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1. INTRODUCTION

In this paper, we study the resonant excitation of
Alfvén waves in an inhomogeneous plasma. The phe-
nomenon of Alfvén resonance is of fundamental impor-
tance in the physics of wave processes in the magneto-
sphere [1, 2]. At present, there are numerous observa-
tions indicating the resonance excitation of Alfvén
modes by fast magnetosonic (FMS) waves arriving
from the outer layers of the magnetosphere or from
interplanetary space [3]. This involves the excitation of
Alfvén waves in which the magnetic field lines execute
azimuthal oscillations (these waves are usually referred
to as toroidal). At the same time, there are Alfvén waves
that are characterized by radial oscillations of the mag-
netic field lines (poloidal oscillations). The origin of
these waves is still poorly understood [4]. When study-
ing hydromagnetic waves in an inhomogeneous
plasma, we will focus mainly on magnetospheric
issues. We note, however, that Alfvén resonance is a
more universal phenomenon. For example, it was
invoked to explain solar corona heating [5] and to
develop new methods for plasma heating in fusion
devices [6–9]. The character of the models used in this
study makes it possible to easily extend our results to
Alfvén resonances in these and other branches of phys-
ics.

In the simplest model in which the plasma is
assumed to be inhomogeneous in one direction and the
magnetic field lines are straight and mutually parallel,
the Alfvén resonance implies that FMS waves arriving
from the outer layers of the magnetosphere excite an
Alfvén mode near the surface at which the wave fre-
quency 

 

ω

 

 is equal to the local Alfvén frequency 

 

Ω

 

A

 

 =

 

k

 

||

 

A

 

(

 

x

 

)

 

, where 

 

A

 

 is the Alfvén velocity [1, 2]. A large
number of studies were devoted to the development of
the theory of Alfvén resonance with the use of more
complicated (but, at the same time, more realistic)
models. Thus, it was shown that Alfvén resonance also
occurs in a two-dimensional model that takes into
account the curvature of the magnetic field lines and the
inhomogeneity of the background plasma in the direc-
tion of the magnetic field [10–16]. Furthermore, the
field line curvature gives rise to a specific transverse
dispersion of Alfvén waves, i.e., the dependence of the
radial component of the wave vector on the Alfvén
wave frequency [16]. In this case, the waves propagate
across the magnetic shells. Taking into account the
finite plasma pressure and equilibrium current in a
magnetic field with curved field lines leads to an even
more drastic change of the transverse dispersion law for
hydromagnetic waves [17].

When the problem is treated in a two-dimensional
model, some of the factors related to inhomogeneity are
often ignored. This naturally brings up the question as
to whether these factors can significantly contribute to
the overall picture of the process. In recent paper [18],
attention was drawn to one of the factors that was pre-
viously disregarded—the magnetic field shear caused
by the current flowing along the magnetic field. Since
field-aligned currents are a rather common phenome-
non in the magnetosphere [19], it is worthwhile to take
magnetic shear into account in order to gain a compre-
hensive insight into the physics of MHD waves in the
magnetosphere. Up to the present time, much attention
has been given to the effect of shear on the plasma sta-
bility (see, e.g., [20]). In our study, the problem is for-
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mulated in a different way: we investigate the structure
of the wave field at a fixed wave frequency 

 

ω

 

. Note that
many authors treated the wave structure near the reso-
nance surface without allowance for shear (see, e.g., [1,
2, 11]). In this paper, we investigate the wave structure
not only in the vicinity of the resonance, but also in the
entire plasma volume.

The paper is organized as follows. In Section 2, we
introduce the coordinate system and specify the equi-
librium plasma parameters. In Sections 3 and 4, we
derive an equation describing the structure of a wave
traveling in the plane parallel to the magnetic field lines
and study the character of the wave field at the singular
points. Section 5 is devoted to the study of the wave
structure. The results obtained are summarized in Sec-
tion 6.

