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We have solved the shear flow stability problem of compressible electrically con-
ducting fluid (plasma) in a magnetic field. A comparative analysis is made of the
influence of different boundary conditions on shear flow stability. We consider the
problems for flows in an unbounded medium, a flow between fixed walls, as well
as in the presence of such a wall on one side of the shear flow only. Shear flow
velocity profiles are treated both in the form of a tangential discontinuity and as
being described by a hyperbolic tangent function. For the case of an unbounded flow
with a velocity vortex sheet, analytical solutions are found; for all other cases, the
solutions are found numerically. Problems are solved for two different positions of
the tangential wave vector of oscillations and magnetic field kt ⊥ B0 and kt ‖ B0.
For shear flows bounded by a fixed wall we found an unstable mode of oscillations
produced by the wave, reflected from the wall and transmitted through the shear
layer.

1. Introduction

The study of the instability of shear flows of fluids and gases (Kelvin-Helmholtz
instability) has been and is the subject of scrutiny for many investigators. Such
flows are of widespread occurrence in many regions, both on the Earth and in space
plasmas (Dungey 1955 , Parker 1964 ). Analytical treatments devoted to this topic
are usually based on models of the medium in which the shear layer is regarded
as a vortex sheet of the shear flow velocity profile (Landau 1944 , Syrovatsky 1954
, McKenzie 1970 ). With the advance of computer technology, an ever increasing
number of publications appeared, in which perturbations of shear flows with a
smooth velocity profile were calculated (Michalke 1964 , Moskvin and Frank-Kame-
netsky 1967 ). Among them, publications (Blumen 1970 , Blumen et al. 1975 ,
Drazin and Davey 1977 ) deserve mention, which address the shear flow instability
of an unbounded fluid flow. A significant number of publications are devoted to the
study of plasma shear flows in the presence of an external magnetic field. Such work
was stimulated mostly by problems related to solar wind flow around the Earth’s
magnetosphere (McKenzie 1970 , Miura and Pritchett 1982 , Mishin and Morozov
1983 ), and to cometary plasma tails (Ray and Ershkovich 1983 ), as well as to the
velocity difference between flows inside the solar wind itself (Parker 1964 ).

In each of the cited references, boundary conditions far from the shear layer in
analytical problems were specified to ease the analysis of the resulting solutions; as
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regards numerical problems, this was dictated either by the convenience of the nu-
merical calculation itself or by a possibility of comparing their results with findings
of previous analytical work. Furthermore, boundary conditions can be specified in
different ways. The authors of (Blumen et al. 1975 , Drazin and Davey 1977 ) con-
sidered the shear flow of an unbounded fluid. The absence of oscillations arriving
at the shear layer is a natural boundary condition for unstable modes in such a
problem. In other words, far from the shear layer there are only waves escaping
from it.

The authors of (Miura and Pritchett 1982 , Miura 1992 ), for a certain identical
distance on each side of the shear layer, required that the normal oscillation velocity
component is vanishing. In other words, the presence of solid walls was assumed.
There are some works in which the problem of shear layer instability was considered
at the presence of the wall on one side of the shear layer (Kolykhalov 1984 ). The
set of parameters of the medium and of the oscillation characteristics considered
in different problems is usually different. Besides, results obtained in them are
presented differently. It is therefore not possible to identify the influence of boundary
conditions on shear flow stability by comparing results from different work.

In this paper we investigate by using a unified approach the influence of the
aforementioned boundary conditions on shear flow stability of a conducting fluid
(or plasma) in the presence of a magnetic field. Let the coordinate axis y be directed
along the velocity direction of the flow stratified in coordinate x; next, we introduce
the axis z to complement the coordinate system to a right-handed one (see Fig.1).
We shall consider the perturbed quantities in the form ∼ f(x) exp{i(kyy+kzz−ωt)},
where ω is a wave frequency of single Fourier-harmonic. We define the tangential
wave vector as kt = (ky, kz). Let us consider two types of oscillations. The equation
of oscillations of the first type, the tangential wave vector of which is normal to the
magnetic field direction, is similar to the equation describing shear flow oscillations
of an inviscid compressible fluid (Blumen et al. 1975 , Drazin and Davey 1977 ).
For the oscillations of the second type, the angle between the directions of the
tangential wave vector and the magnetic field is different from π/2. In this case
the presence of a magnetic field plays its special role and this role increases with
the decreasing angle. In this paper we consider the oscillations, the tangential wave
vector of which is parallel to the magnetic field. In this manner we investigate two
limiting cases between which all possible situations are realized.

Calculations that are performed in this paper, mostly refer to shear flow with a
velocity profile of the form of hyperbolic tangent function. To gain a better under-
standing of the resulting numerical solutions, for each type of boundary conditions
we solved the flow stability problem with a vortex sheet in the velocity profile which
allows us to advance sufficiently far analytically.

