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a b s t r a c t

A hydromagnetic stability problem is solved for the magnetospheric tail inside the solar wind plasma

flow. A model magnetotail is used in the form of a plasma cylinder which is inhomogeneous over the

radius. For a qualitative analysis of the problem the solution is obtained analytically, in the WKB

approximation. The plasma cylinder boundary is assumed to have the form of a tangential disconti-

nuity. A numeric solution was found for a more realistic model, with the boundary in the form of a

smooth transition layer. This model cannot simulate such a feature of the actual magnetotail as its

being divided into two lobes with opposite magnetic fields. It is capable, however, of simulating the

finiteness of the magnetotail cross-section and the inhomogeneous plasma distribution over the radius.

It is shown, analytically, that a local instability develops in the boundary when the velocity of the

plasma flowing round the magnetosphere exceeds the Alfvén speed at the magnetotail boundary. This

conclusion is supported by a numerical solution of the problem for a model with its boundary in the

form of a smooth transition layer. The instability increment, however, is much smaller in the latter case.

Apart from a local instability of the boundary, unstable global modes are discovered whose amplitude

practically does not vary over the magnetotail cross-section. These modes remain unstable for any,

however, slow velocities of the plasma flowing round the magnetosphere. When the plasma flow

velocity reaches a critical magnitude the global modes of the MHD oscillations become stable. Unstable

global modes may be a source of ultra-low-frequency ð � 1 mHzÞ oscillations observed in the Earth’s

nightside magnetosphere.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Many low-frequency MHD oscillations in the Earth’s and other
solar-system planets’ magnetospheres are associated with a shear
plasma flow instability developing at the magnetospheric bound-
ary (Kelvin–Helmholtz instability) Engebretson et al. (1998).
A number of papers have been devoted to observations of the
oscillations treated as such unstable modes (see Mann and
Wright, 1999; Mann et al., 2002, etc.), and to their theoretical
interpretation (see Southwood, 1968; McKenzie, 1970a; Mills
et al., 1999, etc.). A mechanism related to the resonator for fast
magnetosonic waves in the near-Earth part of the plasma sheet
was proposed and theoretically developed in recent papers
(Leonovich and Mazur, 2005; Mazur and Leonovich, 2006)
for ultra-low-frequency oscillations with a discrete spectrum
(so-called ‘‘magic frequencies’’—0.8, 1.1, 1.6 ymHz) forming in
the magnetosphere. However, part of the wave energy escapes
from this resonator to the solar wind Leonovich and Mazur
(2008). Therefore, a rather powerful source is required to be

present in order to drive the eigen-modes in such a resonator.
Magnetotail instability resulting from the solar wind flowing
around the magnetotail has been suggested as a possible source.

In this paper we will use a rather simple plasma-cylinder
model of the magnetotail in an attempt to calculate theoretically
the increment of such an instability. The majority of the theore-
tical papers deal with models of the medium that have the form
of two homogeneous half-spaces divided by a shear flow layer
(see McKenzie, 1970a; Rankin et al., 1997). Such models allow one
to obtain analytical solutions to MHD equations, which, unfortu-
nately, have a rather weak relation to the real magnetosphere.

Actual magnetospheres are very inhomogeneous, which adds
specific aspects to the conditions for an instability to develop in
such plasma systems. The plasma sheet divides the magnetotail
cross-section into two lobes with directly opposite magnetic field.
This results in both radial and azimuthal inhomogeneity in the
magnetotail. It is also longitudinally inhomogeneous, which
undoubtedly results in certain peculiarities in the instability
development. Unfortunately, no methods have so far been devel-
oped for a rigorous solution of the hydromagnetic stability
problem in two- or three-dimensional inhomogeneous magneto-
tail models (barring the numerical simulation methods). Far from
everything has been done, however, even in problems based on
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one-dimensional-inhomogeneous models. The real magneto-
sphere features a number of properties which have not yet been
addressed, but which can be taken into account even while using
a one-dimensional-inhomogeneous model to solve the problem.

Their essential feature is the presence of resonance surfaces for
the Alfvén and slow magnetosonic waves where MHD oscillation
energy is absorbed (Leonovich and Kozlov, 2009). The instability
develops in the boundary transition layer near the surface where
the parallel component of the MHD-wave phase velocity is equal
to the velocity of plasma flowing round the magnetosphere. The
magnetotail stability is determined by competition between two
effects—an instability developing in the transition layer and MHD
oscillation energy absorbed on the resonance surfaces. Few
papers have so far managed to address these two effects (Fujita
et al., 1996). Those papers also deal with models of the medium in
the form of two half-spaces divided by a transition layer with a
shear plasma flow. One of the half-spaces, simulating the magne-
tosphere, is assumed to be inhomogeneous.

Another feature should be taken into account when modelling
the MHD instability in the magnetosphere in the solar wind
flow—the finite size of the magnetospheric cross-section in the
plasma flow. The problem has been solved in McKenzie (1970b)
for a magnetospheric model in the form of a plasma cylinder. The
plasma in the model magnetosphere, however, was assumed to
be homogeneous, which precluded any resonant coupling of
various MHD modes on the resonance surfaces.

This paper will use an inhomogeneous plasma cylinder model
to solve the magnetotail stability problem. This will allow both
the finiteness of the magnetotail cross-section and the presence of
resonance surfaces for Alfvén and SMS waves to be taken into
account. For a qualitative analysis the problem was solved
analytically for oscillations that could be described using the
WKB approximation over the radial coordinate. The boundary of
the plasma cylinder was assumed to have the form of a tangential
discontinuity. For a more realistic model with the boundary in the
form of a smoothly varying transition layer, the problem was
solved numerically. It turned out that, along with local unstable
modes of the magnetospheric boundary, such a plasma system
also exhibits unstable ‘‘global modes’’ whose amplitude practi-
cally does not vary across the magnetotail. Such oscillations can
be a source of ultra-low-frequency MHD oscillations of the
magnetospheric resonator in the near-Earth part of the plasma
sheet. Whether these solutions can be applied to the real
magnetosphere remains questionable. It is an inevitable problem
which can only be resolved using more precise two- or three-
dimensional- inhomogeneous models when appropriate methods
for their solutions appear.