2. EQUILIBRIUM STATE
AND COORDINATE SYSTEM

To ascertain how shear can influence the structure of
the wave field, we investigate a relatively simple model
in which all the equilibrium parameters depend only on
one coordinate 

 

x

 

, imitating the radial coordinate in the
magnetosphere. The magnetic field lines are straight
and lie in the (

 

y

 

, 

 

z

 

) plane. At a given coordinate 

 

x

 

, the
magnetic field lines are parallel to each other; however,
the angle between the field lines and the 

 

z

 

-axis depends
on the 

 

x

 

 coordinate (the field lines rotate about the

 

x

 

-axis). One-dimensional models similar to that
employed in this study are widely used to investigate
MHD waves in the Earth’s magnetosphere and the res-
onance heating of space and laboratory plasmas,
whereas the plasma stability is usually examined in

cylindrical or toroidal geometry. As a shear parameter,
we will use the tangent of the angle between the field
lines and the 

 

z

 

-axis,

where 

 

B

 

0

 

y

 

 and 

 

B

 

0

 

z

 

 are the components of the ambient
magnetic field 

 

B

 

0

 

. The nonzero derivative 

 

d

 

τ

 

/

 

dx

 

 implies
the presence of magnetic shear.

The plasma is assumed to be cold; therefore, the
equilibrium current with the density 

 

J

 

0

 

 = 

 

�

 

 

 

×

 

 

 

B

 

0

 

 can
only flow along the magnetic field lines; i.e. 

 

J

 

0

 

 

 

× 

 

B

 

0

 

 =
0. It is easy to see that the current density and the shear
parameter 

 

τ

 

 are related by 

In this paper, we focus on the study of the wave pro-
cesses in the magnetosphere. The 

 

x

 

 and 

 

y

 

 coordinates
imitate, respectively, the radial and azimuthal coordi-
nates in the magnetosphere. The parameter 

 

τ

 

(

 

x

 

)

 

 and the
Alfvén velocity 

 

A

 

(

 

x

 

)

 

 are assumed to be monotonic
functions varying on the same scale length 

 

L

 

, as is
shown in Fig. 1. It is also assumed that, these functions
tend to constant values as 

 

x

 

 

 

 

 

±∞

 

.

3. DERIVATION OF AN EQUATION DESCRIBING 
THE WAVE STRUCTURE ALONG 

THE 

 

x

 

 COORDINATE

A linear monochromatic MHD wave propagating
through a cold plasma is described by the equation

 

– (1)

 

where 
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, 
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, 

 

z

 

)

 

 is the vector of the plasma displacement
from the equilibrium position; 

 

ω

 

 is the wave frequency;

 

ρ

 

0

 

 is the plasma mass density; and 

 

δ

 

B

 

 and 

 

δ

 

J

 

 are small
deviations of the magnetic field and current density
from their equilibrium values 

 

B

 

0

 

 and 

 

J

 

0

 

, respectively.
The magnetic field perturbation 

 

δ

 

B

 

 can be expressed in
terms of the wave electric field 

 

E

 

:

 

(2)

 

where 

 

c

 

 is the speed of light. The displacement 

 

x

 

 can be
found from the frozen-in condition by assuming the
plasma to be perfectly conducting:

 

(3)

 

The infinite plasma conductivity also implies that the
wave electric field is perpendicular to field lines,

 

(4)
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Fig. 1. (a) Profiles of τ(x) for τ' > 0 (solid line) and τ' < 0
(dashed line) and (b) the Alfvén velocity profile A(x).
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Substituting expressions (2) and (3) into Eq. (1), we
obtain:

where A = B0/  is the Alfvén velocity. We take
the vector product of the above equation with B0 and, in
view of Eq. (4), retain only the transverse components.
As a result, we arrive at the equation

(5)

where κ = J0 · B0/  = τ'/(1 + τ2) is the shear-related
quantity. Thus, we have obtained an equation describ-
ing an MHD wave in a cold plasma in a sheared mag-
netic field. A particular model of the medium described
in the previous section has not yet been used; hence,
Eq. (5) describes an MHD wave in a cold plasma with
an arbitrary magnetic field configuration. Below, we
will apply the above model to examine the propagation
of MHD waves.

We seek the solution to Eq. (5) in the form

which implies that the wave is a traveling wave in the
(y, z) plane. Then, after simple but laborious manipula-
tions, we obtain from Eq. (5) the equation for the Ey

component,

(6)

where the prime denotes differentiation with respect to
x. Here, the following notation is introduced:

(7)

, (8)

where KA = ω2/A2 – , KF = ω2/A2 –  – , and k⊥ =

(ky – τkz)/  and k|| = (kz + τky)/  are the
transverse and longitudinal components of the wave
vector, respectively. If τ' = 0, Eq. (6) reduces to a one-
dimensional equation describing the wave structure in
a cold plasma in a magnetic field with straight parallel
field lines:

