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Abstract. In the framework of an axisymmetric mag-
netospheric model, we have constructed a theory for
broad-band standing Alfvén waves with large azimuthal
wave number m > 1 excited by a stochastic source.
External currents in the ionosphere are taken as the
oscillation source. The source with statistical properties
of “white noise” is considered at length. It is shown that
such a source drives oscillations which also have the
“white noise” properties. The spectrum of such oscilla-
tions for each harmonic of standing Alfvén waves has
two maxima: near the poloidal and toroidal eigenfre-
quencies of the magnetic shell of the observation. In the
case of a small attenuation in the ionosphere the
maximum near the toroidal frequency is dominated,
and the oscillations are nearly toroidally polarized. With
a large attenuation, a maximum is dominant near the
poloidal frequency, and the oscillations are nearly
poloidally polarized.

Key words. lonosphere-magnetosphere interaction -
Wave propagation - Magnetospheric physics - MHD
waves and instabilities

1 Introduction

This paper is the continuation of Leonovich and Mazur
(1993) where a comprehensive theoretical description of
the spatial structure of standing Alfvén waves having a
fixed frequency w and a large wave number m > 1 is
provided for a model of the axially symmetric magne-
tosphere. The major factor determining this structure is
the Alfvén wave’s transverse dispersion associated with
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the curvature of geomagnetic field lines as reported in
Leonovich and Mazur (1990). For real geomagnetic field
and plasma parameters, this dispersion exceeds greatly
the well-known kinetic dispersion (Hasegawa, 1976;
Hasegawa and Uberoi, 1982; Goertz, 1984), and it is
precisely this dispersion that is responsible for the
transverse (across the geomagnetic field) propagation of
standing Alfvén waves.

We now outline the spatial structure of the mono-
chromatic standing Alfvén wave as it follows from
results reported in the cited work. A special role in this
description is played by two particular magnetic shells:
the poloidal and toroidal resonance surfaces, whose
position is determined by the wave’s frequency w. On
the former, the frequency o coincides with the local
frequency of poloidal eigen-oscillations, and on the
latter, it coincides with the local frequency of toroidal
Alfvén oscillations of the magnetosphere. The distance
between the resonance surfaces is relatively short com-
pared with the size of the surfaces themselves, but it is in
the space between them that the mode described is
localized. It is a standing mode in the longitudinal
(along the geomagnetic field) direction. For fundamen-
tal harmonics (N =1,2,3,...), the longitudinal wave-
length is of the order of the field line Ilength.
Transversally, the mode is an extremely small-scale
one, and this is the case both azimuthally (m > 1) and
normally to magnetic shells — many wavelengths find
room between the resonance surfaces. And this warrants
the applicability of the WKB approximation in a
direction normal to the magnetic shells. The square of
an appropriate component of a quasi-classical wave
vector k> goes to zero on the poloidal surface and
becomes infinite on the toroidal surface. In other words,
the poloidal surface constitutes a usual turning point,
while the toroidal surface represents a singular turning
point. The space located outside the layer between the
resonance surfaces is an opacity region for the waves
under consideration, that is, k;% < 0 holds in it. In a
normal direction, the wave travels from poloidal to
toroidal surface, and it travels azimuthally, so that its
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ray trajectories in transverse coordinates are spirals, and
the sense of their twisting depends on the sign of the
wave number m.

The wave is generated by an external source in the
neighbourhood of the poloidal surface. This is not to say
that the source is localized near this surface (recall that
its position depends on the frequency w); on the
contrary, it is anticipated that it is a reasonably
dispersed source. The matter is that the effectiveness of
generation is highest near the poloidal surface and
decreases dramatically with distance from it because of
spatial refinement of the mode (i.e. a growth of kﬁ). The
source can have a different nature. The cited paper
considers external currents in the ionosphere produced
by neutrals drifting in the E layer to be such a source.

On the toroidal surface the wave is entirely absorbed.
Such an absorption is a well-known property of the
singular turning-point and is associated with the absence
of the wave reflected from this point (see Stix and
Swanson, 1983). Physically, the absorption is ensured by
some dissipation mechanism. In the cited paper the
ohmic dissipation in the ionosphere is treated as such a
mechanism.

In the process of propagation from the poloidal
surface to the toroidal surface, the wave’s polarization
also changes from poloidal (the disturbed magnetic field
and plasma oscillate normally to the magnetic shell, and
the electric field oscillates azimuthally) to toroidal (the
magnetic field and plasma oscillate azimuthally, and the
electric field oscillates normally). We must emphasize
that, in accordance with general polarization properties
of Alfvén waves, such a behaviour of the polarization
excellently correlates with a change of &, from zero to
infinity.

If the dissipation is neglected, then the wave amplitude
with the distance from the poloidal surface initially
decreases; after that it increases abruptly and becomes
infinite on the toroidal surface. Taking the dissipation
into account leads to an additional decrease in amplitude
and regularizes the singularity on the toroidal surface. On
the other hand, if there is a sufficiently strong instability
of the waves in hand, then their amplitude can build up in
the process of transverse propagation.

By investigating the monochromatic oscillations, it is
possible to reveal their non-trivial spatial structure, but
this, as such, is inadequate for a description of the real
oscillations, which always have a relatively broad
frequency spectrum (Takahashi and McPherron, 1982;
1984; Engebretson et al., 1986; Mitchell et al., 1990).
This paper has attempted a switch-over to a description
of broadband standing Alfvén waves with m > 1. To
accomplish this, results reported in our previous paper
provide the framework on which all our study is based.

Broadband oscillations may be arbitrarily catego-
rized into two large classes: one includes stochastic
oscillations excited by noisy sources, that is, sources
whose amplitude is a random function of time. Such
oscillations are typically exemplified by the certain class
of Pc3 oscillations constituting the major portion of the
daytime Pc3 driven by magnetosonic waves of extra-
magnetospheric origin (Takahashi and McPherron,

1982; Wolfe et al., 1990; Waters et al., 1991; Potapov
and Mazur, 1994). External currents in the ionosphere,
suggested in our paper as a possible source for standing
Alfvén waves with m > 1 are also more likely to be of a
noisy origin. Stochastic oscillations are characterized by
their correlational properties (Rytov, 1974). The sim-
plest example is “white noise””, with an almost totally
lacking correlation on different frequencies. It seems
reasonable to class most geomagnetic pulsations with
stochastic osciallations.