2. Model of the medium and basic equations

Let us consider the model of the medium presented in Fig.1. We choose the velocity
profile of shear flow along the axis x such that v0(x) → ±v̄0 when x → ±∞.
The other parameters of the medium: density ρ0, pressure P0, and magnetic field
strength B0 = (0, By, Bz) will be considered homogeneous. The system of equations
of ideal magnetohydrodynamics, linearized for small perturbations, has the form

ρ0(
∂v

∂t
+ v0∇v + v∇v0) = −∇P +

1

4π
[curlB × B0],
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∂B

∂t
= curl([v0 × B]+[v × B0]), (2.1)

∂P

∂t
+ v0∇P + γP0divv = 0,

where the quantities v,B, and P refer to the perturbation field, and γ is the adia-
batic index. The system of equations (2.1) can be reduced to a single equation for
the normal (along the axis x) component of the displacement of oscillating fluid
which we denote as ζ: vx = dζ/dt = ∂ζ/∂t+ (v0∇)ζ. On expanding the total oscil-
lation field in terms of Fourier-harmonics of the form exp[i(kyy + kzz −ωt)] for the
displacement velocity along the axis x, we have vx = −iω̄ζ, where ω̄ = ω − (ktv0)
is the oscillation frequency modified by Doppler effect, and kt = (ky, kz) is a
tangential wave vector. An equation for ζ has the form (Duhau and Gratton 1975):

∂

∂x

Ω2

K2

∂ζ

∂x
− Ω2ζ = 0, (2.2)

where

Ω2 = ω̄2 − (ktA)
2
,

K2 = k2
t − ω̄4

ω̄2(s2 + A2) − s2(ktA)
2
. (2.3)

Here s2 = γP0/ρ0 is the velocity of sound squared, and A = B0/
√

4πρ0 is the
Alfven velocity. The components of a perturbed magnetic field are expressed in
terms of ζ by the relations

Bx = i(ktB0)ζ,

By =
(k2

t − K2)B0y − ky(ktB0)

K2

∂ζ

∂x
, (2.4)

Bz =
(k2

t − K2)B0z − kz(ktB0)

K2

∂ζ

∂x
,

and perturbed pressure

P = γP0

ω̄2[ω̄2 − (ktA)2]

K2[ω̄2(A2 + s2) − (ktA)2s2]

∂ζ

∂x
. (2.5)

Let the variables be represented as dimensionless; to do this, we follow the nomen-
clature used in (Blumen 1970 , Blumen et al. 1975 ). Nomenclature: α = kta is the
dimensionless tangential wave vector, c = ω/(ktv̄0 cos ϕ) is the oscillation phase
velocity that is dimensionless for the flow velocity v projected onto the direc-
tion kt, and ϕ is the angle between the positive direction of the axis y and the
vector kt. We introduce the Mach number M = v̄0 cos ϕ/s determined from the
projection of v onto the direction kt (see Fig.1), and a modified Mach number
M̄ = M

√

β/(1 + β) = v̄0 cos ϕ/
√

s2 + A2 inferred from the velocity of magne-
tosound. The parameter β = s2/A2 is proportional to the ratio of thermal pressure
P0 to magnetic field pressure B2

0/8π. Let us consider two limiting cases with a dif-
ferent mutual orientation of the vectors kt and B0. When kt ⊥ B0 ( ψ − ϕ = π/2,
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see Fig.1), equation (2.2) becomes
(

(c − u)2

M̄2(c − u)2 − 1
ζ ′

)′

+ α2(c − u)2ζ = 0, (2.6)

which corresponds to the equation used in (Blumen et al. 1975 , Drazin and Davey
1977 ), developed for the displacement ζ. In (2.6) the prime denotes the derivative
with respect to a dimensionless coordinate ξ = x/a, where a is the characteristic
scale of variation of the sheared flow profile (see Fig.1) which is described by the
function u(ξ) = v0(ξ)/v̄0, and v̄0 is the half-difference of the velocity profile. Letting
the magnetic field strength tend to zero, we obtain M̄ = M , and letting it tend to
infinity, we have M̄ → 0, which corresponds to an infinite velocity of magnetosound.
In the other limiting case kt ‖ B0 (ψ = ϕ), equation (2.2) reduces to

[(

1 + β +
β

M2(c − u)2 − 1

)

ζ ′
]′

+ α2
[

M2β(c − u)2 − 1
]

ζ = 0. (2.7)

In subsequent calculations we have to use the expression for total perturbed
pressure which when kt‖B0 is related to the displacement ζ by the relation

P̃ ≡ P +
B0B

4π
= −ρ0A

2

(

M2β(c − u)2

M2(c − u)2 − 1
+ 1

)

ζ ′. (2.8)

When β → ∞, equations (2.6) and (2.7) coincide, describing a usual hydrodynamic
flow.

3. Boundary conditions

For formulating the problem of generation of unstable oscillations described by
equations (2.6),(2.7), these must be supplemented by corresponding boundary con-
ditions. In the presence of a solid wall at a certain distance ∆ from the point x = 0,
a natural requirement on it is the condition of impermeability. This is equivalent
to the vanishing of the vx–component of the oscillation velocity on the wall (or
ζ(∆) = 0).

We next consider the case of an infinite medium. Away from the shear layer on
the asymptotics |x| ≫ a the medium is homogeneous. The solution of equation
(2.2), which can be sought here in the form

ζ = ζ̄ exp(ikxx), (3.1)

gives a dispersion equation that defines the function ω(k), where k = (kx, ky, kz) is
a total wave vector of oscillations. Two variants of boundary conditions are possible
here. 1) If for the oscillations under consideration the medium at the asymptotics
is opaque (for the neutral mode ci ≡ Im(c) = 0 this is equivalent to the condition
k2

x = −K2 < 0), the solution should be chosen, the amplitude of which decreases
exponentially with the distance from the shear layer. 2) If the medium is transparent
(for the neutral mode k2

x = −K2 > 0), then the radiation condition should be
imposed when |x| → ∞. The radiation condition is defined by the sign of the
x-component of the group velocity of oscillations vgx = ∂ω/∂kx.

