively, b = B2

0I/B
2
0II , c = ω̄/kzAI , MA = v0II/AI is the Mach

number defined by the Alfven speed AI , ψ =
∫ rb
r̄0
krdr+π/4 is phase incursion in the

transparency region (r̄0, rb) adjoining the jet boundary from the inside (r̄0 = r0 for
the SMS waves, r̄0 = r01 for the FMS waves when m �= 0, r̄0 = 0 for the FMS waves
when m = 0). In the same notations

k2
rI = k2

z

(
c4

c2(1 + β∗
I ) − β∗

I

− 1 − κ2
m

)
,

k2
rII = k2

z

(
ε−2 (c−MA)

4

(c−MA)2(1 + β∗
II ) − ε2β∗

II

− 1 − κ2
m

)
,
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where β∗
I,II = S2

I,II/A
2
I,II , κm = m/kzrb, ε = AII/AI (we assume AII �AI ). We will

employ the perturbation technique using small-parameter (ε� 1) expansion to search
for the solution of the dispersion (5.1), assuming

c = c0 + εc1 + · · · . (5.2)

In the zeroth-order of the perturbation theory, we have c0 = MA. In the first-order
of the perturbation theory, squaring the left and right parts of (5.1) produces the
equation for c1:

b̄2
(
M2

A − 1
)2

(
c41

c21
(
1 + β∗

II

)
− β∗

II

− 1 − κ2
m

)
= ±

(
c21 − 1

)2
k2
rI0 (5.3)

where k2
rI0 ≡ k2

rI (c0 = MA). The plus sign on the right hand and b̄ = b corresponds
to Re(k2

rI ) < 0, the minus sign and b̄ = b tan(ψ + π/4) corresponds to Re(k2
rI ) > 0.

Equation (5.3) is of the sixth-order with respect to c1, and its solution can be sought
for numerically. However, when |c1| � 1 (but ε|c1| � c0) it can be approximately
reduced to the biquadratic equation

c41 ∓ c21
b̄2

(
M2

A − 1
)2

k2
rI0(1 + β∗

II )
± b̄2

k2
rI0

(1 + κ2
m)

(
M2

A − 1
)2

= 0. (5.4)

The solution of (5.4) for Re(k2
rI ) < 0 has the form

c21 =
b2

(
M2

A − 1
)2

2k2
rI0(1 + β∗

II )
±

√
b4

(
M2

A − 1
)4

4k4
rI0(1 + β∗

II )
2

b2
(
M2

A − 1
)2(

1 + κ2
m

)
k2
rI0

. (5.5)

Obviously, the condition |c1| � 1 is satisfied when b� 1 and |M2
A − 1| >∼ 1. The

value

k2
rI0 = k2

z

(
M4

A

M2
A(1 + β∗

I ) − β∗
I

− 1 − κ2
m

)
is real and, hence, when k2

rI0 > 0 (c21 > 0), there are no unstable oscillations, but
when k2

rI0 < 0, we obtain the solution for an unstable mode if we choose to have
the minus sign before the radical in (5.5). It is easy to check that k2

rI0 < 0 when
MA < M0 and M1 < MA < M2, where M2

0 = β∗
I /(1 + β∗

I ), and M2
1,2 are the roots of

the biquadratic (with respect to MA) equation k2
rI0 = 0:

M2
1,2 =

(
1 + κ2

m

)
(1 + β∗

I )

2
±

√(
1 + κ2

m

)2
(1 + β∗

I )
2

4
− β∗

I

(
1 + κ2

m

)
.