The other class of broadband oscillations comprises
non- stationary oscillations excited by a correlated non-
random source. A most representative example is a
source of the type of instantaneous impulse, the time
dependence of which is described by the J-function
(Hasegawa et al., 1983; Allan et al., 1986). Oscillations
of this class include all waves caused by transient
processes in the magnetosphere. Typical examples are
the SSC phenomenon or Pi2 pulsations (Baumjohann
et al., 1984; Yumoto et al., 1990). Such oscillations are
less common than stochastic oscillations, but they also
play a vital part in the magnetosphere physics.

In accordance with this categorization, this work is
also divided into two papers. The first (this) paper is
devoted to stochastic oscullations, and the second
addresses non-stationary correlated oscillations. Each
of these papers makes wide use of formulas obtained in
our previous paper. The next section gives a summary of
these formulas. In Sect. 3 of this paper, stochastic
properties of the oscillation source are defined. In Sect. 4
we determine spectral and polarization properties of
stochastic standing Alfvén waves. Main results of this
paper are formulated in the conclusion.

2 Results of the theory of monochromatic waves

In describing the axially symmetric magnetosphere, we
shall be using a curvilinear orthogonal coordinate
system x', x%, x°, related to the geomagnetic field in
such a way that the surfaces x! = const are geomagnetic
shells and the lines x! = const, x> = const are field lines
(see Fig. 1). The square of a length element

2 2 2
ds? = g1dx!” 4 godx?” + g3dx®

where g; = g;(x!,x*) are diagonal elements of the metric
tensor. Notation: g = g1¢g»>g3 is its determinant, and
p= (gz/gl)l/2 is the quantity that plays the key role in
the theory presented. On each given field line, one can
introduce, instead of the coordinate x*, a physical length
whose coordinates are related by d/ = \/g_3dx3. Among
all surfaces x° = comst is one particular equatorial
surface which is a separatrix. On it we put x> = 0 and
I=0. Let x3 and x’ represent the values of the
coordinate x* at points where the field line intersects
the ionospheres of the magneto-conjugate hemispheres.
They are functions of the magnetic shell: x3 = x3 (x!).
Let xi > 0 > x> . The designations /. = /. (x ) have an
analogous meaning.

A disturbance in the Alfvén wave can be described
using a so-called transverse potential ®(x',x?,x3,¢), in
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Fig. 1. Coordinate system (x',x?,x%) and schematic spatial structure

terms of which the disturbed electric and magnetic fields
are expressed. It may be represented as a Fourier
integral:

N
@@hﬁJ%Q::/'éghﬁ¢me%*4de. (1)
—o0

Considering the axial symmetry of the magnetosphere,
we restrict ourselves to a separate harmonic in the
azimuthal coordinate x2. If the azimuthal angle ¢ is used
as this coordinate, then k» = m is the azimuthal wave
number. Here we examine the waves with m > 1. A
theory developed by Leonovich and Mazur (1993) refers
to monochromatic oscillations, that is, to separate
harmonics ®(x',x*, w). Using also in what follows the
symbol tilde to designate the Fourier harmonics, for
disturbed fields we have

El = -V\0,E, = —V,0,E; =0, (2a)
B :—igé%%—?, Ezzi%pvl%?, (2b)
épnggﬁ, (2b)
where the function f is defined by the equation

Alﬂzz%vlvzﬁy (3)

and A} =¢;'Vi+¢;'V3 is a transverse (two-dimen-
sional) Laplacian. According to results reported in the
cited paper, the potential Fourier harmonic may be
represented as the product of three functions

D(x', 1, w) = Dy(x', )0y (x!, 0) Zy (x', I, ). 4)

The function @y (x!, w) fulfils the role of the amplitude.
It is determined by the source (external currents in the
ionosphere) and depends relatively slightly on x!'. The
function Oy (x!, w) defines the transverse structure of the
wave, and — by virtue of its small- scale character in this
direction — it depends strongly on x'. The function
Zy(x', 1, ) describes the longitudinal structure of a

standing wave. It has also a relatively weak dependence
on x'. By substituting the expression for the potential ®
in such a form into the equation for standing Alfvén
waves with m > 1, it is possible to use in solving it
perturbation theory based on the method of different
scales. This leads to the separation of the solution of the
input partial differential equation into two ordinary
differential equations for the function Zy which describe
the structure of the oscillation field along field lines, and
for Oy which describe their structure across the
magnetic shell. We now turn to a detailed description
of these functions.

As has already been pointed out in the introduction,
the transverse small-scale character of the waves in hand
makes it possible to apply the WKB approximation in
the coordinate x'. Within the limits of this approxima-
tion, the function Zy(x',/,w) is the solution of the
eigenvalue problem:

o 0Z  ? - -
alqalJrquZ_O, Z|11_0' (5)

Here 4 = A(x',1) = By/+/4np is the local Alfvén veloc-
ity, ¢ = pk? + p~'k3, and k; is a covariant component of
the quasi-classical wave vector. The latter plays in Eq.
(5) the role of the eigenvalue. The solutions of the
problem (5), i.e. eigenvalues

k= kiv(x', o) (6)
and the eigenfunctions
Z:ZN(XI,Z,CU), (7)

depend on the variables x' and o as the parameters. In

Egs. (6) and (7) the index N is the harmonic number,
that is, the number of half-waves along the field line
(N=1,2,...).