For unstable oscillations (ci > 0), both kx and vgx become complex. In this
case, formally for any weakly unstable oscillations, we may introduce the notion of
the waves escaping from the shear layer, in which Re(vgx) > 0 when x > 0, and
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Re(vgx) < 0 when x < 0. In accordance with the equation for energy flux

∂W

∂t
+

∂

∂x
(vgxW ) = 0,

which holds far from the shear layer |x| ≫ a, for monochromatic unstable (∂W/∂t >
0) oscillations the relation k+

xi ≡ Imkx > 0 holds for x > 0, and k−

xi < 0 for x < 0.
This warrants an exponential decrease of the amplitude of unstable oscillations
running away from the shear layer. Here W is quadratic (in amplitude) density of
wave energy. The oscillations considered here represent magnetosonic waves. The
expression for energy density of these waves for |x| ≫ a has the form (Anderson
1963 )

W = |ζ|2ρ0

ωk2

k2
xω̄3

(2ω̄2 − k2(A2 + s2))(ω̄2 − (ktA)2).

Thus the radiation condition for unstable oscillations is equivalent to choosing
the solution that decreases exponentially in amplitude with the distance from the
shear layer. We must remark, however, that such a correspondence holds only for a
well- defined group velocity. The notions of the well- and ill- defined group velocity
are introduced in the Appendix in which we consider an example where the use of
an ill-defined group velocity in the boundary condition leads to an erroneous result.

Next we present the asymptotic expressions for the group velocity which we
used in a numerical calculation in order to check the boundary conditions used for
correctness. In the case of kt ⊥ B0, for the group velocity we have

vgx = s
1 + β

β

kx

kt

M2

(c − u)
, (3.2)

where kx = ±ktM(c − u)
√

β/(1 + β), and in the case of kt‖B0

vgx =
s

β

kx

kt

[

M2(c − u)2(1 + β) − 1
]2

(c − u)3 [M2(c − u)2(1 + β) − 2]
, (3.3)

where

kx = ±kt

√

(M2(c − u)2 − 1)(M2β(c − u)2 − 1)

M2(c − u)2(1 + β) − 1
, (3.4)

the ± signs are chosen according to boundary conditions (so that Re(vgx) > 0 when
x > 0, and Re(vgx) < 0 when x < 0).

As has been pointed out in the Introduction, three kinds of boundary conditions
are possible, which are found in some or other variation in almost all shear flow
stability problems. If the medium is infinite, then from the radiation condition for
unstable oscillations we have the following boundary conditions when x → ±∞:

∂ζ

∂x
= ikxζ, (3.5)

and the sign of kx is chosen such that Re(vgx) > 0 whenx → ∞, and Re(vgx) < 0
when x → −∞. If a fixed wall is on one side of the shear layer (at the point
x = −∆ for example), and on the other side the medium is infinite, then the
boundary conditions have the form

{

∂ζ/∂x = ikxζ , x → ∞,
ζ = 0, x = −∆.

(3.6)
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The sign of kx is chosen here such that Re(vgx) > 0. If the fixed walls are on either
side of the shear layer (at the points x = ±∆), then the boundary conditions have
the form

ζ(x = ±∆) = 0. (3.7)

The boundary conditions for the components of a perturbed magnetic field and
perturbed pressure are expressed in terms of ζ in accordance with the relations
(2.4),(2.5).

4. Shear flow instability in an infinite medium

Let us consider the instability of shear layer oscillations in the absence of bounding
walls. It should be noted that the presence of a magnetic field manifests itself dif-
ferently in the two limiting cases under consideration. In the case of kt ⊥ B0 the
magnetic field can be taken into account simply by overdetermining the Mach num-
ber M̄ . In this case equation (2.6) exactly corresponds in its form to the equation
describing a usual compressible hydrodynamic flow. On the contrary, in the case of
kt ‖ B0 the role of the magnetic field does not imply a simple overdetermination
of the individual characteristics of the flow but adds qualitatively new effects.

4.1. The case of kt ‖ B0

Oscillations of this kind are less well understood in general compared to perturba-
tions with kt ⊥ B0. Such references as (Syrovatsky 1957 , Chandrasekhar 1962 )
deserve mention, where the problems of shear flow stability in an infinite medium
are considered. To gain a more complete understanding of the results from a sub-
sequent numerical investigation of flows with the velocity profile ∼ tanh(ξ) we now
solve the problem of flow stability with a velocity profile in the form of a tangen-
tial discontinuity v0(x) = v̄0sign(x), which in equations (2.6), (2.7), (3.2) and (3.3)
corresponds to

u(x) =

{

1, x > 0,
−1, x < 0.

(4.1)

We seek the solution of (2.7) in the form (3.1) in each of the regions. As the
matching conditions, we adopt the requirement of continuity of the displacement ζ
and of total perturbed pressure P̃ (2.8) on the interface plane x = 0. As a result,
we obtain the dispersion equation

√

(M2(c − 1)2(1 + β) − 1)(M2β(c − 1)2 − 1)

M2(c − 1)2 − 1
− (4.2)

√

(M2(c + 1)2(1 + β) − 1)(M2β(c + 1)2 − 1)

M2(c + 1)2 − 1
= 0.