When β∗
I � 1, we have M2

1 ≈ M2
0 +M4

0/M
2
2 < 1 and M2

2 ≈ (1 + κ2
m)(1 + β∗

I ) > 1.
As follows from the second equation of (5.1), the value c21 cannot be real when

Re(k2
rII ) > 0 (which corresponds to a transparency region outside of the jet), which

contradicts the solution (5.5) when k2
rI0 < 0. In this case, there are no unstable

oscillations. In the case Re(k2
rII ) < 0, corresponding to the first equation of (5.1), the

signs in the left- and right-hand parts of (5.1) are only in agreement when MA > 1.
Hence, when Re(k2

rI ) < 0, the unstable oscillations are driven on the plasma jet
boundary for the flux parameter range

1 < MA < M2. (5.6)
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The solution of (5.4) when Re(k2
rI ) > 0 far from the poles (b̄2 = ∞) and zeros

(b̄2 = 0) of the function b̄ = b tan(ψ + π/4) has the form

c21 = −
b̄2

(
M2

A − 1
)2

2k2
rI0(1 + β∗

II )
±

√
b̄4

(
M2

A − 1
)4

4k4
rI0(1 + β∗

II )
2

+
b̄2

(
M2

A − 1
)2(

1 + κ2
m

)
k2
rI0

. (5.7)

Unstable solutions are obtained when k2
rI0 > 0, which corresponds to the parameter

ranges M0 < MA < M1 and MA > M2. The same as in the case k2
rI0 < 0, the solutions

corresponding to a transparency region outside of the jet (Re(k2
rII ) > 0) describe

steady-state oscillations only. Analysis of the signs in the left- and right-hand part
of the third equation (5.1) for the opaque external region (Re(k2

rII ) < 0) shows that
it is only the positive (right of the solutions of equation tan(ψ(c0n) + π/4) = 0,
where n = 1, 2, 3, . . .) branches of the functions b̄(MA) = b tan(ψ(MA)+π/4) > 0 that
correspond to the unstable solutions when MA > M2 > 1, with only the negative
(left-hand) branches: b̄(MA) = b tan(ψ(MA) + π/4) < 0 corresponding to them when
M0 < MA < M1 < 1. The first of these parameter ranges (MA > M2) corresponds
to an FMS wave transparency region adjoining the plasma jet boundary from the
inside, while the second range (M0 < MA < M1) to an SMS wave transparency
region. It is possible to show that the solutions describe only stable oscillations (Im
(c) < 0) when approaching the poles and the zeros of the function b̄(MA).

Figure 4 is an example of a numerical solution of the dispersion (5.1) for the
azimuthal harmonic m = 1, parallel component of the wave vector kzrb = 2 and the
following parameters of the medium: ε = AII/AI = 0.08, β∗

I = 0.05, b = B2
0I/B

2
0II =

16. Such a parameter set is characteristic of the Earth’s magnetotail, which the
solar wind flows around. Notably, no eigenmode does exist in the waveguide for
the SMS waves. Therefore, the plasma jet is stable when MA < 1. When MA >

1, the ranges of the Mach numbers MA for unstable modes correspond to the
interval (5.6) and to the above solutions of (5.7), corresponding to the positive
branches of the functions: b̄(MA) = b tan(ψ(MA) + π/4) > 0. Each of these roots
corresponds to one of the eigen harmonics of the FMS waveguide adjoining the
plasma jet boundary from the inside. When MA increases, higher and still higher
harmonics become unstable. Figure 5 displays no appreciable MA dependence of
the maximum magnitudes of the oscillations increment, but the ranges of the
unstable oscillations decreases noticeably when MA (and eigen harmonic number n)
increases.

6. Instability of a plasma jet with a smooth boundary
Let us now consider a problem of the stability of inhomogeneous plasma jet with
a boundary in the form of a smoothly varying transition layer. We will not suggest
the applicability of the WKB method searching for a solution, which will allow us
to use the following results to oscillations with any spatial structure. In this case,
a solution to (2.4) may only be found numerically. For a convenient search of a
numerical solution and comparison with the above results, we will rewrite (2.4) in
the dimensionless form

∂

∂x

b̃2(x)
(
ω̄2
A(x) − 1

)
xκ2(x)

∂xζ

∂x
+ (kzrb)

2b̃2(x)
(
ω̄2
A(x) − 1

)
ζ = 0, (6.1)
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kzrb = 2; m = 1