If Eq. (6) is solved for the variable w, then the
resulting function

cu:a)N(xl,kl)

can be thought of as a local dispersion equation for the
waves under consideration.
The function Zy are normalized by the condition

(0)

<qN 72 > _ 4y

Dz =2

A Ao
Here gy = pkiy +p 'k3, the index zero designates
equatorial values of corresponding quantities (values
at / =0), and the brackets stand for the mean value
along the field line. For an arbitrary function F(1), it is
defined as

1

F())=—0¢ F(l)—

ED) = $FOG.

where the integral sign on a closed contour means

integration along a field line “‘there and back”, and

p_ d/

S

is the run time with Alfvén speed “there and back”.
At given frequency w the poloidal and toroidal

resonant surfaces are defined by the equations
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kiy(x', @) =0, kiv(x', o) = . (8)
We shall designate their solutions accordingly
X =xhy(@), ¥ =y (o). 9)

The ratio in Eq. (8) may be considered as the equations
on o for given x!'. They determine the poloidal and
toroidal frequenc1es

0=, o=0x) (10)

Obviously the functions (9) and (10) are mutually reverse.
We shall enter designations

PN(xlal) :ZN(xlal,QllJN(xl))’
TN(xlal) = ZN(xlahg;"N(xl))‘

It is natural to name these functions as poloidal and
toroidal eigenfunctions. It is easy to see that they, and
also appropriate frequencies Qpy and Qpy, are the
solutions of the following problems for eigenvalues

0 laPN 1602

dip ol TpEt =0 Pl =0
1 1

_p2> — ,

<PA N/ podo

0 8TN (L)2

61 ol -l-p T =0, TN|Ii =0
p 2> Po

<AT Ay’

where the frequency w is treated as the eigenvalue.
Hence it is possible to offer a definition for Py, Ty and
Qpy, Qpy that is not related to the WKB approximation
in the coordinate x!. This factor is important because the
WKB approximation is violated near the poloidal and
the toroidal surface (or, equivalently, near the frequen-
cies = Qpy and o = Qgy).

The splitting of the frequencies AQy = Qzy — Qpy for
realistic models of the magnetosphere is positive and
small compared with the frequencies themselves, that is,
the parameter

OCNEAQN/QTN<<1. (11)

In a narrow (of the order of AQy) range of variation of
the values of functions (10), a linear expansion can be
used for them and may be represented as

1 1
Ny _ X T Xpy
QPN(X ) —(1)(1 7211\] >,

1 1
1y _ X Xy

These functions are taken to be decreasing, as is the case
in most of the magnetosphere. By virtue of the
inequality (11) the scale of decreasing /y can be
considered the same for both functions, and the validity
ranges of the expansions (12) can be thought of as
overlapping. By subtracting one from the other, we get

1 — Xhy = 2ayly. Calculations show that a

(12)

N =X

maximum splitting between the poloidal and toroidal
resonance surfaces occurs for the fundamental harmonic
of eigen- oscillations of standing Alfvén waves (Leono-
vich and Mazur, 1993). When projected onto the
ionosphere, it is Ax‘ ~ 800 km. The splitting for higher
harmonics is 51gn1ﬁcantly smaller  Ax} ~ 60 km,
Ax} ~ 50 km, Ax} ~ 30km, Ax! ~ 10km

The dependence iy (x', ) on x! is plotted diagram-
matically in Fig.2. Near the poloidal and toroidal
surfaces analytical expressions can be obtained. When
Ix! — xbhy| < Ax), (or equivalently |o — Qpy| < AQy)

L () ”
j-PN }LPN

L(LQPN)I/Z, (13)

APN WpN

and when [x' —xl, | < Ax) (or |o — Q| < AQy)

N T xhy —x!

:L(ﬂ>‘/2
A \ Qv — o ’

Here it is designated

N 1
ApN = (hPN %) s AN = 5
ks

ki =

(14a)

(14b)

AN
oW = =—Q,

ApN
wpy = 7 Qpy, 3]
N

2, (14c)
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Fig. 2. Dependence of the component Ig (x!, ) of a quasi- classmal
wave Vector of the standmg Alfvén wave on the radial coordinate x!
The point x},, where 1 (b w) = 0, defines the poloridal resonance
surface, and xky, where ki N(xm7 ) = 0o, defines the toroidal
resonance surface
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and hpy and hgy are constants defined by the rela-
tionships

pdo | 0%p ,
hpy = ZPp
" QI%N< ar" N/’
AO 62p71 )
h = —=-— T .
™ POQ%N <a ETER

In realistic models of the magnetosphere, these con-
stants are positive. If the coordinates x! and x* have the
same dimensions such that the quantity p is dimension-
less, then /py and A7y are dimensionless and, by order of
magnitude, are oy. The parameters Apy and Azy
characterize the transverse dispersion of the wave near
the poloidal and toroidal surfaces. If x' and x> have the
dimensions of length, then Apy and A7y also have the
dimensions of length and by the order of magnitude
Donr ~ ﬁ Ao = 2
‘PN m2/3 ) IN — O(Nmz )
where « is a typical scale of transverse inhomogeneity of
the magnetosphere (it is assumed that Iy ~ a).

A quasi-classical phase is defined by the relationship

x!

“PN(XI,(L)) = / IEIN(xl/,w)dxl/.

Xpy (@)

(15a)

Near the poloidal surface, from Eq. (13) we have

~ 2 [xl —x! 2/3
P (x! _Z(__ N
N(X,(D) 3( ;LPN

o 2 (w *QPN 2/3
3\ om

and near the toroidal surface, from Eq. (14a) we get

Bl i Xpy — X' 2
LPN(X ,(L)) :‘.PN(CU)_2

A
1/2
=¥y(w) —2(%#) /
where
X (@)
Py (w) = kv (x', 0)dx!. (15b)

Xpy (@)

is a total run-on of the quasi-classical phase between the
resonance surfaces.

The countervariant component of the group velocity
in the coordinate x' is defined in the usual fashion:

8(1)]\/()61 kl)
1 1 _ ’
UN (-x 3 U)) - l: 8k1 ki :/;w(xl )

_ 6/;1N(xl,w) - 1)
=" | -

According to Egs. (13) and (14a), near the poloidal and
toroidal surfaces, respectively, we have

(17a)
3/2
oy (', @) = vl <Qm - a)) /
NSV oy

=l <X}N x1>2/2

TN ’
where

Apn ey Ay Qv

Upy = PA;N , vpy = n\;N : (17b)

The group velocity component v3,(x!, w) can be deter-

mined from the relationship kiyvl + k% = 0. More
specifically, near the resonance surface we have

1 1 1 1 1 1
Upy X — Xpy 2 Uy Xpv — X
—, oy =t

koipy  Apy kv Ay

2 _
Uy = —

The transit time of the wave between the poloidal
surface to the magnetic shell x! is

X!

dx"
1 —
wio= [ e

Xhy (@)

(18a)

It is a straightforward matter to establish from the
definitions (15a), (16) and (18a) that

Py (x", )
1 NX,
=— 18b
ol ) = (18b)
Near resonance surfaces
1 1 <60 — QPN> 12
i, ) = — | ———
WpN WpN
1 /x'— x}w> 12
=— , 18¢c
wpN < 2PN (18¢)
| o 1/2
1 b N
w(x', o) =1y(w) + - (Qm - a)>
| 1 1/2
= iy(o) +—< SN 1) (18d)
WTN Xy — X

Here it is designated
- N d‘iﬁ\/(&))
‘EN((U) = do .