The paper is structured as follows. The model of the medium is
presented and the basic equations describing MHD oscillations in
a moving plasma, in cylindrical geometry, are obtained in Section 2.
The instability increment of the magnetotail boundary is calculated
in the WKB approximation in Section 3. The stability problem of a
magnetotail with a smooth boundary is solved numerically in
Section 4. The instability of global modes in the magnetotail is
examined in Section 5. The Conclusion lists the main results of
the work.

2. The model of the medium and basic equations

Let us consider a model magnetospheric tail in the form of an
inhomogeneous plasma cylinder, as shown in Figs. 1 and 2. The
plasma distribution over the radius corresponds to the magnetotail
lobes. This model does not explicitly include the plasma sheet of the
actual magnetosphere. Its presence is simulated by the Alfvén speed
and sound velocity distribution over the radius. When moving away

from the cylinder axis their magnitudes change from those typical in
the plasma sheet to those typical in the magnetotail lobes. As has
already been noted in the Introduction, the issue of whether the
results obtained here in the framework of a one-dimensionally
inhomogeneous model can be applied to the real magnetosphere
may only be answered dealing with two- or three-dimensionally
inhomogeneous models. Presumably, the results obtained in this
paper are qualitatively applicable to describing the MHD instability
in each magnetotail lobe.

The local instability of the magnetotail boundary is deter-
mined by the parameters of the directly adjoining magneto-
spheric and solar wind regions. The instability of the global
modes, on the other hand, is determined by the integral proper-
ties of the magnetotail plasma and does not depend on specific
details of the plasma distribution over the radius. The presence of
an azimuthal or longitudinal inhomogeneity must, of course,
considerably modify the expression for the increment of these
modes, but we hope that it will not affect their very existence.

We specify a cylindrical coordinates system (r,f,z), where the
origin r¼0 coincides with the plasma cylinder axis. We will

Fig. 1. A cylindrical model of the magnetotail within the solar wind plasma flow.

Magnetic field is along the plasma cylinder axis. The amplitude distribution of ‘‘global

mode’’ oscillations in one of the magnetotail sectors is shown schematically.
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Fig. 2. Distribution of the Alfvén speed vA(r) and SMS velocities Cs(r) in the

magnetotail and in the solar wind (thin lines, right-hand vertical axis). Distribu-

tion of the square of the WKB component k2
r (r) of the wave vector over the

magnetotail radius (thick lines; dashed for the mode m¼0; left-hand vertical axis).

Numerals and shades of gray denote the transparency regions: (1) for the SMS

waves, (2) for the FMS waves with ma0 and (3) for the FMS waves with m¼0.
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assume the background magnetic field to be homogeneous in (but
not identical between) the magnetotail and the solar wind and to
be directed along the z axis. In our analytical calculations we will
use the m subscript to denote the parameters of the medium at
the plasma cylinder boundary (r¼rm) on the magnetospheric side,
while using w for the solar wind side. We will assume the solar
wind plasma to be moving at velocity v0 along the z axis, while
deeming the magnetotail plasma to be immobile (see Fig. 1).

The transition from the magnetospheric to the solar wind
parameters takes place in a narrow transition layer of thickness
Dr 5rm. We will deem the plasma density distribution over the
radius to be such that its maximum should be at the plasma
cylinder axis decreasing to a minimum on the cylinder boundary.
The magnetic field in the magnetotail is stronger than in the
solar wind. Qualitatively, the distribution of the Alfvén speed
vA ¼ B0=

ffiffiffiffiffiffiffiffiffiffiffim0r0
p

(where m0 is the permeability of the vacuum) over
the radius has the form illustrated in Fig. 2. Such a distribution of
parameters is typical for the plasma of the Earth’s magnetotail
lobes. The averaged distribution of the Alfvén speed in the
magnetosphere under medium-disturbed conditions in the equa-
torial and meridional (along the noon-midnight meridian) cross-
sections based on satellite data (Sergeev and Tsyganenko, 1980;
Borovsky et al., 1998) was presented in Mazur and Leonovich
(2006).

To describe the oscillations, let us use the ideal MHD equation
set of the form

rdv

dt
¼�rPþ

1

m0

½curlB � B�, ð1Þ

@B

@t
¼ curl½v � B�, ð2Þ

@r
@t
þdivðr vÞ ¼ 0, ð3Þ

d

dt

P

rg ¼ 0, ð4Þ

where B,v are the vectors of magnetic field and plasma motion
velocity, r,P are the plasma density and pressure, g¼ 5

3 is the
adiabatic index. Let us assume that the wave-related disturbance is
rather weak, allowing the initial set of equations to be linearised. Let
us use the zero subscript to denote the parameters referring to
undisturbed plasma, while leaving the wave-related parameters
unindexed (P ¼ P0þP,r ¼ r0þr,B ¼ B0þB,v ¼ v0þvÞ. In the zero
approximation the r component of Eq. (1) yields (@=@t¼ 0) the
equilibrium condition of the plasma configuration in a steady state

P0þ
B2

0

2m0

¼ const, ð5Þ

which determines the equilibrium distribution of the plasma
pressure P0(r) for the given distribution of B0(r). This pressure
determines the sound velocity distribution in plasma

vs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gP0=r0

p
and the corresponding distribution of the velocity of

slow magnetosonic (SMS) waves Cs ¼ vAvs=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

Aþv2
s

q
in Fig. 2. Let us

assume that the magnetic field strengths are almost constant in the
magnetotail and in the solar wind, changing only in the thin
transition layer of thickness Dr 5rm. The following values were
used in the numerical calculations: rm¼30 Re, Dr ¼ 2 Re, where
Re¼6370 km is the typical radius of the Earth. The equilibrium
condition (5) implies that the plasma pressure also varies inside the
transition layer only. The background plasma and magnetic field
parameter values at the magnetotail boundary used in the following
numerical calculations are listed in Table 1. These parameters satisfy
the equilibrium condition (5) of the plasma configuration.