Figure 4. Mach number MA dependence of the frequencies (Re(c), bold line) and of the
increment (Im (c), thin lines) of the plasma jet eigen oscillations driven on its boundary, having
the form of a tangential discontinuity. The solution is obtained in the WKB approximation
on the radial coordinate r for the following parameters of the medium: ε = 0.08, β∗

I = 0.05,
b = 16. c01,02,03,04 are the roots of the dispersion equation tan(ψ(c0n) + π/4) = 0 defining the
eigen frequency c0n of the waveguide adjoining the plasma jet boundary from the inside.

where x = r/rb, ω̄A(x) = [c − MAṽ0(x)]/ṽA(x), ṽA(x) = A(x)/AI , ṽ0(x) = v0(x)/v0I ,
b̃(x) = B2

0(x)/B
2
0I ,

κ2(x) =
ω̄4
A

ω̄2
A(x)(1 + β∗(x)) − β∗(x)

− 1 − κ2
m

x2
,

β∗(x) = A2(x)/S2(x). The profiles of the shear flow velocity ṽ0(x), Alfven speed
ṽA(x) and of the square of the magnetic field strength b̃(x) will be simulated by the
following functions:

ṽ0(x) =
1

2

[
1 + tanh

x− 1

Δ

]
,

ṽA(x) =
1

2

[
ε+ ε0 + (1 − ε0)

√
x+ (ε+ ε0 − (1 − ε0)

√
x) tanh

x− 1

Δ

]
,

b̃(x) =
1

2

[
1 + b−1 − (1 − b−1) tanh

x− 1

Δ

]
,

where Δ = Δr/rb, ε = AII/AI , ε0 = A(0)/AI , b = B2
0I/B

2
0II , and the function β∗(x)

will be determined from the equilibrium condition of the plasma configuration (2.2):

β∗(x) =
β∗
I

b̃(x)
+
γ

2

(
1

b̃(x)
− 1

)
.
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Figure 5. Mach number MA dependence of the frequencies (Re(c), bold line) and of the
increment (Im (c), thin lines) of the eigen oscillations of the plasma jet with a boundary in the
form of a smoothly varying transition layer with characteristic thickness Δ ≡ Δr/rb = 0.066.
This is a numerical solution of (6.1) for the same parameters of the medium (ε = 0.08,
β∗
I = 0.05, b = 16) as shown in Fig. 4.

The numerical calculations involved the following magnitudes of the medium
parameters: Δ = 0.066, b = 16, ε0 = 0.016, ε = 0.008, β∗

I = 0.05. What we were solv-
ing was the boundary-value problem of searching the phase velocity of oscillations
(the c parameter, in dimensionless variables), satisfying the boundary conditions (3.3)
when x → ∞ and (4.1) x → 0. Figure 5 displays the results of numerical calculations
of the increment of unstable oscillations for the azimuthal harmonic m = 1 and
parallel wave number kzrb = 2. Comparison with Fig. 4, presenting the solution of
the same problem in the local approximation for oscillations of a sharp plasma-jet
boundary, demonstrates essential different distributions of the oscillation increment.

First, it should be noted that the solution for the plasma jet with a smooth
boundary in the c(MA) plot represents a ‘bundle’of curves when MA > M2. These
curves diverge from the basic value of c ≈ MA (the zero-approximation solution
in the previous section) when they pass through the eigenvalues Re(c) = c0n
corresponding to the values of the eigenmode frequency of the FMS waveguide
adjoining the jet boundary. This poses considerable difficulties for a numerical search
of the required solution. The solutions were found by numerically integrating (6.1)
(using the Runge–Kutta method) and by searching the c values (using the Newton
method) corresponding to the boundary conditions (3.3), (4.1). The following has
proved to be an optimal technique for calculating the branch corresponding to
the nth eigenmode. The calculation starts from the maximum magnitude MA,max

towards MA = 0 in the calculating grid. The value of MA,max should be chosen as
somewhat higher than c0n, which will allow us to determine numerically the root
with the maximum gradient of Im(c) corresponding to the nth eigenmode. Note



