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К ИНТЕРПОЛЯЦИИ ДАННЫХ КВАДРАТИЧНЫМИ СПЛАЙНАМИ 

И.И. Орлов 

ON INTERPOLATION OF DATA BY QUADRATIC SPLINES 

I.I. Orlov 

В работе рассмотрен новый метод построения интерполяционных сплайнов второй степени дефекта один. Результаты 

могут быть использованы при интерполяции временных рядов данных, получаемых с равномерным шагом по времени. 

This paper is concerned with a new method for constructing interpolation splines of the second power of the defect one. Results 

can be used to interpolate time-series data obtained with even time step.  

 

Введение 
При интерполяции сплайнами временных рядов 

данных, полученных с использованием равномерно-

го шага по времени, имеется возможность получить 

замкнутые аналитические формулы для таких 

сплайнов. В данной работе на примере построения 

интерполяционного сплайна второй степени дефекта 

один изложен новый метод получения явных выра-

жений для параметров квадратичного сплайна. 

Примененный в работе прием носит общий харак-

тер, так как он может быть использован как при по-

лучении явных выражений для сплайнов других 

степеней, так и при решении конечных систем ли-

нейных уравнений с теплицевыми матрицами коэф-

фициентов. 

Целью работы является изложение явного мето-

да решения конечной системы линейных уравнений, 

матрица коэффициентов которых является трехдиа-

гональной теплицевой.  

 

Формулировка основной системы линейных 

уравнений 

При описании задачи интерполяции данных 

квадратичным сплайном S2(t) дефекта один можно 

воспользоваться следующей схемой формулировки 

основных уравнений. Пусть носителем такого 

сплайна является интервал [0, n]. Так как на каж-

дом из интервалов разбиения множества [0, n] на ин-

тервалы единичной длины сплайн, являющийся мно-

гочленом второго порядка, определяется тремя коэф-

фициентами, то его будут описывать на всем интерва-

ле 3n параметров, которые и подлежат определению. 

Если учесть, что должны быть выполнены ус-

ловия непрерывности сплайна S2(t) и его первой 

производной в промежуточных целочисленных 

точках основного интервала [0, n], то это наклады-

вает 2(n–1) условий на параметры сплайна. В ре-

зультате остаются неопределенными n+2 параметра. 

Далее, если для каждой средней точки интервалов 

единичной длины заданы значения анализируемой 

функции, то неопределенными останутся два пара-

метра, которые обычно находятся из так называе-

мых краевых условий (см. [1]). Подчеркнем, что в 

рассматриваемой схеме значения интерполируемой 

функции считаются заданными в полуцелых точках.  

Рассмотрим способ описания сплайна S2(t), анало-

гичный тому, который приведен в монографии [1] для 

кубических сплайнов. Для этого положим, что первая 

производная сплайна S2(t) на интервале [j, j+1] может 

быть представлена в виде ( 0, 1)j n= −  

(1)

2 1( ) ( 1 ) ( ),j jS t m j t m t j+= + − + −  (1) 

где величины jm  определяют значения производ-

ных в целочисленных точках интервала [0, n]. После 

интегрирования формулы (1) получаем, что 
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Воспользовавшись условием 2 ( 0.5) ,jS j f+ =  из 

(2) определяем постоянную интегрирования cj, что 

позволяет представить сплайн S2(t) в виде 
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Заметим, что представление сплайна S2(t) в виде 

(3) обеспечивает непрерывность как самого сплайна, 

так и его первых производных в узлах рассматри-

ваемой сетки. 

Если использовать условия непрерывности 

сплайна S2(t) в целых точках, то получается следующая 

система уравнений для наклонов сплайна mj: 

1 1 16 8( ) ,j j j j j jm m m f f d− + −+ + = − =  (4) 

где 1, 1j n= − , поскольку такие уравнения имеют 

место только для внутренних точек рассматривае-

мого целочисленного интервала [0, n]. Величины dj с 

точностью до множителя дают наклон в данных, 

относящихся к полуцелым точкам. Систему уравне-

ний (4) следует дополнить краевыми условиями, 

которые позволят определить два свободных пара-

метра m0 и mn.  