(9)

which was derived in [1, 2].
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4. SINGULAR POINTS

Equation (6) involves singular points xA and xF, at
which the functions a(x) and b(x) become infinite. It is
seen from expressions (7) and (8) that these points sat-
isfy the equations KA(xA) = 0 and KF(xF) = 0; i.e.,

where

To analyze the solution to Eq. (6), we expand KA and KF

in the vicinities of the points xA and xF:

(10)

(11)

In view of expansion (11), Eq. (6) in the limit x  xF

reduces to the equation

(12)

where γ = –τκ is a quantity related to shear. The solu-
tion to this equation is the function

where Y2(Z) and J2(Z) are the linearly independent solu-

tions to the Bessel equation and Z = . This
solution contains a singularity of the form (x –
xF)2ln(x – xF); i.e., xF is a branch point. Nevertheless,
the function Ey(x) is finite near the point xF . In this
regard, the situation is similar to that in the absence of
shear, when Eq. (9) near the point xF takes the form

(see, e.g., [1]). This equation has the same singular
point xF , but its solution has no singularity. In both
cases (with and without shear), the electromagnetic
field is finite near this point. An important difference
between these cases arises when the WKB approxima-
tion is applied (see the next section).

In the vicinity of the point xA, expansion (10) is valid
and Eq. (6) reduces to

(13)

where β = τκ. The solution to this equation is
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where J0(Z) and Y0(Z) are the linearly independent solu-

tions to the Bessel equation and Z = . As
x ≈ xA, this solution has the following asymptotic repre-
sentation:

i.e. the wave field has a singularity of the same type as
in the absence of shear [1, 2]. Hence, at the point xA,
Alfvén resonance occurs. In view of this, the surface
x = xA will be referred to as the resonance surface. The
functions ΩA(x) for kz � ky and ky � kz are plotted in
Fig. 2. It is seen in the figure that, even with a mono-
tonic A(x) profile, there can be several Alfvén reso-
nances, whose number depends on the τ(x) profile and
the relation between the wave vector components ky and
kz. Note that resonance exists even if A(x) = const.
Hence, magnetic shear is an additional factor that,
along with the plasma inhomogeneity, gives rise to
Alfvén resonance. We note that the inequalities Ex � Ey

and δBx � δBy hold near the point xA; i.e., the field lines
oscillate in the (y, z) plane. Such oscillations are often
referred to as toroidal pulsations (especially, in publica-
tions on magnetosphere physics).

4β x xF–( )

Ey C1 x xF–( )ln C2,+≈

5. RADIAL STRUCTURE OF AN MHD WAVE
IN THE WKB APPROXIMATION

When studying the excitation of Alfvén waves in the
magnetosphere, the following scenario is usually con-
sidered: FMS waves arrive from the outer layers of the
magnetosphere, reach the boundary of the transparent
region, and are reflected back; however, their field par-
tially penetrates deep into the magnetosphere and
excites oscillations in the Alfvén resonance region. With
this scenario in mind, we will use, as the boundary con-
dition, the boundedness of the function Ey as x  –∞.
Furthermore, in the case of an inhomogeneous plasma,
we should speak of a single MHD mode, because the
separation of the solution into an Alfvén mode and an
FMS wave is, strictly speaking, rather arbitrary. Never-
theless, by tradition, we will use these terms, trying to
more strictly define them.

To solve Eq. (6) with the boundary condition
|Ey(x  –∞)| < ∞, we will use the WKB approach,
assuming that the inequalities ky � L–1 and kz � L–1 are
satisfied, where L is the typical scale length on which
the equilibrium parameters of the medium vary. The
main WKB order gives the radial component of the
wave vector. In the case at hand, we have

(14)

In the next WKB order, we can determine the wave
amplitude as a function of the radial coordinate. In our
analysis, the terms with the first derivative with respect
to the radial coordinate refer just to this order because
they contain a large parameter to the first power.

In the transparent region, we have  > 0. One of the
transparent regions exists even in the absence of shear:
if τ' = 0 and κ = 0, then, from Eq. (14), we obtain a well-

known FMS dispersion relation,  = KF . In the pres-
ence of shear, the FMS transparent region consists of
two separate (but close to each other) regions (Fig. 3b).
One of these regions (to the left of the point xF) is sim-
ilar to the transparent region in the absence of shear
(Fig. 3a). The second region is bounded by the point

where  = 0 and the point xF , where  = ∞; i.e., it
resembles the Alfvén transparent region described
below. Recall that the wave amplitude is finite near the
point xF.

