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Magnetosonic resonances in the magnetospheric plasma
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A problem of coupling between fast and slow magnetosonic waves in Earth’s magnetosphere (magnetosonic
resonance) is examined. Propagation both slow magnetosonic wave and Alfven wave can easily be canalized
along the magnetic field line direction. The main difference between the two is that slow magnetosonic waves
dissipate strongly due to their interaction with the background plasma ions, whose temperature is above the
electron temperature. In Earth’s magnetosphere, however, there is a region where the dissipation of slow
magnetosonic waves can be weak—the inner plasmasphere. The slow magnetosonic waves generated there can
be registered directly. In other regions, with strong dissipation of slow magnetosonic waves, their signature
may be detected through their impact on the Alfven resonance at frequencies for which the resonant Alfven and
slow magnetosonic waves exist simultaneously in the magnetosphere. Owing to their strong coupling with the
background plasma ions, resonant slow magnetosonic waves can transfer the energy and impulse from the solar
wind to the magnetospheric plasma ions via fast magnetosonic waves penetrating into the tail lobes. A problem
of resonant conversion of fast magnetosonic waves into slow magnetosonic oscillations in a magnetosphere with
dipole-like magnetic field is also examined.
Key words: Inhomogeneous plasma, magnetosonic waves, resonance, magnetosphere.

1. Introduction
The magnetosonic resonance has the same physical na-

ture as the well-known Alfven resonance (Tamao, 1965),
which in magnetospheric physics is conventionally called
‘field line resonance’ (Chen and Hasegawa, 1974; Ra-
doski, 1974; Southwood, 1974). In the Alfven resonance,
a monochromatic fast magnetosonic (FMS) wave propagat-
ing in an inhomogeneous plasma with magnetic field, drives
an Alfven wave at the resonance magnetic shell, where its
frequency is the same as the local frequency of Alfven oscil-
lations. This coupling is due to the Alfven waves propagat-
ing practically along magnetic field lines, their frequency,
for a fixed wavelength, is determined by the magnitude of
the Alfven speed. Many—both theoretical (Inhester, 1987;
Lee and Lysak, 1989; Leonovich and Mazur, 1989; Rankin
et al., 2006), and experimental (Cheng et al., 1998; Rankin
et al., 2005; Agapitov et al., 2009) (see also review by
Pilipenko, 1990)—papers have scrutinised the Alfven res-
onance during magnetospheric phenomena.

Slow magnetosonic (SMS) waves are in many aspects
similar to Alfven waves: both the modes are guided by
magnetic field lines. This results in SMS waves at the res-
onance magnetic shells being capable of being driven by
FMS waves travelling in an inhomogeneous plasma (Yu-
moto, 1985). However, investigations into SMS waves in
the magnetosphere are much fewer than those devoted to
the Alfven resonance. Noteworthy are a significant number
of papers dealing with the resonant coupling of the Alfven

Copyright c© The Society of Geomagnetism and Earth, Planetary and Space Sci-
ences (SGEPSS); The Seismological Society of Japan; The Volcanological Society
of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sci-
ences; TERRAPUB.

doi:10.5047/eps.2012.07.002

and SMS waves in a curvilinear magnetic field (Southwood
and Saunders, 1985; Walker, 1987; Cheng and Lin 1987;
Ohtani et al., 1989; Klimushkin, 1998; Cheremnykh et al.,
2004; Klimushkin and Mager, 2008).

All of these studies were performed for small-scale MHD
modes with large azimuthal wave numbers m � 1. The
source of such waves should be located on the same mag-
netic shells where they are generated. Since the magneto-
sphere is an opacity region for the fast magnetosonic waves
with m � 1, their amplitude in the magnetosphere de-
creases exponentially, on a small scale, with distance from
the region of its generation. The most common source
of fast magnetosonic waves is believed to be either shear
plasma flow at the magnetopause, or oscillations in the solar
wind. Only fast magnetosonic waves with small m ∼ 1 can
penetrate inside the magnetosphere while retaining suffi-
cient amplitude. Such waves can drive the Alfven and SMS
oscillations at the resonant magnetic shells. It is exactly
these resonant waves that are discussed in this paper. The
Alfven resonance is a well-studied phenomenon by now,
therefore we will focus on studying the magnetosonic reso-
nance.