On transferring one of the terms to the left-hand side of (4.2) and squaring the two
sides, after some manipulation, we obtain

c4M4 − 2c2M2(1 + M2) +

(

M4 − 2M2 +
2

1 + β

)

= 0. (4.3)

The solution of this equation has the form
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c2 =
1 + M2 ±

√

4M2 − (1 − β)/(1 + β)

M2
. (4.4)

When β > 1 the expression under the radical in (4.4) is larger than zero. The minus
sign of the radical in (19) corresponds to unstable oscillations (ci > 0), provided
that the condition (see Parker 1964 , Sen 1964 , McKenzie 1970 )

1 −
√

(β − 1)

(β + 1)
< M2 < 1 +

√

(β − 1)

(β + 1)
. (4.5)

is satisfied. When β → ∞ the inequality on the right-hand side of (4.5) gives a well-
known instability criterion of hydrodynamic shear flows (Landau 1944 ): M2 < 2.
In proceeding to the limit of an incompressible medium (M → 0), leaving the
quantity M2

A = M2β finite, from the inequality on the left-hand side of (4.5) we
obtain another well-known instability criterion of incompressible conducting fluid
in a magnetic field (Syrovatsky 1957 , Chandrasekhar 1962 ): MA > 1.

When β < 1 the expression under the radical in (4.4) is less than zero for M2 <
M2

0 = (1−β)/4(1+β). Furthermore, it appears at first glance that one of the roots
must represent an unstable mode of oscillations. Conceivably it is this root that
was detected in (Sen 1964 ), where the solution was found for unstable oscillations
for β → 0. However, a detailed analysis of calculations that yield the dispersion
equation (4.4) (see the Appendix) shows that the formal solution, describing the
instability when β < 1, is fictitious, since it does not correspond to the necessary
boundary conditions for |x| → ∞. Thus, if on both asymptotics the solution has
the form of a wave escaping from the shear layer (which is determined by the
choice of the sign of Re (vgx)), then when β < 1, on one of the asymptotics, it
is exponentially decreasing, and on the other, exponentially increasing. This is a
consequence of the fact that the group velocity of the oscillations is ill-defined, and
in choosing the boundary conditions, the requirement of the decreasing amplitude
of the solution on both asymptotics is better to use. This requirement is not satisfied
by the solutions of (4.2) for β < 1. This means that in an infinite medium in which
β < 1 there are no unstable oscillations of the shear flow under consideration.

Let us now consider the solution of equation (2.7) for a flow with the velocity
profile

u(ξ) = v0(x)/v̄0 = tanh(x/a) ≡ tanh(ξ) (4.6)

and with the boundary conditions of (3.5). We solve it numerically. First we choose
the integration contour parallel to the real axis in the lower half-plane of the com-
plex variable ξ such that it passes below all singularities of equation (2.7) which
corresponds to the resonance interaction of different modes of MHD oscillations
(Southwood 1974 , Leonovich 2001 ). Such an integration contour was chosen in
(Blumen et al. 1975 ) for solving a similar problem for hydrodynamic flow.

Since for unstable oscillations the singularities of equation (2.7) lie in the up-
per half-plane of a complex ξ, it would appear that it would suffice to perform
integration along the real axis. However, such an approach is applicable only for
oscillations with a sufficiently large value of the growth rate. For such oscillations,
the singularities of equation (2.7) are far from the real axis. In the case of weakly
unstable oscillations the singularities approach the real axis. Therefore, integrating
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along the real axis gives an error that can turn out to be larger than the desired
value of the growth rate ci itself. The boundary conditions of (3.5) are formulated
for ξ → ±∞. In a numerical integration, they should be placed at a finite distance
from the shear layer where the flow becomes virtually homogeneous, and the so-
lution of (2.7) has the form (3.1). In our calculations we imposed the boundary
conditions for ξ = ±5. A further moving-off of the initial and final points of the
integration interval does virtually not influence the ultimate result.

The resulting equation is illustrated by Fig.2, showing the distribution of contours
of the growth rate ci in the plane (α,M). Fig.2a corresponds to the value of β = 10,
and Fig.2b corresponds to β = 1.1. Note that the existence domain of unstable
oscillations with kt ‖ B0 is bounded on the side of small values of M . The existence
interval of unstable long-wavelength perturbations (α → 0) is determined by the
condition (4.5) obtained within the tangential discontinuity approximation.

Stabilization of shear flow oscillations with parameters outside of this interval
is due to the influence of compressibility of the medium and of magnetic field
force line tension (Maxwellian tensions). Difference of the influence of a magnetic
field on subsonic (M < 1) and supersonic (M > 1) flows it is possible to explain
as the follows. Compressibility of medium does not influence practically on the
subsonic surface oscillations, and magnetic field influence only through Maxwellian
tensions. Influence of compressibility of medium is great in domain of supersonic
radiating oscillations. The effect of amplification of grows rate due to decrease of
compressibility is more strong than its weakening due to Maxwellian tensions.

4.2. The case kt ⊥ B0

This problem, as pointed out above, is analogous to the stability problem of a usual
hydrodynamic flow. Its solution for a flow with a velocity profile in the form of a
tangential discontinuity is similar to the solution of the problem considered in the
preceding section for the case kt ‖ B0. The solution for unstable radiating modes
of oscillations and the domain of their existence are defined in this case by the
expressions (4.4) and (4.5), in which we should put β = ∞.