The other transparent region is adjacent to the reso-
nance surface xA(ω). In this transparent region, the
waves have, to a high degree of accuracy, the Alfvén
mode polarization (Ex/Ey = kx/ky). Hence, this region
will be referred to as the Alfvén transparent region. It is
seen from relation (14) that, when ω = ΩA(x), we have

  ∞. Let us introduce the poloidal frequency
ΩP(x), such that, when ω = ΩP(x), the equality kx = 0 is

kx
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Fig. 2. Functions (x) (solid line) and (x) (dashed

line) for (a) kz � ky and (b) ky � kz. Indices 1, 2, and 3 stand
for different Alfvén resonances at the same frequency ω.
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satisfied. Accordingly, the surface xP(ω), on which the
equality ω = ΩP(x) is satisfied, will be referred to as
poloidal, because, near the point xP, the inequality
kx � ky holds and, consequently, we have Ex � Ey and
δBx � δBy . The second of the last two inequalities sug-
gests that the field lines oscillate in the radial direction;
i.e., the oscillations are poloidal in character. At large
values of ky and kz, it is easy to obtain from relation (14)
the difference between the poloidal and resonance fre-
quencies,

where k2 =  +  and q = τκ . The distance
between the poloidal and resonance surfaces is deter-
mined by the expression

The function ΩP(x) is plotted in Fig. 2. It is seen in
the figure that ∆ � L. In the vicinities of the resonance
and poloidal surfaces, relation (14) takes a simpler
form:

(15)

This formula can be regarded as a dispersion relation
for Alfvén waves in the presence of magnetic shear in a
plasma whose parameters vary along one coordinate.
The dependence kx(ω) indicates the emergence of the
transverse dispersion of Alfvén waves. As is known, the
dispersion relation for the Alfvén mode in a homoge-

neous plasma is ω2 = A2. The dependence of the
transverse component of the wave vector on the fre-
quency appears when nonideal MHD effects (such as
the electron inertia and the effects related to the finite
ion Larmor radius) are taken into account. We can see
that, even in an ideal one-fluid magnetohydrodynamics,
the transverse dispersion arises if magnetic shear is
taken into account. It should be noted that the trans-
verse dispersion similar to that described by Eq. (15)
was found for waves in a two-dimensional plasma in a
magnetic field with curved field lines [16], whereas, in
our model, the magnetic field lines are straight and the
plasma is inhomogeneous along one direction.

The profiles of (x) outside the FMS transparent
region (i.e., at x < xF) are plotted in Fig. 4. The plots
illustrate the arrangement of the transparent regions for
Alfvén waves under different assumptions about the
ambient medium. It is seen in the figure that there are
generally several such regions. Let us consider Fig. 4a
in more detail, where only one Alfvén transparent

ΩP
2 x( ) ΩA

2 x( )– qA2k 2– ,=

ky
2

kz
2 KA'

∆ xP xA–
q

k2KA'
------------.= =

kx
2

k2ΩP
2 x( ) ω2–

ω2 ΩA
2 x( )–

--------------------------.=

k ||
2

kx
2

region is present. If ky, kz � L–1, then, in this region and
around it, Eq. (6) can be brought to the form

(16)

Near the Alfvén resonance, this equation can be even
more simplified [see Eq. (13)]. Near the poloidal point,
it reduces to the Airy equation. To solve Eq. (6), the
WKB solutions must be matched with the solutions
near the points xA , xP, and xF . Omitting intermediate
manipulations, we give the final solution. In accordance
with the boundary condition, in the opaque region (at
x � xA), we have

(here and below, we will not give the expressions for
the constants because they are rather unwieldy). In the
Alfvén transparent region (i.e., at xA < x < xP), the wave
is described by the expression

i.e., it is a traveling wave propagating across magnetic
shells. In this case, the wave phase velocity is directed
along the x-axis (vph > 0) and the group velocity, as is
seen from relation (15), is directed from the poloidal
surface toward the resonance surface. Note that this is a
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general result, irrespective of the relative positions of xP

and xA; i.e., we always have vph > 0, and the group
velocity is always directed toward xA . As the wave
propagates, its radial wavelength decreases and the
character of the mode polarization also changes. At
x ≈ xP, the wave is poloidally polarized (Ey � Ex and
δBy � δBx), whereas at x ≈ xA, it is toroidally polarized
(Ey � Ex and δBy � δBx). Near the points xP and xA, the
applicability conditions of the WKB approximation fail
to satisfy and the structure of the wave is described in
terms of the functions obtained by solving Eq. (16) near
these points:

where K0 is the modified Bessel function,  is the
Hankel function, and Ai is the Airy function. The con-
stants are obtained by matching these solutions with the
WKB solutions. Finally, in the FMS transparent region,
we have a standing wave; thus, at x � xF , we obtain