However, papers studying the resonance of the fast and
slow magnetosonic waves are extremely few. This results,
first of all, from the fact that they are difficult to detect dur-
ing observations. Unlike the Alfven waves, the SMS waves
are highly dissipative. The SMS wave travel speed in most
of the magnetosphere is close to the thermal velocity of
plasma ions to which they easily transfer their energy. There
is only one exception. In the inner plasmasphere, for the
magnetic shells L < 2, where the background plasma elec-
trons are hotter than the ions, these waves can travel almost
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without dissipation. Therefore, charged particle concentra-
tion oscillations due to the solar terminator movement over
the ionosphere are regularly observed here (Afraimovich et
al., 2009), with parameters allowing them to be regarded as
SMS waves (Leonovich et al., 2010).

Despite—or even thanks to—the rather intensive decay
of SMS waves, however, they can play an important role
in their coupling with other modes of MHD oscillations, as
well as interacting with background plasma ions. In solar
investigations, these oscillations are often invoked for in-
terpreting oscillations observed in the active regions (Miles
and Roberts, 1989; Gonzalez and Gratton, 1991), as well
as a heating mechanism for the solar corona (Nakariakov et
al., 1999).

This paper will consider several problems dealing with
the magnetosonic resonance and its possible signatures in
the Earth’s magnetosphere.

The paper is organized as follows. In Section 2, we
introduce the basic equations and the equilibrium condi-
tion of the plasma configuration under consideration. Sec-
tion 3 discusses the magnetosonic and Alfven resonances in
a one-dimensional inhomogeneous medium in the form of
a smoothly varying transition layer. This layer may be con-
sidered as a model for describing the process of FMS wave
incidence and reflexion from the magnetopause and plasma-
pause. Section 4 solves the problem of impulse transfer
from the solar wind into the geotail lobes via FMS waves.
The momentum transfer to the background plasma ions is
via SMS waves excited by FMS waves on the resonance
magnetic shells. In Section 5, the full spatial structure of
resonant SMS waves is obtained in a two-dimensionally in-
homogeneous magnetosphere with a dipole magnetic field.
The main features of the resonant SMS waves that can be
used for their detection during observations are summarized
in the Conclusion.

2. Basic Equations
To describe the MHD oscillation field, we will use the

system of one-liquid MHD equations:

ρ
dv̄
dt

= −∇ P̄ + 1

4π
[curl B̄ × B̄], (1)

∂B̄
∂t

= curl[v̄ × B̄], (2)

∂ρ̄

∂t
+ ∇(ρv̄) = 0, (3)

d

dt

P̄

ρ̄γ
= 0, (4)

where B̄, v̄ are the magnetic field and plasma motion ve-
locity vectors; ρ̄, P̄ are the plasma density and pressure,
γ = 5/3 is the adiabatic constant. Assuming plasma to con-
sist of singly-ionized hydrogen ions and electrons as well
as being quasi-neutral (ne = ni ≡ n), its parameters in
the one-fluid approximation have to be understood as fol-
lows: v̄ = (meve + mi vi)/(me + mi )—mass-average veloc-
ity, ρ̄ = n(me + mi ), P̄ = n(Te + Ti ).

We consider a disturbance due to a weak enough wave,
allowing for the initial set of equations to be linearized. Let
us subscript the parameters relating to unperturbed plasma

with zero, leaving the wave parameters unindexed (ρ̄ =
ρ0 + ρ, P̄ = P0 + P, B̄ = B0 + B, v̄ = v0 + v). In
the zero approximation, (1) gives the equilibrium condition
for a plasma configuration in steady state (∂/∂t = 0)

P0 + B2
0

8π
= const. (5)

3. Magnetosonic Resonance in 1-D Inhomoge-
neous Plasma

Let us consider the problem of magnetosonic resonance
in a simple one-dimensionally inhomogeneous transitional
plasma layer. Such a layer—separating the magnetosphere
from the solar wind—is formed at the magetopause, for ex-
ample. Let us introduce a Cartesian system of co-ordinates
(x, y, z) for solving the problem. We will consider a plasma
configuration in which the magnetic field is directed along
the z axis, with the plasma parameters varying in the x axis
direction. The y axis makes it a right-hand system of co-
ordinates. Figure 1 shows the characteristic distributions of
the Alfven and SMS-wave speeds in the plasma configura-
tion in question.