Let us denote the r-axis component of the vector of the disturbed
plasma velocity in the wave as vr ¼ dz=dt¼ @z=@tþðv0rÞz, where z
is displacement of the plasma element. Let us consider a simple
harmonic wave of the form expðikzzþ imf�iotÞ, where kz is the
wave vector component in the z axis direction, m¼0,1,2,3yis the
azimuthal wave number, o is wave frequency. Linearizing the set of
Eqs. (1)–(4) and expressing the other components of the oscillation
field through z produces (see Appendix A):

vr ¼�ioz, vf ¼�
1

K2
s

v2
Aþ

K2
A v2

s

w2
S

 !
m

or2

@rz
@r

,

vz ¼�
kzK2

A v2
s

ow2
S r

@rz
@r
�z

dv0

dr
, ð6Þ

Br ¼�ikzB0z, Bf ¼�
kzB0

o vf,

Bz ¼�
K2

A B0

w2
S

1�
k2

z v2
s

o2

� �
1

r

@rz
@r
�z

dB0

dr
, ð7Þ

P¼�gP0
K2

A

w2
S

1

r

@rz
@r
þz

d

dr

B2
0

2m0

� �
, ð8Þ

where the notations are

K2
A ¼ 1�

k2
z v2

A

o2
, K2

s ¼ K2
A�

m2v2
A

r2o2,

w2
S ¼ 1�

m2=r2þk2
z

o2
v2

Aþv2
s�

k2
z v2

Av2
s

o2

� �
,

o ¼o�kzv0 is the oscillation frequency modified by Doppler’s
effect. For displacement z we obtain

@

@r

r0O
2

k2
r

1

r

@rz
@r

 !
þr0O

2z¼ 0, ð9Þ

where O2
¼o2

�k2
z v2

A,

k2
r ¼

o4

o2
ðv2

Aþv2
s Þ�k2

z v2
Av2

s

�k2
z�

m2

r2

¼ k2
z

o4
A=ð1þb

�
Þ

ðo2
A�o

2
S Þ
�1�

m2

k2
z r2

 !

¼
k2

z

1þb�
ðo2

A�o
2
A1Þðo

2
A�o

2
A2Þ

ðo2
A�o

2
S Þ

, ð10Þ

and oA ¼o=kzvAðrÞ, oS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b�=ð1þb�Þ

p
, b� ¼ v2

s =v2
A, and o2

A1,o2
A2

are the roots of biquadratic (with respect to oA) equation kr
2
¼0.

Note that the expression b� coincides, within a factor close to unity,
with the well-known parameter b¼ 2m0P0=B2

0Fthe ratio of gas-
kinetic pressure of plasma to magnetic pressure. One can see from
(9) that kr

2 is the square of the r component of the wave vector in the
WKB approximation if the solution of (9) can be presented in the
form z� expði

R
krdrÞ.

Table 1
Main parameters of the medium at the magnetotail boundary.

Parameter Region

Magnetotail lobes Solar wind

B0 ðnTÞ 20 5

vA ðkm=sÞ 6000 50

vs ðkm=sÞ 420 177

b� ¼ v2
s =v2

A
0.005 12.6
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A WKB solution of the problem is determined by the magni-
tude of the kr component of the wave vector on both sides of the
boundary (having the form of a tangential discontinuity). Let us
qualitatively analyse the behaviour of kr

2(r) in the above model
magnetotail. The distribution of kr

2(r) in the plasma cylinder is
qualitatively shown in Fig. 2. The figure shows the distribution of
kr

2(r) for such values of parameters m, kz and o for which all
possible resonance surfaces and turning points are present in the
magnetotail.

The turning points are determined by zeros of the function
kr

2(r). In the distribution in Fig. 2 their number can vary from one
(r0) to three (r0, r01, r02). The number of turning points is
determined by the values of the parameters m, kz and o. Thus,
for the axisymmetric mode m¼0 the turning point r02 is absent,
while point r01 coincides with point rA which is a resonance
surface for the Alfvén waves when ma0. The resonance surfaces
are determined by the singular points of Eq. (9), where the
coefficient for the higher derivative becomes zero.

The Alfvén resonance point rA, determined by equality
O2
ðrAÞ ¼ 0, is located in the opacity region in the interval

(r02, r0). When m¼0, rA is a turning point (the coefficient for the
higher derivative is not zero at the point). The magnetosonic
resonance point rs is determined by the denominator in expres-
sion (10) becoming zero, yielding the local dispersion equation for
SMS waves when jk2

r j-1: o2 ¼ k2
z C2

s ðrsÞ.
For fast magnetosonic (FMS) waves, a transparency region

(where k2
r ðrÞ40) can exist in the magnetotail, which for ma0 is

located in the range r01rrrr02, and for m¼0 – in the range
0rrrrA. The transparency region for SMS waves is located in the
range r0rrrrs (where rs is the resonance surface for SMS
oscillations). It is evident from (10) that the behaviour of kr

2(r)
in the range 0ororm depends on the magnitude of oAðrÞ at its
ends. The distribution of kr

2(r) depending on increasing phase
velocity o=kz of the wave under consideration may be imagined
by mentally moving the function kr

2(r) in Fig. 2 from left to right.
When o=kz-0 the entire magnetosphere is the opacity region
corresponding to the part in the plot where rsororm, and when
o=kz-1 the magnetosphere is a transparency region corre-
sponding to the part r01oror02 for r01-0 and r024rm. Depend-
ing on the magnitudes of o2

Am and o2
Aw, determined by wave

phase velocity, the boundary can be adjoined either by the
transparency or opacity regions of the oscillations under study.