Граничные условия будут выбраны с использо-

ванием дополнительных уравнений, записываемых в 

следующей форме: 

0 1 0 -16 ,  m 6 .n n nm m d m d+ = + =  (5) 

Здесь подлежат определению величины d0, dn. 

Эти величины будут выбраны после построения 

решения полученной системы уравнений (4) и (5). 

Формально же считаем, что величины d0, dn нам за-

даны. Подчеркнем, что выбор дополнительных 

уравнений в форме (5) удобен тем, что получающая-

ся при этом матрица системы линейных уравнений 

будет симметричной теплицевой матрицей, т. е. 

такой, на каждой диагонали которой стоят одина-

ковые значения. 
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Метод решения теплицевой системы линей-

ных уравнений 

Решение системы уравнений (4), (5) будет стро-

иться следующим образом. Дополним произвольно 

набор искомых наклонов jm  и значений правых 

частей уравнений dj до множеств из бесконечного 

числа элементов { }j
m

∞

−∞
, { } .jd

∞

−∞
 Относительно 

вновь вводимых величин будем предполагать, что 

вновь вводимые наклоны mj имеют нулевые значе-

ния. Дополнительные величины dj выбираются рав-

ными левым частям дополнительно вводимых урав-

нений типа уравнений (4). С помощью полученных 

наборов { }jm
∞

−∞
 и { }jd

∞

−∞
 формально определим 

бесконечное множество линейных уравнений так, 

чтобы получилась система с теплицевой матрицей. 

В результате будет получена бесконечная система 

линейных уравнений, в которой следует выделить 

следующую пару уравнений вместо уравнений (5): 

1 0 1 0

-1 1

6 ,  

6 ,n n n n

m m m d

m m m d

−

+

+ + =

+ + =
 (6) 

в которой использовано равенство нулю дополни-

тельно вводимых величин наклонов. В итоге полу-

чаем формально бесконечную систему уравнений, 

которая имеет вид 

mj–1+6mj+mj+1=dj, (7) 

где , .j = −∞ ∞  

Для решения полученной системы (7) применим 

следующий прием. После умножения каждого из 

уравнений (7) на переменные zj (|x|=1) соответствен-

но и суммирования полученных равенств получаем 

функциональное уравнение 

1 1 2( 6 ) ( ) ,j j p

j j j j p

j j p

d z z m m m Q z m z
∞ ∞ ∞

− +
=−∞ =−∞ =−∞

= + + =∑ ∑ ∑

 (8) 

в котором использовано обозначение  

1

2 ( ) 6 1 (1 )(1 ),Q z z z z z
−= + + = − λ − λ − λ  (9) 

где корни 3 2 2±λ = − ±  многочлена (z2+6z+1) об-

ладают свойствами λ++λ–=–6, λ+λ–=1, 1–λ2=∆, 

|λ+|=|λ|<1. С учетом этих свойств имеем 

2

1 1
.

( ) 1 / 1

z

Q z z z

−λ λ 
= + 

∆ − λ − λ 
 (10) 

Полученные соотношения позволяют вместо 

формулы (8) написать решение системы (7) в сле-

дующем виде: 
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Далее, преобразовав уравнение (11), получаем 

для нахождения решения системы формулу  

1

.
p

p p j p p j

p j j

p p j p j

m z z d d
∞ ∞ ∞

− −

=−∞ =−∞ = + =−∞

 −λ  
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 (12) 

Заметим, что в результате приравнивания коэф-

фициентов при степенях z  получаем решение в виде  

1

.
p

j p p j

p j j

j p j

m d d
∞

− −

= + =−∞

 −λ  
= λ + λ 

∆   
∑ ∑  (13) 

Отметим также, что формула (13) фактически мо-
жет быть получена интегрированием по углу φ  ком-