Noteworthy are the useful relationships

Ok (x', ) Oty (x', )
Ow o
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1 _ PPy (x!, w)
Ox'dw
By the order of magnitude

TG w)

l’PNNaNm, TNNth,
¥ Ay @ (19)
;;INNAx_fYNﬂ’ L AGAQy wa
a N lI~jN Nm .

The transparency reglon of the mode in hand, that is,
the region where kfy(x',w) > 0, is in the plane (xl ) a
narrow band between the plots of the functions
o = Qpy(x') and o = Qzy(x'). Level lines of the func-
tion ¥(x!,w) lie inside this band and are therefore
approximately parallel to the plot of the function
Qpy(x') (or, equivalently, to the plot of Qzy(x!)). This
gives an approximate equality

Py (x', ) 8‘PN(x ) dQpy (x') _ 0
Ox! do dx! '
or
v(x!, w) = % kiy (x', o). (20a)
QPN( )

This relationship will be used in the following.

The standing wave attenuation due to the ohmic
dissipation in the ionosphere is characterized by a local
decrement of damping jy (x', ) [an appropriate expres-
sion may be found in Leonovich and Mazur (1993)]. The
attenuation is taken to be small: VN Jo < 1 At a ﬁxed
value of w and with a Varlatlon of x! from xLy to xly, as
well as at a fixed value of x! and with a variation of
from Qpy to Qgy, the local decrement 7 (x!, ) changes
substantially (a relative change is of order unity), but it
has no singularities in this case. Let use denote

VPN( ):7’ [xlaQ (x )]

Ny _ 5ol

i) = iy B Q) o)
VPN(CO) =y Ppy(@), 0],

(@) =Ty by (), ).

The attenuation coefficient of the wave as it propagates
from the poloidal surface to the shell x! is defined by the
relationship

1

Ty(x', o) = ]

x},l\, (w)

ﬂ)~)N(xllv a))dxll

LG o) (20c)

Near resonance surfaces (resonance frequencies) simple
approximate expressions hold. When x! — x},, < Ax} (»
—Qpy < AQy) we have

lN—‘N(xl7 w) = ?PN(CO)TN()H? (JJ)

_ e (xl —x},N>l/2_yﬂ (w—QPN)1/2 (1)

WpN APN WpN WpN

and when x},, —x! < Ax}(Q — 0 < AQy)

Iy(x', o) = Ty(o) + iy (o) (x', o)
) i . 1/2
=Iv(0)+—=(5—3
TN Xy —X
Yv WIN 12
=T JIN ] 22a
(@) + o (Qm_w) (22a)
Here it is designated
. v 1 -
FN<CO) _ / VN(x alw)l /TN(O)) dxl, (22b)
oy (x!, o)
Ly (w) = Ty (@) + iv(0)iv(o). (22¢)

The foregoing formulas permit the express1on to be
developed for the transverse function Qy(x!, ) in the
WKB approximation:

1/2
_ 1 —172
Oy(x', ) = (N i )

vy pokiy +py '3

X exp [i\i’N(xl,w) ~ P, ) + zﬂ (23)

This expression holds good when x! —x,';N > Apv,

(yy/o)In; xhy —x' > A, (yy/o)ly, that is, not too
close to the resonance surfaces. ~

Near these surfaces the expressions for Oy can be
obtained in terms of perturbation theory based on the
smallness of deviation of appropriate solutions from the
poloidal and toroidal modes, respectively.

When [x! — xby| < Ax} (Jo — Qpy| < AQy), we have

3 SRR
Oy(x', w) = G<;7PN+ i8PN>

PN

- Q
WpN

Here G(z) is a function having an integral representation

i i . ‘s3
G(z) zﬁ/exp isz — i ds.
0

It is the solution of the differential equation

(24a)

(24b)

1
G’ G—
Tz N

and has the following asymptotics when |z| > 1:

Tcargz <%,
n
0<arg z<3%.

— _ﬁz’

1
G =
(Z) { 1/46Xp( i3/2 i )

The parameter epy = 2(Iy/2pv)(ypy /@) characterizes the
relative role of the dispersion and attenuation near the
poloidal surface. When ¢py < 1 the dispersion is domi-
nant, and when epy > 1 the attenuation predominates.

When [x! — x},| < Ax) (Jo — Q| < AQy)

(25)
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_ ) . .
Oy (x', 0) = 2 exp 1Py (@) ~ T () + 1]
Po
(i)
Xd + ey
ATN
k2)PN - T
- exp[qu,v( ) — rN(w)Jrzﬂ

w—Q
XQ(ﬁ-HSrN)-

The function g(z), having an integral representation

(26a)

oo
g(z) = %/ exp <isz + g) %, (26b)
satisfies thg equation

(z) —g=0

and has, when |z| > 1, the asymptotics

g(z) =214 exp(—Zzl/z), —n<argz <. (27)

In Eq. (26a) it is designated ezy = 2(In/Aw) (ypn /). In
Egs. (24a) and (26a), power function branches are
chosen, which are positive when Imz = 0, Rez > 0. The
function G(z) is regular in any finite part of the plane z,
and g(z) has a branch point when z=0. Near this
singularity

g(z) = —\/Lﬁ In z.

It is evident from Egs. (24a) and (26a) that of special
interest are the asymptotics of the functions G(n + ig)
and g(n + ie) at fixed values of ¢ and at large absolute
values of real n, When ¢ <1 we have

. 2= (e >,
G(n+ie) = n~ V4 exp(Gin®? — en'/? +in/4),
n>1,
(=) expl-2i(—n)"*~
e(—n)""? — in/4),
g(n +ie) = (=n)>1,
4 exp(—=2n~"2 —ien1/?),

n> 1.