To seek the solution in the problem with the velocity profile of (4.6) we integrate
numerically equation (2.6) with the boundary conditions of (3.5). Fig.3 presents the
distribution of contours of the growth rate ci in the plane (α, M̄). It corresponds to
the distribution obtained in (Blumen et al. 1975 ). The region M̄ < 1 is determined
by the unstable surface mode of oscillations, the neutral solution for which was
obtained in (Blumen 1970 ). The region M̄ > 1 is determined by the unstable
radiating mode of oscillations (Landau 1944 ). As is evident from the figure, within
the tangential discontinuity approximation (α → 0) the existence domain of the
radiating mode-associated unstable oscillations is bounded by the limiting value
of M̄ < M̄c =

√
2 which gives the expression (4.5) in the limit β → ∞. For

hydrodynamic flows this condition for radiating modes of oscillations was obtained
in (Landau 1944 ). Stabilization of the oscillations when a critical value of M̄c is
exceeded, is caused by the compressibility of the medium determined, among other
things, by magnetic field pressure.

5. Instability of shear flow bounded by a single fixed wall

From general considerations it is obvious that the presence of a solid wall must
lead to a change of the mode of unstable oscillations. These changes would affect to
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a greater extent the radiating modes of oscillations which are reflected from such
a wall. Furthermore, the location of the wall becomes an independent factor that
determines the distribution and value of the oscillation growth rate. Let us consider,
as done in the problem with infinite flow, two limiting cases.

5.1. The case kt ‖ B0

First we consider a shear flow in the form of a tangential discontinuity (4.1), at a
distance x = −∆ from which the solid wall is located. This problem is described
by equation (2.7) with the boundary conditions of (3.6). In the semispace x > 0 we
seek the solution in the form of an escaping wave ζ = ζ̄ exp(ikxx), and on the side
of the wall - in the form of the sum of the wave escaping from the layer and the
wave reflected from the wall:

ζ = ζ1 exp(ikxx) + ζ2 exp(−ikxx). (5.1)

From the condition of continuity of the displacement ζ and total perturbed pressure
P̃ (2.8) in the plane x = 0 we obtain the dispersion equation

M2(c + 1)2(1 + β) − 1

M2(c − 1)2(1 + β) − 1

M2β(c + 1)2 − 1

M2β(c − 1)2 − 1

M2(c − 1)2 − 1

M2(c + 1)2 − 1
= − tan2(k−

x ∆),

where k−
x is determined by (3.4) when u = −1. The numerical solution of this

equation is presented in Fig.4.
Fig.4a plots the dependence ci(M) for β = 1 and for five different values of the

parameter κ = kt∆ = 0.1, 0.5, 1, 5, and 10. All of the curves have a limiting value
of Mc, below which the oscillations are stable. The presence of the lower critical
value of Mc, as in the case of an infinite medium, is due to the stabilizing influence
of Maxwellian tensions. Small-scale oscillations of ci(M) occur for such values of M
where the argument of the tangent on the right-hand side of the dispersion equation
becomes large (i.e. |k−

x ∆| ≫ 1).
By varying the magnetic field strength (the parameter β), one can follow the way

in which the critical value of Mc varies. Fig.4b plots the curves ci(M) for κ = 1
and for five different values of β = ∞, 10, 1, 0.5, and 0.2. When β = ∞ (the
regime of hydrodynamic flow) there is no critical value of Mc. When β 6= ∞ there
appears a critical Mc that is shifted with a decrease of β to M = 1. When β < 1
the existence domain of unstable oscillations breaks down into two. One of them,
corresponding to the surface mode, is enclosed between two critical points Mc < 1.
The other region corresponds to the radiating mode and is bounded at the left by
the point Mc > 1. It should be noted that, unlike the infinite flow (without walls),
no complete stabilization of oscillations sets in for any, arbitrary small, values of β.

The numerical solution of equation (2.6) for a flow with the velocity profile (4.6)
and the boundary conditions (3.6) (when ∆/a = −20) is presented in Fig.5. The
cases a and b correspond to different values of the parameter β = 10 and β = 1.
When α → 0 the existence domains of unstable oscillations correspond to the ones
which were obtained in the problem of tangential discontinuity instability. The
presence of a fixed wall results in two considerable differences from the case of
unbounded shear layer. Firstly, unlike the infinite flow, the existence domain of
unstable oscillations of a shear flow, in the presence of a single wall, is not bounded
in M above. Secondly, as is seen from this figure, an additional broad region of
unstable oscillations with a supersmall growth rate ci < 0.01 was formed. The
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formation of this region is associated with oscillations reflected from the wall and
transmitted through the shear layer. Such oscillations were absent in the infinite
medium. By analogy with the surface and radiating modes of oscillations, this
unstable mode can be referred to as the reflective mode.

This can be given the following interpretation. It is known that the tangential
discontinuity generates, in addition to unstable oscillation modes, the radiating
neutral mode (Miles 1957 , Ribner 1957 ). In particular, it results to the phenomenon
of superreflection of oscillations incident on the shear layer. In other words, the
waves that are reflected from the shear layer and transmitted through it have an
amplitude larger than the incident wave amplitude. This is taking place just in
the range of values of M > Mc, for which in the infinite case (without wall) the
tangential discontinuity is stable. The presence of the wall leads to the fact that
there appears a wave reflected from it, which is incident on the shear layer and is
reflected from it with a large amplitude. With a multiple recurrence of this process,
there arises an effective amplification of the oscillations.

An increase in magnetic induction causes stabilization of the surface modes to
a much greater extent compared to the that for radiating and reflective modes. A
definite periodicity in the distribution of reflective mode growth rate is associated
with the formation of standing waves, partially captured between the wall and shear
layer. The further the wall is located from a shear layer, the larger is the number
of unstable standing waves that can be excited by the shear layer.