плексных тригонометрических рядов (12) при условии 

exp( ).z i= φ  При сделанных же ранее предположениях 

относительно свойств бесконечной системы уравнений 
справедливость приведенных действий очевидна. 
Полагая вводимые дополнительные параметры 

{ }
2

jd
−

−∞
 и { }

2j n
d

∞

+
 равными нулю, рассмотрим фор-

мулу (13) с целью выяснения возникающих равенств 
для определения величин m0, mn. С учетом нулевых 

значений для наборов { }
2

jd
−

−∞
 и { }

2
,j n

d
∞

+
 для индек-

са p = –1 потребуем выполнения условия 

1 0 1( ,  )n nd m d m− += = : 
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которое дает одно из уравнений для определения 
величин m0, mn. Для остальных отрицательных ин-
дексов p<–1, соответственно, имеем 
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j
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Заметим, что равенства (15) являются следстви-

ем формулы (14). 
Для положительных значений индексов формулы 

получаются аналогично предыдущему случаю. Так, 
при p = n+1 из формулы (13) имеем условие, кото-
рое должно быть выполнено: 
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Для индексов p >n +1, соответственно, имеем 
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Тем самым для обеспечения рассматриваемых 
условий тождественности обращения в ноль вспо-
могательных переменных mj должны быть выполне-
ны условия: 
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которые позволяют определить величины m0, mn в 

зависимости от величин dj.  

Рассмотрим теперь формулы (13) при p = 0:  

1 2 2

0 0

0

.
n

j n

j n

j

m d m m
+ +

=

 −  
= λ + λ + λ 

∆   
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С учетом первого уравнения (18) и свойств соб-

ственных значений формула (19) преобразуется к 

тождеству 

20
0 0(1 ) .

m
m m= − λ =

∆
 (20) 

Аналогично предыдущим соотношениям, для p = n 

получаем формулу 
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которая, с использованием второго уравнения (18), 

приводится к тождеству 

2(1 ) .n

n n

m
m m= − λ =

∆
 (22) 

Теперь из формулы (13) при 1, 1p n= −  получаем 
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∑ ∑

 (23) 

Напомним, что величины m0, mn определяются из 

системы (18). Эти решения задаются формулами: 
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0 2 4
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∑ ∑
 (24) 

Заметим, что для больших n формулы (24) мож-

но упростить с учетом малости вторых слагаемых в 

них вследствие неравенства |λ|<1. Эти формулы бу-

дут иметь вид 
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0
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n j
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m d

m d

+
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∑
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Для значений индекса p, принадлежащих интер-

валу [0, n] и удаленных от его концов, величины mp 

можно приближенно представить в виде разложения 

по степеням λ. В этом случае получим приближен-

ное разложение 

{ }2 3

1 1 2 2 ... .p p p p p pm d d d d d+ − + −≅ −λ + λ + + λ + λ + (26) 

Отсюда следует, что имеет место свойство ква-

зилокальности, заключающееся в том, что основной 

вклад в значение величины mp вносят те dj, индексы 

которых мало отличаются от индекса p. Это важное 

общее свойство и оправдывает в ряде случаев ис-

пользование вместо интерполяционных аппрокси-

мирующих сплайнов. 

Набор величин dj и формулы (24) вместе с (23) 

полностью определяют решение системы (4), и оста-

лось задать d0, dn, которые ранее не были определены. 

Это может быть сделано различными способами, ко-

торые обусловлены требованиями к выбранному ва-

рианту интерполяционного сплайна.  

Возможен такой способ задания дополнитель-

ных условий. Продолжив формально сплайн на 

один интервал влево и вправо, считаем, что вели-

чины m–1, mn+1 имеют нулевые значения. Значения 

же интерполируемой функции в точках t = –0.5 и  

t = n+0.5 определим с использованием формул 

линейной экстраполяции, положив, что f–1 = 2f0 – f1, 

fn+1 = 2fn–1 – fn–2. В таком случае добавляемые 

уравнения (5) будут иметь в правых частях сле-

дующие значения: d0 = 8(f1–f0), dn = 8(fn–1 – fn–2), 

которые получаются из значений интерполируе-

мой функции по тем же формулам, что и осталь-

ные величины правой части системы линейных 

уравнений (4). 