(28a)
The validity ranges of Eqs. (23) and (24a), on the one
hand, and of Eqgs. (23) and (26a), on the other, overlap,
and the respective expressions coincide in the ranges of
overlapping. One can see from the set of the above
formulas that Oy (x', ) is a wave that is generated in the
neighbourhood of the poloidal surface, subsequently
travels toward the toroidal surface and is totally
absorbed in the nelghbourhood of this surface. The
factor ®(x' w) in Eq. (4) is expressed in terms of
external ﬁeld -aligned currents in the ionosphere which
are the source for the waves under discussion. Appro-

priate formulas are given in the next section.

In closing this section, we develop the expressions for
physical components of a disturbed magnetic field
Bi(x',l,w) = Bi(x',1,w)/,/g; which can be obtained
from Egs. (4), (23), (24a) and (26a) using the relation-
ships of Egs. (2b) and (3). The following designations
are used:

By(x,0) = — 4y (', 0), (28)
T
2
- Ao 0Z, l
W o) = OM, (28¢)
)
gz YN) - gl YN7
V 92 V g1 (28d)
)
5() _ gz 8 In pg
Y, Ny,
N k2 ol qN
When o = Qpy(x'), the respective functions are
Ay OP, /
YpN x l ZN x l QPN( ) OM,
pN = “gz Ypy, pN = \/ YPNa
y® _ gz 3 In PP
T
Similarly, when o = Qzy(x')
A T, l
Y 1) = Zy (e 1, Qo () LN(X ),
“gz YTN7 7<7\/ Hgl YTNa
G) gz 6 In p py
Y = — Y
W=k ol p ™
Furthermore, we designate
A1 ~ A2 .Po A
Oy =0y, O =i ViOy (29)

and introduce the function Qﬁ) which satisfies the
equation

_72VIQN'

In the validity range of the WKB approximation

5 ki ~ - Dikivks ~
OV = -m 7 Ov OV =~ O (30)
2 qy
Near the poloidal surface
2
QN - _EVIQN»

and near the toroidal surface
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)Cl
~ 2k /
3 2
oV () =22 / On(x', ) dx"".
Po
Using these designations the physical components of a
disturbed magnetic field may be represented as

Bi(x' 1, w) = By(x', )0V (!, 0) TV (61, 1, ). (31)

Note that all functions QN are dimensionless and of
order unity, and the functions Y,S) are also dimension-
less, with Y]\(,) and Yy 72 being of order unity, and

3 1,2
7~ (1/m)7?.

3 Statistical properties of the oscillation source

Under the hypothesis suggested by Leonovich and
Mazur (1993), the source for the oscillations considered
is external current in the ionosphere. A total current
density in the ionosphere j may be represented as
j=GE -+,

where ¢ is the conductivity tensor, and j***/ is the density
of external current of a non- electromagnetic origin. At
the ionospheric E-layer level, electrons are magnetized,
while ions are not. For this reason, the movement of
neutral (for example, in internal gravity or acoustic-
gravity waves) entrains in a different manner these
plasma components and hence produces an electric
current. This current is not associated directly with the
macroscopic large- scale electric field in the plasma;
therefore, it is usually referred to as the external current.
Let j~|(‘i) represent the Fourier-component of the longi-
tudinal component ](em in conjugate ionospheres (plus
for the northern ionosphere, and minus for the southern
ionosphere). We now derive the functions J*) (x!, o) by
defining them by equations

(ext)

AP = i), (32)
Here
S P
Al =—mVi——5
g 5

is the transverse Laplacian at the ionospheric level. The
standing wave amplitude appearing in (31) is expressed
in terms of J&) as

é/\/ _ 27‘Ck2 Z_N
ggo)chotA Ay
(33)
" Zp 2p i+ Zp Xr oy,
1+ I
Here Z;ﬁ are integral Pedersen conductivities of

conjugate ionospheres.

Within the framework of the accepted hypothesis for
the oscillation source, it would appear reasonable to
consider the functions ;) (x', w) to be random func-
tions of frequency w. Their statistical properties are

characterized by the specification of correlations. It will
be assumed that external currents of the conjugate
hemispheres are not correlate with each other:

<ﬂ|+>*(xl7w)fﬁ_) (x", w')> =0. (34)

From this point on the brackets designate averaging
over a statistical ensemble. For autocorrelators, we take
the simplest model, the “white noise”” model. In other
words, we put

(et o) e o)

=B X", w)d(w — o), (35)

where /™) (x!,x", w) are correlation functions.

By virtue of Eq (32), the functions J&) (x!, @) are
also random functions @w and have statistical ““white
noise” properties. Indeed, let G (x!,y!, @) be Green’s
function of Eq. (28a)

e 0]

I o) = [ @D e 0o @l G

—00

Integration over y! is formally extended to the interval
(—00,00), but it is implied that in actual fact it is
performed over the region of localization of external
current jH' From Eqgs. (34), (35) and (36) it follows that

(T )T ) =0, (37)

T o) TP o)) = FO (2" 0)d(w - o),
(38)

where

FOW o) = [ @l [ e e

xGE Y ) B o).
Using Egs. (33), (37) and (38) it is easy to see that the
amphtude function By(x!, w) also has the properties of

“white noise”. In the subsequent discussion we need to
use the correlator

1
||

(B}, (x", 0)By(x', @) = — B4 (x", 0)(w — o). (39)

Here it is designated
1 <8nk2)2<1N >2
g\ o] \edota) \de

)", >
x F%(YN\A) FA ! 0)

Blzv(xl,w) =

y 2t
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Note that the function By (x!, w) has the dimensions of a
magnetic field.

4 Spectral and polarization properties of Alfvén noise

The stochastic origin of the source leads to a statistical
character of standing Alfvén waves generated by it. In
an effort to describe their statistical properties, we shall
examine correlators of the components of a disturbed
magnetic field. From Egs. (31) and (39) we get

<l2?;ﬂ(xl, l,w)éj(xl, l,w’)>

=2;(x" L,w)d(w — o), (40)

where

1 ~ (1)
=?ij(xl7 l,CO) = HBJZ\’(xlaw) ](V) (xl,a))
x 0P (', 0) 7)) (' 1) T (', 1, o).
(41)

Thus, standing Alfvén waves also represent ‘“‘white
noise”, and the functions 2;;(x!,/,w) have a spectral
density meaning at a given point of space (x', /). In what
follows we shall restrict our study to the functions
P11, P12, Py and Ps3. The first three functions and the
last function, respectively, describe transverse and
longitudinal components of a disturbance.