Let us denote vx = ∂ζ/∂t—the plasma velocity vector
component in the x direction within a wave, where ζ is the
plasma element displacement. We will consider a simple
harmonic wave, which in the y and z directions is a plane
wave of the form exp(iky y+ikzz−iωt), where ky, kz are the
respective wave vector components, ω is wave frequency.
Linearizing the set of Eqs. (1)–(4) and expressing the other
components of the oscillation field through ζ produces:

vx = −iωζ, vy = −ky

ω

1

K 2
s

(
A2 + K 2

A S2

χ2
S

)
∂ζ

∂x
,

vz = −kz K 2
A S2

ωχ2
S

∂ζ

∂x
,

(6)

Bx = −ikz B0ζ, By = −kz B0

ω
vy,

Bz = − K 2
A B0

χ2
s

(
1 − k2

z S2

ω2

)
∂ζ

∂x
− d B0

dx
ζ,

(7)

P = −γ P0
K 2

A

χ2
S

∂ζ

∂x
+ 1

8π

d B2
0

dx
ζ, (8)

where

K 2
A = 1 − k2

z A2

ω2
, K 2

s = K 2
A − k2

y A2

ω2
,

χ2
S = 1 − k2

y + k2
z

ω2

(
A2 + S2 − k2

z A2S2

ω2

)
,

A = B0/
√

4πρ0 is the Alfven speed, S = √
γ P0/ρ0 is

sound speed in plasma. For displacement ζ , we have the
equation

∂

∂x

ρ0�
2

k2
x

∂ζ

∂x
+ ρ0�

2ζ = 0, (9)

where �2 = ω2 − k2
z A2,

k2
x = −k2

y − k2
z + ω4

ω2(A2 + S2) − k2
z A2S2

. (10)
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Fig. 1. Profiles of Alfven speed A(x), SMS wave speed Cs(x) and square
of the wave vector WKB component k2

x (x) across the transition layer.

It is evident from (9) that, in the WKB approximation, k2
x

is the x component squared of the wave vector when the
solution can be presented as ζ ∼ exp(i

∫
kx dx).

The behaviour of the k2
x (x) function is important for the

problem to be stated correctly. We wish to explore the pro-
cess of incidence and reflexion of a magnetosonic wave on
a smoothly varying transition layer. If the wave source
is to the right of the transition layer, the solution of the
problem should be the superposition of the incident and re-
flected waves of finite amplitude when x → ∞. Two vari-
ants of the distribution of the k2

x (x) function are possible—
numbered 1 and 2 in Fig. 1. An analysis of (10) reveals
that, for monotone increasing A(x), when the x coordinate
varies from +∞ to −∞, the k2

x (x) function passes through
zero twice at points which we will denote as x01, x02, be-
tween which the opacity region (where k2

x (x) < 0) is lo-
cated. This behaviour of k2

x (x) is illustrated by curve 1 in
Fig. 1.

There are also two singular points in Eq. (9) at which
the coefficient attached to the higher derivative tends to
zero. One is the Alfven resonance point, xA, defined by
equality �2(xA) = 0, located in the opacity region in the
interval (x01, x02). The second is the point of magnetosonic
resonance, xS , where the denominator in expression (10)
tends to zero, producing the local dispersion equation for
SMS waves when |k2

x | → ∞: ω2 = k2
z C2

s (xS), where
C2

s = A2S2/(A2 + S2). The point xS is located more to
the left of the turning point x01, the transparency region for
SMS waves being located between the two. To the left of
xS , there is an opacity region expanding to −∞ in the x
direction.

Curve 2 in Fig. 1 corresponds to the case when the trans-
parency region for SMS waves extends up to ∞, and there
is no resonance surface for the Alfven waves. Analyzing
expression (10) helps define the two ranges of wave field
and plasma parameters corresponding to curves 1 and 2 in
Fig. 1, when k2

x (∞) > 0:

ω2

k2
z A2+

> ω2
A1,

β∗

1 + β∗ <
ω2

k2
z A2+

< ω2
A2, (11)

where β∗ = S2/A2, and ω2
A1, ω

2
A2 are the two roots of the

biquadratic equation

ω4
A − (1 + k2

y/k2
z )[ω

2
A(1 + β∗) − β∗] = 0,

corresponding to the solutions with the positive/negative
radical. The first describes a FMS wave, and the second
a SMS wave incident on the transition layer.

Let us describe the Alfven speed profile A(x) as a func-
tion of the form

A(x) = 1

2

[
A− + A+ + (A− − A+) tanh

( x




)]
, (12)

where A± is the Alfven speed as x → ±∞, 
 is the
typical thickness of the transition layer. In the chosen model
of the Alfven speed A+ = 1 and 
 = 1 (see Fig. 1).
The ratio A−/A+ = 30 is chosen large enough for both
types of resonant surfaces—those for the Alfven and SMS
waves—to be able to exist in this system, for a wide enough
spread of the plasma temperature values (from β∗ = 0.01
to β∗ ∼ 1).