The matching condition at the boundary is easily obtained for
the solution by integrating Eq. (9) within a narrow interval
(rm�e,rmþe) for e-0:

r0O
2

k2
r

@lnðzÞ
@r

�����
rm�e

¼
r0O

2

k2
r

@lnðzÞ
@r

�����
rmþ e

: ð11Þ

Using expressions (7) and (8) it is possible to show that (11) is
similar to the requirements that the plasma should be identically
displaced on both sides of the boundary (zrm�e ¼ zrmþ e is the
condition of impermeability) and that the total perturbed pressure
should remain the same across the boundary (ðPþBzB0=m0Þrm�e ¼

ðPþBzB0=m0Þrmþ e).
Let us now determine the boundary conditions for the problem

to be solved. When r-0 the boundary condition is the require-
ment for the desired solution to be finite. When r-1 the
boundary condition is determined by the causality principle. In
this problem we are interested in the solutions of (9) describing
the unstable modes of oscillations. Such solutions, according to
the causality principle, describe waves escaping from the shear
flow that generates them. In other words, the energy flux of these
waves should be directed away from the shear layer. Notably, the
kr component of the wave vector of unstable oscillations is
complex in the asymptotically far regions. For any unstable

oscillations, it is formally possible to introduce the concept of
waves escaping from the shear layer with ReðvgrÞ40 when r-1,
where vgr ¼ @o=@kr is the group velocity at which the wave
energy is transported over radius r. The energy conservation law
for monochromatic unstable (ImðoÞ40) oscillations

@E
@t
þ

1

r

@

@r
ðrvgrEÞ ¼ 0,

results in ImðkrÞ40 when r-1, where E is oscillation wave
energy density (which is quadratic in amplitude). This provides
for an exponentially decreasing amplitude of oscillations escaping
from the shear layer. A specific expression for the group velocity
when r-1 can be obtained by means of differentiating the
expression (10) with respect to o:

vgr ¼ vA1
1þb�1

kz
Reðkr1Þ

½o2
A1�o

2
S1�

2

o3
A1½o

2
A1�2o2

S1�
: ð12Þ

The boundary condition for a wave escaping from the shear layer
when r-1 is

@z
@r
¼ ikr1z, ð13Þ

and the sign of kr1 � krðr-1Þ¼ 7
ffiffiffiffiffiffiffiffi
k2

r1

p
is determined by the

requirement ReðvgrÞ40.

3. WKB calculation of magnetotail boundary instability
increment

To understand qualitatively how the increment of unstable
oscillations in the magnetotail boundary depends on the speed of
the solar wind flux flowing round the magnetotail, let us use WKB
approximation over the r coordinate to tackle the problem. Let
us employ such parameter sets of unstable oscillations for which
their resonance surfaces and turning points are located far from
the boundary r¼rm, and the WKB approximation is applicable
for the nearby oscillations. If the oscillations are weakly un-
stable (jReðoÞjb jImðoÞj), let us regard the region adjoining the
boundary as an opacity region if Reðk2

r ðrmÞÞo0, or as a transparency
region if Reðk2

r ðrmÞÞ40. If the transparency region adjoins the
magnetotail boundary on the solar wind side (r4rm), the solution
of (9) for an unstable mode in the solar wind is a wave escaping
from the boundary. Its WKB solution is

z¼ Cw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kr

r0O
2r

s
exp i

Z r

rm

kr dru

� �
, ð14Þ

where Cw is an arbitrary constant. If, however, the solar wind is
opaque, the solution looks like a surface wave decreasing in
amplitude from the boundary towards the solar wind

z¼ Cw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kr

r0O
2r

s
exp �

Z r

rm

ffiffiffiffiffiffiffiffiffi
�k2

r

q
dru

� �
: ð15Þ

Similarly, if the opacity region adjoins the boundary on the
magnetospheric side (rorm) the WKB solution of (9) looks like a
surface wave with its amplitude decreasing into the magnetosphere

z¼ Cm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kr

r0O
2r

s
exp

Z r

rm

ffiffiffiffiffiffiffiffiffi
�k2

r

q
dru

� �
: ð16Þ

If, however, the transparency region adjoins the boundary on the
magnetotail side, the WKB solution on the magnetospheric side is

z¼ Cm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kr

r0O
2r

s
cos

Z r

rm

kr druþc
� �

, ð17Þ

where c¼
R rm

r 00
krdrþp=4 is the complete phase from the turning

point r¼r00 to the magnetotail boundary r¼rm. If the boundary is
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adjoined by the transparency region for SMS waves, then r00 ¼r0,
and if it is adjoined by the transparency region for FMS, then r00¼0
for m¼0 or r00¼r01 for ma0.

Let us match the internal solution in the magnetosphere to the
external solution describing the structure of the oscillations in the
solar wind. Let us regard the magnetotail boundary as a tangential
discontinuity at r¼rm. Note that this approximation, definable as
‘‘local’’, sees the dispersion properties of the oscillations deter-
mined by the parameters of the medium directly adjoining the
boundary from the inside and outside. In this case the result does
not depend on the variation of the medium properties far from
the tangential discontinuity. The matching condition (11) serves
to obtain a dispersion equation, which we will write down in the
following dimensionless form:

b
c2�1

e�2ðc2�M2
AÞ�1

¼

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

rm=k2
rw

p
for Reðk2

rmÞ,Reðk2
rwÞo0,

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k2

rm=k2
rw

p
for Reðk2

rmÞo0,Reðk2
rwÞ40,

�cotðcÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k2

rm=k2
rw

p
for Reðk2

rmÞ40,Reðk2
rwÞo0,

icotðcÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

rm=k2
rw

p
, for Reðk2

rmÞ,Reðk2
rwÞ40,

8>>>>><
>>>>>:

ð18Þ

where b¼B2
0m/B2

0w, c¼o=kzvAm is the dimensionless phase velo-
city, MA¼v0/vAm is the Mach number determined by Alfvén speed
vAm. In the same notations

k2
rm ¼ k2

z

c4

c2ð1þb�mÞ�b
�

m

�1�k2
m

� �
,

k2
rw ¼ k2

z e�2 ðc�MAÞ
4

ðc�MAÞ
2
ð1þb�wÞ�e2b�w

�1�k2
m

 !
,

where b�m,w ¼ v2
sðm,wÞ=v2

Aðm,wÞ, km ¼m=kzrb, e¼ vAw=vAm (assuming
vAw5vAmÞ. To find the solution to the dispersion Eq. (18), let us use
the perturbation technique with small-parameter expansion ðe51Þ

c¼ c0þec1þ � � � : ð19Þ

In the zero order of the perturbation theory we have c0 ¼MA. In the
first order of the perturbation theory, squaring the left- and right-
hand sides of (18) produces an equation for c1:

b
2
ðM2

A�1Þ2
c4

1

c2
1ð1þb

�

wÞ�b
�

w

�1�k2
m

 !
¼ 7ðc2

1�1Þ2k2
rm0, ð20Þ

where k2
rm0 � k2

rmðc0 ¼MAÞ. The plus sign in the right-hand side
and b ¼ b correspond to Reðk2

rmÞo0, the minus sign and
b ¼ btanðcþp=4Þ to Reðk2

rmÞ40. Eq. (20) is a sixth-order equation
with respect to c1 and its solution can be found numerically. If,
however, jc1jb1 (but ejc1j5c0) it can be reduced to an approximate
biquadratic equation
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2
A�1Þ2 ¼ 0: ð21Þ

The solution of (21) for Reðk2
rmÞo0 is
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Obviously, the condition jc1jb1 is satisfied when bb1 and
jM2

A�1j �
4

1. The value of

k2
rm0 ¼ k2
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is real and hence unstable oscillations are absent when k2
rm040

(c2
1 40), and the solution for the unstable mode is obtained for

k2
rm0o0 if the minus sign is chosen before the radical in (22). It is

easy to verify that k2
rm0o0 for MAoM0 and M1oMAoM2, where

M2
0 ¼ b�m=ð1þb

�

mÞ, and M2
1,2 are the roots of a biquadratic (with

respect to MA) equation k2
rm0 ¼0:
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When b�m51 we have M2
1 	M2

0þM4
0=M2

2 o1 and M2
2 	 ð1þk2

mÞ

ð1þb�mÞ41. One can see from the second equation in (18) that,
when Reðk2

rwÞ40 (corresponding to the transparency region in the
solar wind) the value c1

2 cannot be real, contradicting the solution
(22) for k2

rm0o0. In this case unstable oscillations are absent. In
the case of Reðk2

rwÞo0, which corresponds to the first equation in
(18), the signs in the left- and right-hand parts of the equation
coincide only for MA41. Hence, when Reðk2

rmÞo0, the unstable
oscillations are driven on the magnetotail boundary in the
parameter range of a shear flow

1oMAoM2: ð23Þ

This conclusion fully agrees with the one in McKenzie (1970b).
The solution of (21) for Reðk2

r Þ40 far from the poles (b
2
¼1)

and zeros (b
2
¼ 0) of the function b ¼ btanðcþp=4Þ is
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ð24Þ

As well as in the k2
rm0o0 case, solutions corresponding to the

transparency region in the solar wind (Reðk2
rwÞ40) describe

only steady-state oscillations. Unstable solutions can be found for
k2

rm040, which corresponds to the parameter ranges M0oMAoM1

and MA4M2. The structure of the increment of unstable oscilla-
tions is determined by the eigen-values of the phase velocity
c¼c0n corresponding to the magnetosonic waveguide modes
(tanðcðc0nÞþp=4Þ ¼ 0, n¼1,2,3y). These waves propagate in the
waveguide adjoining the magnetotail boundary. When MA4M2,
only positive branches of the function tanðcðMAÞþp=4Þ corres-
pond to unstable solutions: bðMAÞ ¼ btanðcðMAÞþp=4Þ40, and
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Fig. 3. Mach number MA dependence of the phase velocity (Re (c), thick line) and

the increment (Im (c), thin lines) of unstable oscillations of the magnetotail

boundary (in the form of tangential discontinuity) in the WKB approximation over

the radial r coordinate. c01,02,03,04 are the roots of the dispersion equation

tanðcðc0nÞþp=4Þ ¼ 0 determining eigen-values c0n for the FMS modes of a

waveguide adjoining the magnetotail boundary from the inside. The vertical grey

band is the range of the Mach numbers corresponding to possible regimes of the

solar wind plasma flow around the Earth’s magnetosphere.
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when M0oMAoM1o1 only negative branches do: bðMAÞ ¼

btanðcðMAÞþp=4Þo0. The first of these ranges (MA4M2) corre-
sponds to an FMS transparency region adjoining the magnetotail
boundary, while the second (M0oMAoM1) to an SMS transpar-
ency region. It is possible to show that, near the poles and zeros of
the function bðMAÞ, the solutions describe steady-state oscillations
(Im ðcÞo0) only.

Fig. 3 illustrates an example of a numerical solution to the
dispersion Eq. (18) for the azimuthal harmonic m¼1, longitudinal
wave vector component kzrm¼2 and the following parameters of
the medium: e¼ Aw=Am ¼ 0:08, b�m ¼ 0:005, b¼B0m

2 /B0w
2
¼16. Nota-

bly, no eigen-mode is present in the SMS waveguide. Therefore,
the magnetotail is in steady state for MAo1 . When MA41 the
oscillations under study are unstable in the range (23), as well as
in the intervals corresponding to the solutions of (24) above. Each
of these roots corresponds to one of the eigen-harmonics of the
FMS waveguide adjoining the internal boundary of the magneto-
tail. When MA increases, higher and higher harmonics become
unstable. It is evident from Fig. 3 that there is no discernible
dependence between MA and the maximum magnitudes of the
oscillation increment. However, the range width of the unstable
oscillations decreases when MA (or the number of the eigen-
harmonic n) increases.