5.2. The case kt ⊥ B0

As it has been told, this oscillation regime is similar to oscillations in a usual
hydrodynamic flow. The only distinction implies that a modified Mach number M̄
is used, which takes into account the presence of magnetic pressure. The solution for
a flow with a velocity profile in the form of a tangential discontinuity is represented
by curve 1 in Fig.4b, corresponding to β = ∞. For the flow with the velocity profile
(4.6) we solve numerically equation (2.6) with the boundary conditions (3.6). Fig.6
presents the distribution of the growth rate ci in the presence of a solid wall at a
distance ξ = −15. The major difference from the case of an infinite medium, both
for flows with a tangential velocity discontinuity and for flows with a velocity profile
of the form (4.6), implies the disappearance of the critical value of M̄ = Mc. The
infinite flow (without wall) would go stable when this value is exceeded. The domain
of existence of the reflective mode of oscillations in this case increases considerably
due to the appearance of unstable oscillations with a supersmall growth rate.

As has already been pointed out, this is likely to be accounted for by an effective
instability of the radiating mode of oscillations reflected from the wall and transmit-
ted through the shear layer. Unstable oscillations in this region are not stabilized
with increasing magnetic field strength. This means that stabilization of such os-
cillations can only occur under the action of magnetic field force line tension. It is
interesting to note that this region disappears as one passes to a limiting case of
tangential discontinuity (α → 0), in both the presence, and absence of a magnetic
field.

6. Shear flow instability between two bounding walls

The dependence ci(α) for separate values of the Mach number M and the parameter
β was investigated in (Miura and Pritchett 1982 , Miura 1992 ) in shear flows with
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a velocity profile of the form (4.6). Boundary conditions in the cited references
were chosen in the form of two solid walls on both sides of the shear layer, and
integration was performed along the real axis ξ. With such an approach, as pointed
out above, regions with a small value of the growth rate are described with a large
error. Using the same approach as in the two previous sections, we now consider
two limiting cases.

6.1. The case kt ‖ B0

Let us consider a shear flow in the form of a tangential discontinuity between two
solid walls (x = ±∆). In this case the solutions of (2.6) that satisfy the boundary
conditions of (3.7), are sought on both sides of the shear layer in the form (5.1).
Matching the displacement ζ and total perturbed pressure P̃ (2.8) for x = 0 gives
a dispersion equation

M2(c + 1)2(1 + β) − 1

M2(c − 1)2(1 + β) − 1

M2β(c + 1)2 − 1

M2β(c − 1)2 − 1

M2(c − 1)2 − 1

M2(c + 1)2 − 1
=

tan2(k−
x ∆)

tan2(k+
x ∆)

,

where k±
x are determined by (3.4) for u = ±1, respectively. The numerical solution

of this equation is presented in Fig.7. Fig.7a plots ci(M) for β = 1 for three different
values of κ = kt∆ = 0.1, 1, and 5. The existence domains of unstable oscillations
are bounded on both sides. With a sufficient distance of the walls from the shear
layer, there is a clear-defined periodicity in the distribution of the oscillation growth
rate associated with the formation of standing waves. As in the case with a single
wall, there are small-scale oscillations of the growth rate associated with an increase
of the arguments of the tangents to values of |k±

x ∆| ≫ 1.
The periodicity in the distribution of the oscillation growth rate can be given the

following interpretation. Between the walls there arise standing waves with a well-
defined eigenfrequency dependent on the tangential wave vector of oscillations and
on the distance between the walls. With a change of the flow parameters (Mach
number M), the various harmonics of standing waves are at resonance with the
neutral mode of oscillations. Furthermore, there is a maximum in the distribution
of the oscillation growth rate. If the walls are sufficiently close to each other, then
even the frequency of the fundamental eigen- harmonic of standing waves becomes
higher than the frequency of the neutral mode emitted by the shear layer. In this
case, there are no unstable radiating modes, and the growth rate is determined only
by the unstable surface mode.

Let us consider the growth rate behavior for different values of the parameter β in
order to be able to follow the way in which the magnetic field strength influences the
value of the critical Mach number Mc. Fig.7b plots the dependencies of the growth
rate ci(M) at κ = 1 for different values of β = ∞, 10, 1, and 0.1. When β = ∞,
corresponding to the hydrodynamic flow case, the lower critical Mach number is
absent. With a decrease of β, it is shifted toward M = 1, and the existence domain
of the surface mode of unstable oscillations decreases. The walls in this case are
sufficiently close to each other, which manifests itself in complete stabilization of
the radiating mode of oscillations. However, at no, arbitrary small, values of β does
the flow become entirely stable.

The numerical solution of equation (2.6) for a flow with a velocity profile of the
form (4.6) between two fixed walls (∆/a = ±10) is presented in Fig.8. The contour
distribution of the growth rate ci in Fig.8a,b corresponds to the values of β = 10
and β = 1. With a decrease of β, the existence domain of the unstable surface mode
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becomes narrow, and the absolute value of the growth rate decreases. The existence
domains of the radiating and reflective modes make up separate bounded islands.
When the beta decreases the size of these islands decreases also. The domain of
existence of the reflective mode of oscillations decreases much more than that of
the radiating mode. However, the shear flow does not become fully stable for any
values of β. As in the case with a single wall, the unstable reflective mode disappears
in the limit of tangential discontinuity (α → 0). However, as opposed to the flow
with one bounding wall, in the case of a flow bounded by two walls as one passes to
the tangential discontinuity approximation the radiating mode disappears as well.