The Alfvén wave amplitude at the point (x!,/) is
defined by the correlators

Py(x', 1) = <Z§i(x1,l7t)l§j(x‘,l,t)>.
From Eqgs. (1) and (40) it is easy to obtain

=2 [ 2, 1 0)do. 42)
0

By virtue of the stationarity of our accepted model for a
random source, these correlators are independent of
time ¢.

The properties of spectral densities as functions of
frequency w are determined predominantly by the
functions OV (x!,w) and OV (x',w) involved in Eq.
(41). Their presence leads to the fact that the functions
2;; have sharp peaks near the frequencies Qpy and Qzy
and are concentrated mainly in the interval (Qpy, Q)
and decrease rapidly with the distance from it. A much
smoother dependence of the functions Y,\(,l) on w does not
affect qualitatively the behaviour of #;;. This applies for
the function B% to still a greater extent. It will be
assumed that the spectrum width of the source is much
larger than AQy; therefore, the function B%(x!, ) can
be considered constant in the interval (Qpy, Q7).

Of considerable interest is the question: At what
frequencies is the Alfvén noise spectrum concentrated
(either near Qpy, or near Qzy, or in the entire interval
between them)? In other words: what is the frequency
region where the integral (42) is mainly taken? As will be
shown, the answer to this question depends on the

amount of attenuation of standing waves in the iono-
sphere. There are two simple limiting cases of a large
and small attenuation. In the first case monochromatic
waves constituting Alfvén noise and travelling from the
poloidal surface to the toroidal surface attenuate near
the poloidal surface on a length much shorter than the
distance between the resonance surfaces. According to
Eq. (19), a typical transit time between these surfaces
t~m/w. A strong attenuation implies that
ynTn ~ m(yy/®) > 1. In this case the energy of Alfvén
oscillations is concentrated near Qpy, and the oscilla-
tions have a poloidal character, i.e. the radial compo-
nent of a disturbed magnetic field is much larger
compared with the azimuthal component. With a small
attenuation. m(yy/w) < 1, monochromatic waves reach
the neighbourhoods of the toroidal surface without any
appreciable attenuation and accumulate there because
of a fast decrease in group velocity v}, as one approaches
the toroidal surface [see Eq. (17a)]. As a result, the noise
spectrum is concentrated near the frequency Qgy, and
the noise polarization has a toroidal character.

We now calculate the correlators (42) in these
limiting cases. With a large attenuation when the
oscillations are concentrated (on a given magnetic shell)
near the poloidal frequency, Eq. (24a) will suffice for
Oy (x', ). We have

1
?f“(xl, l,w) = Q—PNBZZ\;()CI,QPN)

w—Q 2y
X G(J—f—iSpN)‘ Yf(’li/) (Xl,l).
WpN

In this case, for the slowly varying functions o, their
values are taken at the point w = Qpy. Using results of
Appendix 1 we have

2m
P11 (xl, l) = Q PNBJZV()CL, QPN)
PN
o0
(O . 2
X Ypy (x7,1) |G(n +iepv)|” dn
2
= B 0T (6 0) (43)
Here it is designated
kol _ 2kaly ypy.

= , VN .
N poly po Qpy

By the order of magnitude
2/3
Oy _ Y
”’N m1/3 3 VN =m ® .

In the present case vy > 1.

Remarkably, precisely the same result can be ob-
tained by using for Qy(x', w) the WKB approximation
of Eq. (23) despite the fact that it is inapplicable in the
small vicinity of the point w = Qpy. In this approxima-
tion
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1 v}
y 1 Z _ _BZ 1 PN
ll(x ’ 760) (0)] N(x 76O)UN(-X-17(1))
_ k%/p(z) —2Ty(x",m) ?/\(/1)2( 1
iy (X!, @) + K3/

Thus, passing in Eq (42) on to the variable of
integration k; = kjy(x', ®) and using Eq. (16) we have

k2/po
20 L) = 2uyB2 (x',QpN)/dkli
o )k kg

oo

~(1)2
(_:,721",\/[x1,wN(xl k1)) Y]s[l) (xl7 l, G)N(Xl,k]))- (44)

From Egs. (20a), (21) and (22a) we have
fN[xlva<x17kl)]

7PN k
_ et
1—‘N + |£§N ‘ kl )
PN

Based on this expression it is easy to see that when
vy > 1, because of a fast decrease in the exponent, the
integral (44) is taken when

|Q | 1 k k
Yen VNP0 Do

In terms of the variable w, according to Eq. (13), this
means that the spectrum width

AQ
Aw ~ w — QPNN—N

Vi
The integral (44) in this case is readily evaluated, and we
again arrive at Eq. (43).

Similarly, when calculating the other correlators, the
WKB approximation and the use of Eq. (23) gives

identical results. We have

ki < ka/po,

45
ki > ka/po. (43)

U 1)

P12:_2]g32 (', Qo) VY (6, DY (1),
Py = 2 ) Sy By Q) Y, PI%) ('),

Py = B (x 1>QPN)Y1£1%/)2(XI7I)'

23

Using results reported in Appendix 2 we find the
semi-axes of the ellipse of transverse polarization and its
slope to the coordinate line x!:

(B an) = B Q) Vi (' 1),
H @
(Blin) = 33 B Q) e,
po— ! Y£N< 1)
0 2VNY A (x! 1)
Thus, when vy > 1. Alfvén noise has a political

character. The noise spectrum is concentrated near the
frequency @ = Qpy, and the typical spectrum width
Aw ~ AQN/v]Zv < AQy. The cellipse of polarization is
greatly elongated.

x, 1, o).

<B%

\

Fig. 3. Schematic diagrams of spectral density for components of a
disturbed magnetic field in the case of a large attenuation (vy > 1)

1
~o <l
VN

(B min /(B ) ~

and is almost radially aligned. Note also that

1
2
< H>/<Blm1x> ~ mzv%/ < L

Spectral densities for different components of a dis-
turbed magnetic field when vy > 1 are plotted diagram-
matically in Fig. 3.