18 A. S. Leonovich

0 0.4 0.8 1.2 1.6 x

–0.8

–0.4

0

0.4

dζ
dx

–4

–2

0

2

–5

–3

–1

1

3
ωA

ωS

0 0.4 0.8 1.2 1.6 x

–0.8

–0.4

0

0.4

dζ
dx

–4

–2

0

2

–5

–3

–1

1

3
ωA

ωS

ωSωA,

ωSωA,

rArS

rArS

a

b

Figure 6. Spatial structure of unstable oscillations of azimuthal harmonic m = 1 normalised
to the maximum |dζ/dx|max: (a) oscillations close to the second harmonic n = 2 of eigen
modes propagating in the FMS waveguide in the plasma jet (kzrb = 2), (b) oscillations of the
‘global mode’ for rather small magnitudes of kzrb → 0. Resonance surfaces for the Alfven
and SMS oscillations are determined by the equations ω̄A(rA) = ±1 and ω̄A(rS ) = ±ω̄s(rS )
(the signs ± corresponds to the signs of kz).

that it is only solutions with Im(c) > 0 (for the boundary conditions (3.3), they
correspond to waves running from the plasma jet boundary) that have a physical
sense. Solutions with Im(c) < 0 should only be regarded as analytic continuations of
solutions with Im(c) > 0. Integration is in increments allowing us to remain on the
already calculated branch until the previous value c0n−1. After the point of crossing
the imaginary parts Im(c0n) = Im(c0n−1), we switch to the previous branch with a
solution corresponding to the (n− 1)th harmonic.

Figure 5 presents the solutions in the range 0 < MA < 4, including the solutions
for harmonics n = 1, 2, 3. Comparison with Fig. 4 shows a manifold decrease of
the increment of unstable oscillations. Only the few first harmonics (n = 1, 2 in
our case) remain unstable. This is explained by the smoothing of the boundary
layer and by competition between the dissipation mechanism of oscillations on
resonance surfaces (Leonovich and Kozlov 2009) and the mechanism of shear flow
instability. Additionally, the points of the eigenmode phase velocity c0n are displaced
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(Fig. 5 shows the same points c0n and M2 as those in Fig. 4, obtained in the WKB
approximation), the first region of unstable oscillations extends.

Figure 6(a) demonstrates the spatial structure of unstable oscillations close to
the second harmonic n = 2. As was to be expected from the analysis of the WKB
solution, the region outside of the jet is opaque for the unstable oscillation mode.
Resonance surfaces for the Alfven and SMS waves determined, respectively, by
the equations ω̄A(rA) = ±1 and ω̄A(rS ) = ±ω̄s(rS ) are located in the region of the
transition layer at the plasma jet boundary.

Thin lines in Fig. 7 depict the dependences of the MHD-oscillation increment
due to local instability of the plasma jet boundary for the first azimuthal harmonics
m = 0, 1, 2, 3 and for several values of the parallel wave number kzrb. Each of
the four panels displays the distribution of the oscillation increment of the same
magnitude kzrb = 2 as in Figs 5 and 6. Comparing the increments of various
azimuthal harmonics, one’s attention is drawn to the fact that when m increases the
absolute magnitude of Im(c) and the size of the first region of existence of unstable
oscillations 1 < MA < M2 also increases. This is interpreted in the following way,
when m increases the M2 point is displaced into the region of large values of MA.
The distributions of Im(c(MA)) presented in the same panel for oscillations with
kzrb < 1 show that the same happens also when the kzrb parameter decreases – the
M2 point shifts to the region of large magnitudes of MA (except the harmonic m = 0
for which M2 = 1). This is completely consistent qualitatively with what has been
obtained in the WKB approximation in the previous Section.

7. Instability of global modes of the plasma jet oscillations
As follows from Fig. 7, there is yet another type of unstable oscillations of the plasma
jet, with the increment growing when MA → 0. The corresponding distributions of
Im(c(MA)) are presented in Fig. 7 in bold lines. The following features of these
oscillations attract one’s attention:

(1) For oscillations with m� 0, instability only takes place for rather small mag-
nitudes of kzrb < (kzrb)max < 1 (the magnitude of (kzrb)max is different for various
azimuthal harmonics m).