4. Instability of a magnetotail with a smooth boundary

Let us now consider the problem of boundary stability in an
inhomogeneous magnetotail with its boundary in the form of a
smooth transition layer. In this case, (9) can only be solved
numerically. To obtain a numerical solution and compare it with
the above results let us rewrite it in a dimensionless form

@

@x

~b
2
ðxÞðo2

AðxÞ�1Þ

xk2ðxÞ

@xz
@x
þðkzrmÞ

2 ~b
2
ðxÞðo2

AðxÞ�1Þz¼ 0, ð25Þ

where x¼r/rm, oAðxÞ ¼ ½c�MA ~v0ðxÞ�= ~vAðxÞ, ~vAðxÞ ¼ vAðxÞ=vAm, ~v0ðxÞ ¼

v0ðxÞ=v0m, ~bðxÞ ¼ B2
0ðxÞ=B2

0m,

k2ðxÞ ¼
o4
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ðxÞÞ�b�ðxÞ

�1�
k2
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x2
,

b�ðxÞ ¼ v2
AðxÞ=v2

s ðxÞ. Let us simulate the profiles of the shear flow
velocity ~v0ðxÞ, Alfvén speed ~vAðxÞ and square of magnetic field
strength ~bðxÞ using the following functions:

~v0ðxÞ ¼
1

2
1þtanh

x�1

D

� �
,

~vAðxÞ ¼
1

2
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ffiffiffi
x
p
þðeþe0�ð1�e0Þ

ffiffiffi
x
p
Þtanh

x�1

D

� �
,

~bðxÞ ¼
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D

� �
,

where D¼Dr=rm, e¼ vAw=vAm, e0 ¼ vAð0Þ=vAm, b¼B2
0m/B2

0w, and let us
determine the b�ðxÞ function from the plasma configuration equili-
brium condition (5):

b�ðxÞ ¼
b�m
~bðxÞ
þ
g
2

1
~bðxÞ
�1

 !
:

Numerical calculations involved the following magnitudes of
the dimensionless parameters: D¼ 0:066, b¼16, e0 ¼ 0:016,
e¼ 0:008, b�m ¼ 0:005. What was to be solved was a boundary-
value problem of finding the oscillation phase velocity (parameter
c, in the dimensionless variables) satisfying the boundary condi-
tion (13) when x-1, and the finiteness condition when x-0.
The latter requirement means that the solution of (9) must

coincide with the solution of the approximate equation

r2z00 þrszuþðk2
r0r2�1Þz¼ 0

obtained from (9) when r-0. Here k2
r0 � k2

r ðr-0Þ (for ma0 we
have k2

r0 	�m2=r2), and the s parameter is: s¼ 1 for m¼0 and
s¼ 3 for ma0. The solution which is finite when r-0 is

z¼ C
J1ð

ffiffiffiffiffiffiffi
k2

r0

q
rÞ for m¼ 0,

rm�1 for ma0,

8<
: ð26Þ

where C is the arbitrary constant, J1ð

ffiffiffiffiffiffiffi
k2

r0

q
rÞ is the Bessel function:

(J1ð

ffiffiffiffiffiffiffi
k2

r0

q
rÞ 	

r-0
ffiffiffiffiffiffiffi
k2

r0

q
r=2). The results of numerical calculations for

the increment of unstable oscillations for the azimuthal harmonic
m¼1 and longitudinal wave number kzrm¼2 are presented in
Fig. 4. Comparison with Fig. 3, presenting the solution of the same
problem in the local approximation for oscillations in a magneto-
tail model with a sharp boundary, demonstrates essential differ-
ences in the distribution of the oscillation increment.

It should be noted that the solution for the magnetotail with a
smooth boundary for MA4M2 comprises a ‘‘bundle’’ of curves in
the c(MA) plot, which diverge from the basic value c	MA (the
zero approximation solution in the previous section) after passing
through the eigen-values Re (c) ¼c0n. The solutions were found by
a numerical integration of (25) while searching for values of c

corresponding to the boundary conditions.
Fig. 4 presents the solutions in the range 0oMAo4 for

harmonics n¼1,2,3. Comparison with Fig. 3 shows a manifold
decrease of the increment of unstable oscillations, with only some
first harmonics (in our case n¼1,2) still remaining unstable. This
can be explained by the smoothing of the boundary layer and
competition between the oscillation dissipation on the resonance
surfaces and the shear flow instability. The eigen-value points c0n

are also displaced (c0n and M2 in Fig. 4 are the same points as
those obtained by the WKB approximation in Fig. 3), the first
region of the unstable oscillations expands.

Fig. 5a illustrates the spatial structure of unstable oscillations
close to the second harmonic n¼2. As has been expected from the
analysis of the WKB solution, the solar wind is an opacity region
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Fig. 4. Mach number MA dependence of the phase velocity (Re (c), thick line) and

the increment (Im (c), thin lines) of the eigen-oscillations of the magnetotail

‘‘smooth’’ boundary with characteristic thickness D�Dr=rm ¼ 0:066. A numerical

solution is obtained to (25) for the same parameters of the medium as in Fig. 3.

The vertical grey band is the range of the Mach numbers corresponding to possible

regimes of the solar wind plasma flow around the Earth’s magnetosphere.

A.S. Leonovich / Planetary and Space Science 59 (2011) 402–411 407



Author's personal copy

for the unstable mode of the oscillations. Resonance surfaces for
the Alfvén and SMS waves, determined, respectively, by the
conditions oAðrAÞ ¼ 71 and oAðrSÞ ¼ 7osðrSÞ, are located in the
magnetotail boundary transition layer.

Note that the value range MA41 is never reached for any
velocities of the real solar wind flow observed near the Earth’s
magnetosphere. Therefore, the above analysis implies that the
magnetotail boundary always remains locally steady-state. It will
be shown below, however, that there is yet another type of
unstable magnetotail oscillations remaining unstable for any,
however, small, magnitude of the solar wind plasma flow velocity
around the magnetosphere.