Другой способ задания величин d0, dn может быть 

осуществлен следующим образом. После того как оп-

ределены величины { }
0

n

jm  через параметры { }
0

,
n

j
d  

мы можем считать, что значения сплайна в крайних 

точках интервала [0, n] получаются линейной ин-

терполяцией по паре ближайших к этим точкам зна-

чений. Эти условия дают S2(0)=1.5f0–0.5f1, а 

S2(n)=1.5fn–0.5fn–1. Используя эти условия, из фор-

мул типа (3) получаем, что должны быть выполнены 

условия 

2 0 1 0 0 1

2 1 1 1

3 1
(0) 1.5 0.5 ,

8 8

3 1
( ) 1.5 0.5 .

8 8
n n n n n

S m m f f f

S n m m f f f− − −

= − − + = −

= + + = −

 (27) 

Так как все mp являются линейными комбина-

циями величин { }
0

,
n

jd  то из полученных условий 

(27) может быть получена система двух линейных 

уравнений на величины d0, dn. Очевидно, что такой 

способ менее удобен, чем приведенный выше метод 

задания величин d0, dn непосредственно с использо-

ванием методики продолжения сплайна тем или 

иным способом вне основного рассматриваемого 

интервала. Возможны также и иные принципы оп-

ределения граничных условий. Примеры такого ро-

да дополнительных условий можно найти, напри-

мер, в монографии [1].  

 
Заключение 
Метод решения конечных систем линейных 

уравнений с теплицевой матрицей, изложенный в 

этой работе на примере трехдиагональной матрицы, 

в действительности носит общий характер, так как 

может быть использован и для теплицевых матриц с 

большим числом отличных от нуля диагоналей.  

Другой общий метод обращения конечных теп-

лицевых матриц, отличный от рассмотренного в 

этой работе, содержится в монографии И.Ц. Гохбер-

га и И.А. Фельдмана [2], посвященной методам ана-

лиза уравнений в свертках. При получении резуль-

татов по обращению конечных теплицевых матриц 

существенно то свойство, что многочлены типа (10) 
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не имеют корней на единичной окружности, что в 

рассмотренном нами случае легко проверяется.  

Еще один известный метод, который может быть 

применен для решения трехдиагональных ленточных 

систем уравнений, необязательно имеющих теплице-

ву форму, использует алгоритм прогонки [1]. В об-

щем случае такой алгоритм позволяет находить ре-

шения без возможности построения явных аналити-

ческих выражений. При этом система уравнений от-

личается от используемой в данной работе (5). 

Использованный в рамках рассмотренной выше 

схемы решения трехдиагональной теплицевой сис-

темы уравнений метод основан на свойствах корней 

многочленов Q2(z), которые связаны с многочлена-

ми Эйлера–Фробениуса. Эти многочлены изучались 

в работе [3] в связи с задачами функциональной ин-

терполяции. Эти же многочлены, в рамках подхода, 

отличного от использованного в работе [3], рас-

сматривались в задаче построения периодических 

сплайнов на равномерной сетке [4]. 

Неоднородная система уравнений с трехдиаго-

нальной теплицевой матрицей может рассматри-

ваться как дискретный аналог задачи для неодно-

родного обыкновенного дифференциального урав-

нения второго порядка, решения которого удовле-

творяют некоторым краевым условиям.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

В связи с этой аналогией заметим, что изложенный 

выше метод решения систем линейных уравнений дает 

дискретный аналог не только для решений обыкно-

венного дифференциального уравнения, но и методику 

нахождения дискретного аналога функции Грина. 

Действительно, если задавать правые части рассмат-

риваемой системы в виде dj = δj, k (здесь δj, k – символ 

Кронекера), то из формул (23) с соответствующими 

значениями для m0, mn можно получить явные выра-

жения для дискретного аналога функции Грина. 
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