(2) The Im(c(MA)) plots for m� 0 practically coincide for any unstable oscillations
with kzrb < (kzrb)max.

(3) When MA increases, the increment of the oscillations decreases and for m� 0
it tends to zero when MA = MAc (the magnitude of MAc is different for the
different azimuthal harmonics m).

(4) For oscillations with m = 0 the Im(c(MA)) plots differ essentially for oscillations
with various kzrb , having no restricting value of MAc to terminate the region of
existence of unstable oscillations.

(5) The absolute values of the increment are much larger for oscillations with m� 0
than for those with m = 0.

Let us try to understand qualitatively the nature and features of these oscillations
by analyzing their spatial structure in Fig. 6(b). First of all, it should be noted
that these oscillations have an almost homogeneous structure of the first derivative
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Figure 7. Mach number MA dependence of the increment of MHD oscillations of the
cylindrical plasma jet for the first azimuthal harmonics m = 0, 1, 2, 3 and different magnitudes
of parameter kzrb. The distributions of the increment for the oscillations with kzrb = 2 (thin
lines) defined by the local instability of the jet boundary are presented on all the panels. For
the harmonics m� 0, the distributions are also presented of the increment of local instability
for the oscillations with kzrb < 1 (thin lines). Thick lines show the distributions of the
increment of the ‘global modes’of the plasma jet oscillations.

dζ/dr ≈ const = CI in the plasma jet, whence we obtain ζ = CIr (we suppose
ζ(r → 0) → 0). This means that the oscillations occupy the entire cross section of
the plasma jet and have a constant amplitude there. We will call such oscillations
‘global modes’ of the plasma jet. The dispersion equation for such modes can be
obtained using the matching conditions (3.1) on the plasma jet boundary. For this
purpose, we will integrate (2.4) in the interval (0, rb) using an approximate expression
ζ = CIr for ζ:

ρ0Ω
2

k2
r r

∂rζ

∂r

∣∣∣∣
r=rb−ε

= −
∫ rb

0

ρ0Ω
2ζdr ≈ −CI

∫ rb

0

ρ0Ω
2rdr

and substitute the resulting expression into the matching condition (3.1), assuming
the region outside of the jet to be opaque. As a result, we obtain the following
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dispersion equation ∫ rb

0

ρ0Ω
2rdr =

ρ0IIΩ
2
II rb√

−k2
rII (rb)

,

or, in the dimensionless form,∫ rb

0

(
c2

v2A(r)
− 1

)
rdr =

rb
[
(c−MA)

2/ε2 − 1
]

b
√

−k2
rII (rb)

, (7.1)

where

k2
rII = k2

z

(
(c−MA)

4/ε4

(c−MA)2(1 + β∗
II )/ε

2 − β∗
II

− 1 − κ2
m

)
,

vA(r) = A(r)/AI , b = B2
0I/B

2
0II , ε = AII/AI � 1, κm = m/kzrb.

Let us apply the perturbation theory to searching for a solution to (7.1), expanding
c into a (5.2)-like series with ε being the small parameter. In the zeroth-order of the
perturbation theory, we have c0 = MA as before. In the first-order of the perturbation
theory, we obtain an equation for c1

c21 − 1√
1 + κ2

m − c41/[c
2
1(1 + β∗

II ) − β∗
II )]

=

∫ rb

0

(
M2

A

v2A(r)
− 1

)
rdr. (7.2)

Let us consider two cases.

7.1. Case m �= 0

When the parameter kzrb is small enough (κm → ∞, kzrb → 0), we obtain the
following approximate solution of (7.2):

c21 ≈ bm

∫ 1

0

(
M2

A

v2A(x)
− 1

)
xdx,

where x = r/rb and b� 1. It is easy to see from here that the unstable oscillations
(c21 < 0) exist only when the condition∫ rb

0

ρ0(r)
(
v20II − A2(r)

)
rdr < 0,

holds, which also determines the magnitude of MAc. When kzrb → 0, the magnitude
of Im(c) does not depend on kzrb, which agrees completely with the numerical
calculations in the previous section.