Let us define the solution of (9) near the resonant sur-
face x = xS . Let us linearize the coefficient attached to
the higher derivative in (9), representing k−2

x ≈ a2
s ξs , where

ξs = (x − xS)/as , as = (∂k−2
x /∂x)x=xs is the character-

istic scale of the k−2
x variation near x = xS . In order to

regularize the singularity in the solution of (9) we will for-
mally introduce a damping decrement, γs , for SMS waves
near the resonant surface x = xS , making a substitution,
ω → ω+ iγs , in the denominator of (10). Equation (9) may
then be rewritten as

∂

∂ξs
(ξs + iεs)

∂ζ

∂ξs
+ ζ = 0 (13)

near x = xS , where εs = kyasγs/kzCs(xs) is the regularized
factor determined by the decrement of SMS waves, where
the subscript S indicates that the values of the parameters
are taken for x = xS . Its solution is

ζ = C1 I0(2
√

−ξs − iεs) + C2 K0(2
√

−ξs − iεs), (14)

where I0(z), K0(z) is the modified Bessel functions. If the
wave source is to the right of the transition layer, then, using
an asymptotic representation of (14) in the opacity region at
ξs → −∞ (K0(z) → √

π/2ze−z , I0(z) → e−z/
√

2π z), we
find C1 = 0. To the right of resonance point ξs = 0 the
solution (14) has the form

ζ = −i
C2π

2
H (2)

0 (2
√

ξs + iεs), (15)

where H (2)

0 (z) is the Hankel function of the second kind,
which, as ξs → ∞, has an asymptotic representation,
H (2)

0 (2
√

ξs) ≈ π−1/2ξ
−1/4
s exp (−i2

√
ξs + iπ/4). When

ξs → 0, the solution (14)–(15) is

ζ = −C2

2
ln (−ξs − iεs), (16)

i.e. it has the same logarithmic singularity on the resonance
surface, as in the region of the Alfven resonance.
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There are essential differences, however. The above so-
lution describes a wave incident on the resonance surface.
The wave reflected from this surface is absent—it is de-
scribed by function I0(z), whose coefficient C1 = 0. This
means that the total energy of a wave incident on the reso-
nance surface is completely absorbed in its neighbourhood,
irrespective of the dissipation mechanism involved. If the
transparency region for SMS waves expands ad infinitum to
the right (which corresponds to the second condition (11)),
such waves will be completely absorbed near the resonance
surface. If the parameters of the wave under consideration
are such (the first condition (11)) that the incident wave
“leaks” through the barrier of opacity region (x01, x02) into
the SMS-wave transparency region (xs, x01), then the en-
ergy of the wave penetrating through this barrier is absorbed
completely in the neighbourhood of the resonance surface.
Note the energy absorption of the incident wave does not
exceed 50% in the neighbourhood of the Alfven resonance
surface located deep within the opacity region (x01, x02)
(Leonovich et al., 2010).

If the wave source is to the left of the resonance surface
(in the opacity region x < xs(ξs < 0)), then in the SMS
wave transparency region, ξs > 0, expanding ad infinitum,
the solution of (9) must describe a wave escaping from
the resonance surface. There is no incident wave on the
resonance surface, as described by the function K0(z), to
the right of ξs = 0: C2 = 0. Since the function I0(z) is
regular on the resonance surface, magnetosonic resonance
is also absent.

Using the ideal MHD approximation to study the SMS
waves, their very high dissipation ought to be taken into
account. To this end, their decrement can be introduced in
equations, near the resonance surfaces for SMS waves as
was done above. The magnitude of the decrement crucially
depends on the plasma ion to electron temperature ratio.
The dependence of the SMS wave decrement on the plasma
nonisothermality level is specified in Appendix A based on
the kinetic theory equations.

Detecting the presence of resonant SMS waves in a
plasma of high dissipation level is a rather difficult problem.
The oscillation amplitude increases only little at the reso-
nance surface. There is another possibility, however. Let
the parameters of the FMS wave incident on the inhomoge-
neous plasma layer be such that the resonance surfaces for
both the Alfven and SMS waves exist simultaneously. Due
to weakly localized resonant SMS oscillations, they can—
when dissipation is large enough—affect the behaviour of
oscillations near the Alfven resonance surface. The pres-
ence of magnetosonic resonance in the plasma system under
study may be detected via the behaviour of the oscillation
hodograph when moving through these surfaces.