We turn to the case vy < 1. From the relationships
(45) it is evident that the exponent appearing in the
integrand in Eq. (44) in this case decreases very slowly,
and the typical scale of its decrease

Q 1 k k
O] 1l ke
Ten VWWPo Do

ky ~

Hence this exponent may be omitted because the
integral remains convergent:

Pi(x', 1, o) = 2uy By (x', Qpy)
k2/po ~(1>’ | |
/dkl k2+k2/ 0 (X ,l,CI)N(X ak1)>'

(46)

This integral is taken when ky ~ k/py, that is, in terms
of the variable w, when

w — QPN ~ AQN

It is impossible to take the integral (46) 1n a closed form

because of the presence of the factor Y
to obtain an order-of-magnitude estlmate

P11 ~ ,uNsz\,. (47)

, but it is easy

If the WKB approximation is also used for the
correlator %5, then instead of Eq. (44) we obtain
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2pouN

o dk
= N / I ay)

0
% ele",\[x Loy (x!, kl)]Y]\(]) (x [ CUN( k1))

Here the exponent now cannot be omitted in the
integrand — otherwise the integral becomes divergent.
Using Eq. (45) it is easy to find that in this case the
characteristic region of integration over k;

Q| 1k ko
J— >> —_
YV VWWPo Do

In terms of the variable w this implies that the spectrum
is concentrated near w = Qzy, and its characteristic
width, as follows from Eq. (14a)

Py =
kz/Po (48)

ki ~

Aw ~Qm — o ~ v%,AQN < AQy.

Based on the foregoing, the integral (48) is readily
evaluated:

= N TR g (o ) YD (), (49)
VN Vv

Here it is taken into consideration that Ty ~ vy < 1.
Since in the last case the spectrum is concentrated in
the small vicinity of the toroidal frequency Qgy, the
question arises as to whether the use of the WKB
approximation is correct, because this approximation is
inapplicable when |w — Qzv| <wzy. For that reason, we
calculate Py, using for Oy Eq. (26a). From Eq. (29) we get

2 2
pzzfg—zﬁ (", Q)Y (' D)
™
X / g'(u+ism> do.
WIN

Using the values of the integral from Appendix 1 we
again arrive at Eq. (49).

Reasoning along similar lines, we find that the
spectral density 2,(x',/, ) is also concentrated near
the frequency w = Qzy(x') on the interval Aw = v} AQy.
The corresponding correlator is found to be

1
P =-2u (ln—)
? AN (50)
x B3 (!, Q) Yay (6, D Y (31, 1),

and calculations in the WKB approximation and using
Eq. (26a) yield the same result.

The relationships given by Egs. (47), (49) and (50)
can be used to determine the semi-axis of the ellipse of

transverse polarization and its slope to the axis x':

2
(B2 max) = Py = “NIBV g2 (1 ¥R 1),
YN Vv
<é2L m1n> =P ~ MNB%/(XI7QTN),
(D1

Y. N, 1

Py = Ty 2VNWII’1*.

2 Yo (x1,1) N

As far as the correlator P33 is concerned, in the WKB
approximation, in view of Eq. (30), we have

ki (k2/po)’

Py = 8,UNB12\/(x1797N)/ dky ————=
R CENEIPY

e~ 2wl oy (' k)] §3)°

(! Loy (' k).

Here as in the case of calculating Pj;, the exponential
factor may be omitted. The spectral density is distrib-
uted throughout the interval (Qpy,Qgv). The integral
cannot be taken in a closed form, but it is easy to obtain
an order-of-magnitude estimate:

/5 =(3)? K
Py = <Bﬁ> ~ BT ~

Thus, when vy < 1 the oscillations have a toroidal
character. The major semi-axis of the ellipse of polar-
ization is directed almost azimuthally. The oscillations
along this axis have a narrow spectrum concentrated
near the frequency w = Qpy(x') with a typical width
Aw ~ v} AQy. The oscillations along the minor semi-
axis of the ellipse of transverse polarization as well as
along the geomagnetic field have a broader spectrum
lying within the range (Qpy, Qzv), and their amplitudes
are relatively small:

p2
(Blwn) (8) ow
? 2 N
<BL max> <BL max> m
Schematic diagrams of spectral densities for different

components of a disturbed magnetic field when vy < 1
are shown in Fig. 4.

<Bz>

-

Fig. 4. Schematic diagrams of spectral density for components of a
disturbed magnetic field in the case of a small attenuation (vy < 1)

Qo Q 0

TN
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5 Discussion

There are currently several theoretical publications
devoted to the study of MHD oscillations driven in
the magnetosphere by stochastic sources. Specifically,
the investigation has been concerned with magneto-
spheric oscillations with small azimuthal wave numbers
m~ 1. As is known (Kivelson and Southwood, 1985)
two types of MHD eigen-oscillations exist in the
magnetosphere in this case. One represents magneto-
sonic eigen-oscillations of the magnetospheric cavity
(global modes), and the other includes standing Alfvén
waves. In an inhomogeneous plasma of the magneto-
sphere, these kinds of MHD oscillations can interact
with each to other in those regions where their eigen-
frequencies coincide.

Stochastic magnetosonic broadband oscillations can
form in the magnetosphere a continuously distributed
(across magnetic shells) oscillation field of standing
Alfvén waves characteristic for daytime Pc3 (Leonovich
and Mazur, 1989). A numerical simulation of MHD
oscillations of the magnetosphere excited by stochastic
oscillations of its boundary was reported by Wright and
Richard (1995). They showed that a broad spectrum of
the oscillations excited in the magnetosphere, one can
distinguish, by amplitude, oscillations with frequencies
close to those of the global modes. Besides, on a
particular magnetic shell Alfvén oscillations are distin-
guished, the frequencies of which coincide with those of
the global modes.

It should be noted that the oscillations with m > 1 do
not break down in the magnetosphere into two different
modes (Alfvén and magnetosonic), as is the case in
oscillations with m ~ 1. In a cold inhomogeneous
plasma of the magnetosphere, oscillations with m > 1
exist in the form of a single mode with the polarization
which is customary categorized as the Alfvén wave
(B3 < B1,B»). Unlike oscillations with m ~ 1, mono-
chromatic oscillations with m > 1 cannot propagate
across magnetic shells to distances comparable with the
typical scales of the magnetosphere (Iy). They are
localized on significantly smaller scales determined
either by the curvature of geomagnetic field lines
(Ax)y) or by the dissipation of the waves in the
ionosphere (ezyAzy). Inside the magnetosphere it is
therefore impossible to observe oscillations with m > 1
which can be driven by disturbances on its boundary.
The source for such oscillations must be located
immediately on magnetic shells where these oscillations
are excited. In this paper we consider external currents
in the ionosphere to be such a source.