5. Instability of magnetotail global modes

Fig. 6 presents the increment distribution for yet another type of
unstable MHD oscillations in the magnetotail. Their existence does
in no way result from the above WKB calculations for the local
instability of the magnetotail boundary. They have a rather peculiar
spatial structure as shown in Fig. 5b, its prominent feature being
that the first derivative dz=dr is practically constant over the radius
of the plasma cylinder. As is implied by (6)–(8), this means that the
amplitude of such oscillations weakly varies over the magnetotail
cross-section. Such oscillations may be defined as ‘‘global modes’’.
The following features of these oscillations attract our attention:

1. The Im(c(MA)) plots for harmonics ma0 do not depend on kzrm

when kzrm-0.
2. When MA increases, the increment of the oscillations decreases

and tends to zero for azimuthal harmonics ma0 when
MA¼MAc (the magnitude of MAc is different for various m).

3. For oscillations with m¼0 the Im(c(MA)) plots differ essentially
for oscillations with various kzrm, having no restricting value of
MAc to terminate the region of existence of unstable oscillations.

4. The absolute values of the increment for the harmonics ma0
are much larger than for the harmonic m¼0.

To qualitatively analyse these features of the global modes, let
us consider the following simplified model for kzrm-0. This
means that the second derivative of z may be neglected in (9):
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The solution of this equation is
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where C is an arbitrary constant. When kzrm51 the solar wind is
an opacity region for global modes with ma0. The matching
condition (11) yields the following dispersion equation:
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As an estimate, let us set jrrlnðr0mO
2
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m in the square

brackets. Or, in the dimensionless form
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where
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b¼ B2
0m=B2

0w41, e¼ vAw=vAm
51, km ¼m=kzrm. Let us seek a solu-

tion to (27) in accordance with the perturbation theory in the
form of expansion (19) over the small parameter e. In the zero
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approximation we have c0¼MA. The first order of the perturbation
theory yields

c2
1 	 bðM2

A�1Þðmþm�1Þþ1: ð28Þ

This solution describes an unstable mode (c2
1 o0) when MAoMAc ,

where

MAc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

m

bðm2þ1Þ

r
:

Thus it is evident that the instability increment (28) in the
limiting case kzrm-0 does not depend on kzrm. The instability
range is restricted by the requirement 0oMAoMAc in full
agreement with the above-noted features of the unstable global
modes with ma0 in items 1–2.

It will be evident from the subsequent calculations that the
solar wind is a transparency region for global mode with m¼0 in
the same limiting case kzrm51. Let us use the matching condition
(11) to obtain the following dispersion equation:

i
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2=e2�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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In the zeroth order of the perturbation theory, we have again
c0¼MA. In the first order we obtain the following approximate
expression:

c1 	 i
b

kzrm

ðMAþ1ÞðM2
A�M2

0Þ

ðMA�b
�

mÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þb�w

q ,

where M2
0 ¼ b�m=ð1þb

�

mÞ. It is easily verifiable that the mode in
question is unstable (Im ðc1Þ40) throughout the MA variation
range, except for a narrow interval, M0oMAob�m. This is con-
sistent with the features of the unstable global mode with m¼0
as noted above in items 3 and 4.

Note that the thus obtained solutions should be regarded as an
illustration only of the qualitative behaviour of global modes. The
exact values of their increment as obtained numerically may
differ considerably from these simplified estimates.

Fig. 7 plots the increment versus the frequency of unstable
global modes with m¼0 and m¼1 for various velocities of the
solar wind flowing round the magnetosphere. The calculations
have been carried out numerically for parameter kzrm varying
0rkzrmr8. One’s attention is attracted both to the difference in
the qualitative behaviour of these harmonics, as well as to their
absolute values—the increments for harmonic m¼1 are several
times as large as those for harmonic m¼0.

Fig. 8 plots the frequency dependences of the global mode
increment for the azimuthal harmonics m¼1,2y, 5 for various
velocities of the plasma flow around the magnetosphere. The

oscillation increment increases with the azimuthal wave number.
Negative frequencies f ¼ ReðoÞ=2po0 correspond to the unstable
upstream waves whose parallel phase velocity Re ðoÞ=kz is directed
along the solar wind flowing round the magnetosphere, whereas the
positive ones f ¼ ReðoÞ=2p40 to the downstream waves. When
the velocity of the plasma flow around the magnetosphere increases,
the frequency interval of the unstable downstream waves decreases.

The above discussed unstable global modes in the magnetotail
cover the frequency range corresponding to ultra-low-frequency
(� 1 mHz) MHD oscillations observed in the Earth’s magnetosphere.
In particular, they can be the source of eigen-oscillations in the
resonator in the near-Earth part of the plasma sheet (Leonovich and
Mazur, 2005; Mazur and Leonovich, 2006). The eigen-modes of this
resonator are observable as ultra-low-frequency oscillations with a
discrete frequency spectrum (so-called magic frequencies 0.8, 1.1,
1.3, 1.6ymHz—Ruohoniemi et al., 1991; Samson and Harrold,
1992). Their localization area as projected onto the Earth’s surface
ranges 601–801 latitude in the Northern hemisphere—Mathie et al.
(1999) and Wanliss et al. (2002). This means that such oscillations
occupy most of the magnetotail cross-section in the magnetosphere.
Thus, unstable global modes may be considered as a potential
source of eigen-oscillations of the resonator in the near-Earth part
of the plasma sheet.

6. Conclusion

Here is a list of the main results of this work.
1. An Eq. (9) is obtained describing the MHD oscillations in the

magnetotail, simulated using a model plasma cylinder within
the solar wind plasma flow. Its solution (9) is analytically found in
the WKB approximation over the radial coordinate for the plasma
cylinder with its boundary having the form of a tangential dis-
continuity. It is shown that the boundary is unstable, with respect
to the fast magnetosonic oscillations, for the range of the flow
parameters 1oMAoM2 (where MA¼v0/vAm is the Mach number
specified by the Alfvén velocity on the magnetotail boundary,
M0oM1o1; M241 are the characteristic Mach numbers
determined in Section 3). The boundary of the plasma cylinder
is also unstable near the eigen-values MA ¼ c0n ¼ Reððon=kzvAmÞÞ

determined by the dispersion equation for the magneto-
sonic waves travelling through the magnetospheric waveguide:
tanðcðc0nÞþp=4Þ ¼ 0, n¼1,2,3y, where c is the spatial oscillation
phase digitized from the turning point to the plasma cylinder
boundary, ðon=kzÞ is parallel phase velocity of the n-th harmonic
of the oscillations.