Ey

c3K0 4k2∆ xA x–( )( ) for x xA≤

c4H0
1( ) 4k2∆ x xA–( )( ) for xA x � xP≤

c5Ai k2/∆( )1/3
x xp–( )( ) for x xP,≈
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



=

H0
1( )

Ey c6 kx
π
4
---– 

  .cos=

Note that the penetration of an FMS wave beyond the
transparent region slightly affects the structure of this
mode (see also [21]).

Such a structure of an MHD wave generally corre-
sponds to the conventional propagation scheme of low-
frequency waves in the magnetosphere, as was
described at the beginning of this section. However, the
situation with the Alfvén transparent region differs rad-
ically from that in the absence of shear [1, 2] (in the lat-
ter case, the wave is a solitary resonance and there is no
poloidal surface). On the other hand, it resembles a sit-
uation considered in [16, 17]. In that case, the waves
also propagate across the magnetic shells; however, this
is related to the curvature of magnetic field lines.

6. CONCLUSION

(i) An equation describing the electric field of a
wave propagating in a cold plasma in a sheared mag-
netic field has been derived. The equation holds for any
magnetic field configuration. A particular case of a
wave traveling in the plane parallel to the magnetic field
lines has been examined assuming that the plasma is
inhomogeneous along one direction and the magnetic
field lines are straight.

(ii) It has been shown that, on the magnetic surfaces

where the condition ω2 = A2  is satisfied, there are
logarithmic singularities similar to that in the absence
of shear. Thus, we can state that the Alfvén resonances
occur just on these surfaces. In a sheared magnetic field
(unlike the case without magnetic shear), there can be
several Alfvén resonances at a fixed frequency even if
the Alfvén velocity A(x) has no local extrema. The
number of resonances depends on the τ = τ(x) profile
and the relation between the wave vector components ky

and kz. It has been shown that the Alfvén resonance
exists even if A(x) = const. This suggests that shear is
one of the factors (along with the plasma inhomogene-
ity) that gives rise to Alfvén resonance.

(iii) It has been shown that, at the turning point for
magnetosonic waves, the equation possesses a singular-
ity. At this point, the solution is finite, but has a branch-
ing singularity.

(iv) It has been established that the presence of shear
gives rise to the transverse dispersion of Alfvén waves,
i.e., the dependence of the radial component of the
wave vector on the wave frequency ω. This phenome-
non has no analogue in the case of a magnetic field with
straight parallel field lines and a plasma that is inhomo-
geneous along one direction. However, transverse dis-
persion can also arise due to the field line curvature [16]
or the finite plasma pressure [17]. The presence of shear
also slightly changes the FMS dispersion law; however,
this change does not play an important role because
this  mode has a significant transverse dispersion

(  = ω2/A2(x) –  – ) even in the absence of shear.

k ||
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Fig. 4. Profiles of (x) at x < xF for the cases of (a) one,

(b) two, and (c) three resonances. Indices 1, 2, and 3 stand
for the Alfvén transparent regions adjacent to the different
Alfvén resonances shown in Fig. 2.
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(v) The wave structure has been studied in the model
in question. It is shown that the MHD mode has two
transparent regions. The first region, corresponding to
small values of the Alfvén velocity, refers to FMS
waves. In this region, the mode is a standing wave
occurring between magnetic shells. The second trans-
parent region is adjacent to the Alfvén resonance sur-
face and, thus, can be called the Alfvén region. This
region is bounded by the Alfvén resonance surface on
the one side and the poloidal surface (kx = 0) on the
other side. Within this transparent region, the mode is a
traveling wave and the energy of the wave is trans-
ported from the poloidal surface to the resonance sur-
face. This situation differs radically from that with
straight parallel field lines [1, 2], in which case an
Alfvén wave is a solitary resonance and there is no
poloidal surface. However, it resembles a situation in
which a similar phenomenon is caused by the curvature
of magnetic field lines [16, 17].
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