7.2. Case m = 0

If |c1| � 1 (e.g. when b� 1, but |εc1| � c0), we have the following solution of (7.2)

c1 ≈ ± i√
1 + β∗

II

bkzrb

∫ 1

0

(
M2

A

v2A(x)
− 1

)
xdx.

There is no limiting magnitude of MAc for this solution, defining the region of
existence for unstable oscillations, but there is a dependence on kzrb. This also
agrees qualitatively with the above numerical calculations. Note that the solutions
obtained in this way should only be regarded as an illustration of the qualitative
behaviour of the global oscillation modes. The exact values of their increment
obtained numerically may differ considerably from these simplified estimates.
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8. Conclusion
Let us enumerate the main results of this work.

1. Qualitative analysis of the solution of (2.4), describing the MHD oscillations
of a cylindrical plasma jet, has shown that its boundary is unstable in relation
to the fast magnetosonic (FMS) oscillations in the range of the flux parameters
1 < MA < M2 (where MA = v0II/AI is the Mach number found from the maximum
Alfven speed, M0 < M1 < 1; M2 > 1 are the characteristic Mach numbers defined
in Sec. 5 in the WKB approximation over the radial coordinate).

2. The boundary of the plasma jet also becomes unstable whenMA approaches one
of the eigenvalues c0n = Re((ω/kz)n/AI ) defined by the dispersion equation for FMS
and SMS oscillations in the resonator: tan(ψ(c0n) + π/4) = 0, n = 1, 2, 3, . . . , where
ψ is spatial oscillation phase from the turning point to the plasma jet boundary,
(ω/kz)n is the parallel phase velocity of the nth harmonic of the oscillations. The
ranges of MA where the unstable oscillations exist are located close to c0n - in the
range MA > M2 > 1 for FMS waves, and M0 < MA < M1 < 1 for SMS waves.

3. A numerical solution of the problem for a cylindrical plasma jet with a smooth
boundary layer has shown that the range of MA values where the jet boundary is
unstable corresponds qualitatively to those obtained in the WKB approximation for
the jet with a sharp boundary. There are essential differences, however. Firstly, the
absolute values of the increment of unstable oscillations for the jet with a smooth
boundary layer are much smaller than those for the jet with a sharp boundary.
This is explained by a smoothing of the boundary and by competition between
the instability of the shear flow and the dissipation of the oscillation energy on
the resonance surfaces for the Alfven and SMS waves. The number of unstable
harmonics of the eigen oscillations of magnetosonic resonators in the plasma jet
is restricted by a few first harmonics. Secondly, the ranges of the MA values for
unstable modes of the oscillations in the jet with a smooth boundary are considerably
displaced relative to the location obtained for the jet with a sharp boundary.

4. It is shown that, in addition to local instability of the jet boundary, there exist
also unstable ‘global modes’of the plasma jet oscillations. Their amplitude is almost
constant in the entire cross section of the jet, while its instability increments are much
larger than those for unstable oscillations of the jet boundary. The range of MA

values for which the ‘global modes’are unstable begins fromMA = 0. The distribution
of the increment of such oscillations differs substantially between the axisymmetric
(m = 0) and asymmetrical (m �= 0) modes. Modes with m �= 0 only become unstable
for rather small magnitudes of the parallel wave number (kzrb < (kzrb)max < 1),
the region of their existence being restricted by the range 0 < MA < MAc (where
MAc is the limiting magnitude MA until which the ‘global modes’remain unstable,
different for each m). The distribution of the increment of such oscillations is almost
the same for any oscillations with kzrb < (kzrb)max. Unstable axisymmetric ‘global
modes’are not limited in the MA value and their increment depends essentially on
the magnitude of parameter kzrb.
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