A numerical solution of the problem for the model magnetotail
with a smooth boundary layer has demonstrated that the range of
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MA values for which the boundary becomes unstable is
consistent with the results of the WKB approximation. There are
significant differences, however. The absolute values of the unstable
oscillation increment for the tail with a smooth boundary layer are
much smaller than those for the tail with a sharp boundary. This
may be explained by both boundary layer smoothing, and competi-
tion between the shear flow instability and dissipation of the
oscillation energy on the resonance surfaces for the Alfvén and
SMS waves.

For the actually observed velocities of the solar wind plasma
flows around the Earth’s magnetosphere, MAo1. Therefore, the
magnetotail boundary always remains locally steady-state.

2. New unstable ‘‘global modes’’ of magnetotail oscillations have
been discovered. Their amplitude varies little across the tail. These
modes remain unstable for any, however, slow velocity of the solar
wind flow round the magnetosphere. The increment distribution of
the global modes differs substantially between the axisymmetric
(m¼0) and asymmetric (ma0) azimuthal harmonics. The region of
existence for unstable asymmetrical modes occupies the range
0oMAoMAc , where MAc is the limiting magnitude of MA up to
which they remain unstable. When kzrm-0 the increment distribu-
tion of such oscillations is directly proportional to kzrm. Axisym-
metric global modes remain unstable for any Mach number MA.
Their increment is much smaller than the increment of
asymmetric modes.

The typical frequencies of unstable global modes in the magneto-
tail are within the range of the lowest-frequency MHD oscillations
observable in the Earth’s magnetosphere (� 1 mHz). The resonator
eigen-modes in the near-Earth plasma sheet fit into this (‘‘magic
frequency’’) range. Instability of the global modes may be the source
of pumping the first harmonics in this resonator.

Note that these results were obtained for a magnetotail model
in the form of a radially inhomogeneous plasma cylinder. This
model cannot take into account such features of the real magne-
totail as the presence of the plasma sheet dividing it into two
lobes with oppositely directed magnetic field. To take these
features into account it is necessary to use more complicated
two- or three-dimensionally inhomogeneous models. Hopefully,
the solutions obtained here for the unstable MHD modes will
be valid for those models, even though their increment will
undoubtedly differ essentially from the increment in this work.

Acknowledgements

This work was partially supported by RFBR Grant #09-02-
00082 and by Program #4 of the Presidium of the Russian
Academy of Sciences and OFN RAS #15.

Appendix A. Derivation of the basic equation (9)

Let us linearize and write down the components of Eqs. (1),
(2) and (4):

�ior0vr ¼�rrPþ
B0
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ðikzBr�rrBzÞ�
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rrB0, ðA:1Þ

�ior0vf ¼�i
m

r
P�i

B0

m0

m

r
Bz�kzBf

� 	
, ðA:2Þ

�ior0vz ¼�r0vrrrv0�ikzPþ
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Fig. 8. Frequency f ¼ kzvAmReðcÞ=2p dependence of the ‘‘global mode’’ increment g¼ kzvAmImðcÞ for the azimuthal harmonics m¼1,2y, 5 for various velocities of the solar

wind plasma flow around the magnetotail: (a) v0¼200 km/s, (b) v0¼400 km/s, (c) v0¼600 km/s, (d) v0¼800 km/s.
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�ioBr ¼ ikzB0vr , ðA:4Þ

�ioBf ¼ ikzB0vf, ðA:5Þ

�ioBz ¼
1

r
rrrðv0Br�vrB0Þþ i

m

r
ðv0Bf�vfB0Þ, ðA:6Þ
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o
r0

P¼�v2
s

1

r
rrrvrþ i

m

r
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� �
�vr

1

r0

dP0

dr
, ðA:7Þ

where vs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gP0=r0

p
is sound velocity in plasma. From (A.4) and

(A.5) we have

Br ¼�
kzB0

o vr , ðA:8Þ

Bf ¼�
kzB0

o vf: ðA:9Þ

Substituting (A.8) and (A.9) into (A.2) and (A.6), we obtain
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where K2
A ¼ 1�k2

z v2
A=o

2, vA ¼ B0=
ffiffiffiffiffiffiffiffiffiffiffim0r0
p

is the Alfvén speed. Hence
we obtain

vf ¼ K�2
s �i

mv2
A

or2
rr

r

o vr

� 	
�i

mB0rrðB0Þ

rm0r0o
2

vrþ
m

rr0o
P

" #
, ðA:10Þ

Bz ¼�i
K2

A

K2
s r
rr

rB0

o
vr

� �
þ

m2B0

r2o2r0K2
s P,

ðA:11Þ

where K2
s ¼ K2

A�m2v2
A=r2o2. Expressing vz from (A.3) and substi-

tuting the obtained expression and (A.10) into (A.7), we obtain

P¼�i
K2

Ar0v2
s

w2
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1

r
rrðrvrÞ

�

þ
kzrrðv0Þ

o þ 1�K2
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where w2
S ¼ 1�ðk2

z þm2=r2Þðv2
Aþv2

s�k2
z v2

Av2
s =o

2
Þ=o2. Expressing

now the radial component of the velocity through the displace-
ment vr ¼ dz=dt¼ @z=@tþðv0rÞz¼�ioz and substituting it into
the expression obtained above for the wave field components we
obtain (6), (7) and (8). The Eq. (A.1), in view of (A.8) and (A.11),
can be rewritten as

1

o2r0

@

@r
Pþ

B0Bz

m0

� �
�K2

Az¼ 0,

where the expression in brackets ðPþB0Bz=m0Þ is the full per-
turbed pressure. Substituting P and Bz from (7) and (8) into this
expression we obtain the basic equation (9).
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