6.2. The case kt ⊥ B0

The solution of equation (2.6) for a flow with a velocity profile in the form of
a tangential discontinuity is represented by curve 1 in Fig.7b, corresponding to
β = ∞. It describes the unstable surface mode of oscillations bounded at the right
by a critical value of the Mach number Mc = 1. Let us take a look at what would
result if the walls are placed on both sides of the shear flow with a smooth velocity
profile.

We solve numerically equation (2.6) for a flow with a velocity profile of the
form (4.6) and the boundary conditions (3.7). Accurate to overdetermination of the
Mach number M̄ , it describes hydrodynamic flow. The contour distribution of the
oscillation growth rate for distance of the walls from the shear layer ∆/a = ± 20
is presented in Fig.9. In the region where in the infinite flow there are unstable
oscillations of the radiating mode (M̄ > 1), the growth rate distribution has a
quasi-periodic ”island” structure. This applies to a greater degree for the reflective
mode of oscillations. This is explained by the formation of standing waves between
the walls. The growth rate of the radiating and reflective modes has maxima for
harmonics of standing waves whose frequencies are close to the frequency of neutral
mode of oscillations radiated by the shear layer.

As the walls approach the shear layer, the islands of unstable radiation oscillations
disappear first, followed by the disappearance of the region of unstable oscillations
of the surface mode. When the walls approach closer than by ξ ≈ ±1.2, the shear
flow becomes fully stable even in the incompressible limit (M̄ → 0).

Thus we can speak about the stabilizing influence of the walls, between which
the shear flow lies. The fact that the radiating mode of oscillations becomes stable
when the walls come closer together is due to a change in harmonic eigenfrequencies
of the standing (between the walls) waves. The stabilization of the surface mode of
oscillations can be explained as follows. The characteristic scale of unstable oscilla-
tions of the surface mode in the direction across the shear layer, in the presence of
the walls, is determined by the distance between them. If the walls are sufficiently
far from the shear layer, then both the characteristic scale and the region of unsta-
ble oscillations of the surface mode remain virtually the same as in the infinite flow.
As the walls come closer together, this scale decreases. Furthermore, the range of
values of the transverse wave number α and of the Mach number M̄ , at which the
surface mode oscillations become unstable, decreases also. When the walls approach
as much as a scale on the order of the characteristic scale of the shear flow profile,
the flow becomes fully stable.
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7. Conclusion

We now summarize the main results of this study.

1. A comparative analysis of the influence of different boundary conditions on
shear flow stability of compressible fluid in a magnetic field has been carried out.
Two limiting cases of the longitudinal and transverse mutual orientation of the
vectors kt and B0 were considered. In the case of kt ⊥ B0, equation (2.6), describ-
ing the oscillations, coincides in form with the equation describing the oscillations
of a usual hydrodynamic shear flow of inviscid compressible fluid. In the case of
kt ‖ B0, the magnetic field has an additional stabilizing influence at the expense
of Maxwellian tensions.

2. In the case of kt ⊥ B0, in an infinite (unbounded) medium the distribution
of the oscillation growth rate in the plane (α, M̄) is similar to the distribution of
the oscillation growth rate of shear flow of inviscid compressible fluid in the plane
(α,M), where α is a dimensionless tangential wave vector, and M and M̄ are the
usual and modified Mach numbers. In the limit of tangential discontinuity (α → 0)
the oscillations are stabilized when a critical value of M̄ >

√
2 is exceeded.

In the case of kt ‖ B0, an additional influence of Maxwellian tensions manifests
itself in a stabilization of the oscillations when the shear flow velocity difference
is below some minimum critical value. The value of this difference depends on
magnetic field strength. The flow is completely stabilized when the magnetic field
reaches such a value at which β = 1 (β is the ratio of the velocity of sound squared
to the Alfven velocity squared, proportional to the thermal to magnetic pressure
ratio).

3. Shear flow in the presence of a single fixed wall is less stable than in an infinite
(unbounded) medium. For it there disappears the upper critical value of the velocity
difference, and when this value is exceeded, the flow in an infinite medium becomes
stable. Moreover, a new mode of unstable oscillations associated with the wave
reflected from a wall and transmitted through the shear layer arises. Generation of
this unstable mode is explained by a resonance of wave reflected from a wall and
the neutral mode emitted by the shear layer.

The case kt ‖ B0 differs from the case kt ⊥ B0 in that the oscillations, as
in the case of an infinite medium, become stabilized when the shear flow velocity
difference is below some critical value. Therein lies an additional stabilizing factor
that is associated with magnetic field force line tension. However, unlike the infinite
flow, no complete stabilization of the oscillations occurs, whatever the finite values
of the magnetic field strength.

4. The shear flow is the stablest between two fixed walls. The domain of existence
of unstable oscillations in such a shear flow is divided into three bounded regions,
associated with the surface mode, the radiating and reflective modes. The last two
regions have a peculiar island structure when the magnetic field strength is small
enough. Such a structure of the growth rate is associated with the formation of
standing waves between fixed walls. As the walls come closer together, this region
of unstable oscillations disappears. If the walls are closer than ∆ = ±1.2a, then the
flow with kt ⊥ B0 becomes fully stable.