As our calculations show, such a stochastic source in
the ionosphere will produce the field of stochastic
oscillations of standing Alfvén waves in the magneto-
sphere. The polarization of these oscillations essentially
depends on the magnitude of their dissipation in the
ionosphere. If the dissipation is small (m(y/w) < 1),
two peaks close located near each to other will be
observed in the oscillation spectrum on a given magnetic
shell near the frequency of each of the eigen-harmonics
of the standing waves. One lies at the frequency

coincident with that of toroidal eigen-oscillations of
this harmonic (Qzy), and the other is located at the
frequency of poloidal eigen-oscillations (Qpy). In the
case of a large damping (m(y/w) > 1), the frequency
spectrum of the excited oscillations will show only one
peak at the frequency of poloidal eigen-oscillations
(Qpy).

6 Conclusion

Main results of this work may be formulated as follows:

1. We have presented a summary of basic notions and
formulas describing the spatial structure of a standing
Alfvén wave with m > 1 excited by a monochromatic
source. This summary defines concretely the picture of
generation, propagation and dissipation of the mono-
chromatic wave described qualitatively in the introduc-
tion.

2. We have formulated mathematically the hypoth-
esis of the stochastic source of standing Alfvén waves. It
has been shown that if external currents in the
ionosphere generating Alfvén waves have statistical
properties of “white noise”, then a random function
playing in the equations the role of the oscillation source
also has the ‘“white noise” properties. The source
spectral density was expressed in terms of spectral
densities of external currents in magneto-conjugate
ionospheres.

3. It has been shown that stochastic standing Alfvén
waves excited by such a source have statistical charac-
teristics of ““‘white noise”. We have determined the
spectral densities and root-mean-square values of three
components of a disturbed magnetic field. Two limiting
cases: a large and small attenuation in the ionosphere,
were considered at length.

4. In the case of a large attenuation, m(y/w) > 1, each
of monochromatic waves constituting ‘““white noise”,
after the excitation on its poloidal surface, attenuates
rapidly and traverses only a small part of the distance Ax},
between the resonance surfaces. As a result, only those
monochromatic waves reach this magnetic shell, whose
poloidal surfaces are at a distance much shorter than Ax},
from this shell, therefore, they still conserve their poloidal
character. But the entire oscillation as a whole then has a
poloidal character — the spectrum is concentrated near the
frequencies @ = Qpy(x!) on an interval of a width
Aw ~ AQy /v3,, and the ellipse of transverse polarization
of a disturbed magnetic field is strongly elongated and is
almost radially aligned.

5. In the case of a small attenuation m(y/w) < 1, the
monochromatic wave traverses almost without any
attenuation the entire distance between the resonance
surfaces, and its energy is stored near the toroidal
surface because the wave’s group velocity tends rapidly
to zero. Therefore, this magnetic shell presents those
monochromatic waves for which the toroidal surfaces lie
near this shell. As a consequence, the entire stochastic
oscillation has a toroidal character. The oscillation
energy is concentrated near the frequency o = Qzy(x')
on an interval of width Aw ~ AQyv%, and the ellipse of
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polarization of the disturbed magnetic field is strongly
elongated and aligned almost azimuthally. At the same
time, the oscillations along the minor semi-axis of the
ellipse of transverse polarization (that is, in the radial
direction) and the longitudinal oscillations have a
broader spectrum lying within the interval (Qpy, Qzy).
The reason has to do with the fact that the correspond-
ing components in the monochromatic wave become
zero as it approaches the toroidal surface, which turns
out to be a stronger effect compared with the group
velocity’s becoming zero.

Appendix 1

To evaluate the integral
I = / |G(n + ie)|* dy

we use the integral representation of Eq. (47). We have

:l/ dn/ ds/ ds’
n
—00 0 0

3 3
X eXp [i(s —sm—e(s+5)— i3+ z?}

? < 3 /3
:%/ds /ds'exp{—iz—l-is?)—e(s—ks')]
0 0
< [ dnexplits =
z 7 JERG
zz/ds /ds’exp{ingi?e(san’)]
0 0
x d(s — )

— 2/ ds672m — _
&
0

Similarly, to calculate
L= / lg' (1 + ie)|* dn

we use the representation (5). This yields

i
d(z) :—/exp<1s2+ )d
\/_0

Whence

:2/ ds/ ds’exp{——i—s(s—f—s)]
0 0
><5(S—s/)22/ dsefZCS:E
0

y

< y2 > rmax

Trnin (Po

P = <x2>

Fig. 5. Mean square of the amplitude of a two- dimensional random
vector r = (x,y) with specified quadratic correlators < x? >, < y? >,
< xy > as a function of polar angle ¢

Appendix 2

Let r=(x,y) be a two-dimensional vector whose
components x = x(¢),y = y(¢) are random functions of
time. Suppose that there exist correlators < x? >,
< y? > < xy > . Consider the projection of the vector r
onto a straight line tilted at the angle ¢ to the axis x:

Fp = XCOS @ + ysin ¢.

The mean value of its square may be represented as

<ré> = Fin T (Fmax — "min) €08° (¢ — @), (A1)
where
R =3 [0 + 7).

_\/ )~ 62 + 40|,

(02— 02 + 4]

2(xy)
() = ?)
The figure described by Eq. (A1) in polar coordinates (¢ —

tan2¢, =

_ PR TR .
polar angle, and r = | /< r; > —radius) is not an ellipse.

Its typical form is shown in Fig. 5. This figure has a
maximum diameter ryay in the direction ¢ = ¢, and a
minimum diameter ry,, in the perpendicular direction. At
the same time, if the extreme point of the vector r is
harmonically rotated along an ellipse with the semi-axes a
and b tilted at the angle « to the axis x, that is
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X = acosocos wt — bsinasin wt,

y = asinacoswt — bcos o sin wt,

then, by calculating the time-averaged < x* >,
< y* >, < xy >, and substituting into the above formu-
las, we obtain ¢y = o, 7max = @, 7min = b. Also in the
general case, this gives grounds to call the quantities 7y,
and rp. the semi-axes of the ellipse of polarization and
to call ¢, its slope.
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