In the case of kt ‖ B0, the action of force line tension leads to a stabilization
of the oscillations when the shear flow velocity difference is below a certain critical
value. However, if the walls are at a sufficient distance from the shear layer, then,
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as in the case of flow with a single wall, a complete stabilization of the oscillations
does not occur, whatever the finite values of the magnetic field strength.
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Appendix: Analyzing the solution for unstable oscillations when

β < 1 in an unbounded medium

If we reverse the sign before the second radical in (4.2), then the form of the
solution (4.4) remains unchanged. Consequently, the solution (4.4) contains roots
corresponding to two different signs before the radicals in (4.2). To determine to
which sign the chosen unstable (when β < 1) solution (4.4) corresponds, we consider
it near the neutral point M = M0, where ci = 0. In this case c2 = 1 + M−2

0 . On

substituting this expression into (3.4), we find that when M0 < M01 =
√√

5 − 2/2
the square of the x–component of the wave vector k2

x > 0, and when M0 > M01

we have k2
x < 0. In the former case the medium is transparent to the waves under

consideration, and this medium is supported by a well-defined notion of the group
velocity, with which wave energy is transferred. By receding slightly along M inside
the region where the imaginary component ci > 0 (M = M0(1−ε) , where 0 < ε ≪
1) appears, we obtain a complex expression for kx. The sign before the radical in
(3.4) should be chosen such that kxi = Im(kx) > 0 when x > 0 and kxi < 0 when
x < 0, which corresponds to the exponentially decreasing (in amplitude) solution
at a larger distance from the shear layer. In this case the signs of the group velocity
correspond to the oscillations which carry the energy away from the shear layer.
However, such a choice of the signs of kx leads to the dispersion equation with like
signs before the radicals, which does not correspond to (4.2).

In the latter case (M0 > M01) the medium is opaque for the oscillations under
consideration, and the choice of the signs of kx is determined at the neutral point
M = M0 by the requirement of an exponential decrease of their amplitude with
a distance from the shear layer. The group velocity for such oscillations is not
determined. If we recede inside the region of M < M0 there appear a positive
imaginary component ci > 0 and the associated small component of the group
velocity Re(vgx). It is easy to verify that, as in the preceding case, the signs of
the group velocity correspond to the oscillations which carry energy away from
the shear layer; however, the signs before the radicals in the dispersion equation
do not correspond to (4.2). These signs can be reconciled only by choosing the
increasing solution on one side of the shear layer, which is in conflict with the
physical statement of the problem.
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Figure .1. Model of the medium, and coordinate system. Designations: a – characteristic
scale of the shear layer, ±∆ – location of the boundaries in the form of walls, v0 and B0

– vectors of the unperturbed velocity and magnetic field of the medium, kt – tangential
wave vector of oscillations.
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Figure .2. Contour distribution for the growth rate (ci ≡ Imc) of the oscillations with
kt ‖ B0 of a sheared MHD flow in an unbounded medium for two values of the parameter
β: a - β = 10, b - β = 1.1. In the domain M < 1 unstable oscillations are associated with
surface mode, and in the domain M > 1 they are associated with radiating mode.
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Figure .3. Contour distribution for the growth rate (ci ≡ Imc) of the oscillations with
kt ⊥ B0 in an unbounded medium. In the domain M < 1 unstable oscillations are
associated with surface mode, and in the domain M > 1 they are associated with radiating
mode.
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Figure .4. Dependence of the growth rate ci(M) of the oscillations with kt ‖ B0 of
a sheared MHD flow with the velocity profile as tangential discontinuity bounded by a
fixed wall on one side of the shear layer. Plots 1-5 corresponds to different values of the
parameters β and κ: a - β = 1, κ = 0.1, 0.5, 1, 5, 10, b - κ = 1, β = ∞, 10, 1, 0.5, 0.2.
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Figure .5. Contour distribution for the growth rate ci of the oscillations with kt ‖ B0 of a
sheared MHD flow bounded by a fixed wall on one side of the shear layer (ξ = 20) for two
different values of the parameter β: a - β = 10, b - β = 1. The bold isolines corresponds to
the surface and radiating modes. Growth rate distribution of the reflective mode is shown
by the thin isolines.
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Figure .6. Contour distribution for the growth rate ci of the oscillations with kt ⊥ B0.
Presented are the unstable oscillations of a sheared MHD flow bounded by a fixed wall
on one side of the shear layer ξ = 15. The bold isolines corresponds to the surface and
radiating modes. Growth rate distribution of the reflective mode is shown by the thin
isolines.
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Figure .7. Dependence of the growth rate ci(M) of the oscillations with kt ‖ B0 of a
sheared MHD flow with the velocity profile as tangential discontinuity between two fixed
walls for different values of the parameters β and κ: a – β = 1, plots 1-3 correspond to the
values of κ = 0.1, 1, 5, b – κ = 1, plots 1-4 correspond to the values of β = ∞, 10, 1, 0.1.
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Figure .8. Contour distribution for the growth rate ci of the oscillations with kt ‖ B0

of a sheared MHD flow between two fixed walls (ξ = ±10) for two different values of the
parameter β: a – β = 10, b – β = 1. The bold isolines corresponds to the surface and
radiating modes. Growth rate distribution of the reflective mode is shown by the thin
isolines.



20 A. S. Leonovich and V. V. Mishin

� ��� ��� ��� ��� � ��� ��� ��� ��� �
�

���

���

���

���

�

���

���

���

� ��� ��� ��� ��� � ��� ��� ��� ��� �
�

���

���

���

���

�

���

���

���

� ��� � ��� �
0

�

���

���

���

���

�

���

���

���
α

B

Figure .9. Contour distribution for the growth rate ci of the oscillations with kt ⊥ B0 of
a sheared MHD flow between two fixed walls ξ = ±20. The bold isolines corresponds to
the surface and radiating modes. Growth rate distribution of the reflective mode is shown
by the thin isolines.