A distinctive feature of resonant Alfven oscillations is the
change of the hodograph rotation direction of the transverse
magnetic field vector B⊥ = (Bx , By) as we pass through the
resonant surface. It follows from the sign reversal in ∂ζ/∂x .
In a case with small decrements γA, γs � ω, this rule is
valid when we pass through each resonant surface x = xA

and x = xS . We will look, however, at what happens when
decrements γA and γs are not too small.

Figure 2 demonstrates the distribution of ∂ζ/∂x as cal-

Fig. 2. Rotation of the polarisation hodograph of resonant MHD oscilla-
tions in the neighbourhood of resonant surfaces xA and xS for different
dissipation levels in the Alfven (εA = 0.1) and SMS oscillations. No-
tations 1, 2 and 3 correspond to different dissipation rates of the SMS
oscillations: 1—|ε̄s | = 0.01, 2—|ε̄s | = 0.1, 3—|ε̄s | = 1.

culated for εA = γA/ω = 0.1 and three values of εs =
γs/ω = 0.01; 0.1; 1. Here the behaviour of the hodographs
is conventionally presented in the plane (By, Bx ). For small
εs = 0.01 (Te/Ti � 1) the behaviour of the hodograph is
as expected. When εs increases to 0.1 (Te ∼ Ti ) the points
where the hodograph rotation direction changes shift away
from the resonant surfaces about as far as the distance be-
tween them. With εs increasing further to 1 (Te/Ti ≈ 0.1),
the hodograph rotation direction does not change at all.
This example demonstrates that the presence in the system
of strongly damped resonant SMS oscillations can change
the behaviour of the field components essentially, even in
the neighbourhood of the resonant surface for the Alfven
waves.

Almost everywhere in the Earth’s magnetosphere, Te �
Ti . As follows from the above calculations, this means that
SMS waves decay fast (γs ∼ ω). Therefore, the resonance
peaks are poorly-expressed for these waves and difficult
to detect in observations. If the resonance peaks for the
Alfven waves are also present in the system, however, the
above features of the hodograph behavior may indicate the
presence of resonant SMS waves. The only exception is
the region inside the plasmasphere on the magnetic shells
L < 2, where Te ≈ 2Ti (Titheridge, 1998). The decrement
of SMS waves is relatively small here so that resonant SMS
oscillations can be observed directly. It is, however, hard
to imagine FMS waves capable of reaching magnetic shells
that are so close to Earth.

4. Transfer of Momentum from the Solar Wind
Into Geotail via Magnetosonic Waves

Let us now consider the specific problem of momentum
transfer from the solar wind into geotail lobes via magne-
tosonic waves.

The magnetosheath plasma flow is turbulent. Such
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Fig. 3. A cylindrical model of the magnetotail within the solar wind
plasma flow. Magnetic field B0 is along the plasma cylinder axis. The
radial distribution of the solar wind velocity v0 flowing round the geotail
is shown schematically.

plasma oscillations can be regarded as a stochastic flow of
magnetosonic waves, partly directed towards the magneto-
sphere. Leonovich et al. (2003) have shown that up to 50%
of the energy of this wave flux can penetrate into the geo-
tail. The integrated energy of the wave flux penetrating into
the magnetosphere during a typical time interval between
two successive substorms is two orders of magnitude larger
than the total energy of magnetospheric convection and can
be used to maintain it. This is only a potential capacity,
however.

For each harmonic of magnetosonic waves there is a sur-
face in the magnetosphere from which it is completely re-
flected. Therefore, if no appreciable absorption of their
energy takes place while magnetosonic oscillations travel
from the magnetopause to the turning point, they must be
reflected back into the solar wind in almost their entirety.
The energy of MHD oscillations is known to be efficiently
absorbed at resonance surfaces for the Alfven and slow
magnetosonic waves (Leonovich and Kozlov, 2009). The
SMS waves are especially interesting in this regard. Due
to their very dissipative nature they are weakly localized
across magnetic shells and can interact with ions of the bulk
of the background plasma distribution function. To check
this possibility, we employ quasilinear theory to calculate
the velocity the background plasma acquires when interact-
ing with the flux of fast magnetosonic waves penetrating
into the magnetosphere from the magnetosheath.

Let us consider a model magnetotail in the form of an in-
homogeneous plasma cylinder as shown in Figs. 3–4. The
plasma distribution over radius corresponds to the geotail
lobes. This model does not explicitly take into account the
plasma sheet. Its presence is simulated by the radial distri-
bution of the Alfven and SMS velocity. Moving away from
the cylinder axis, they change from values characteristic of
the plasma sheet to those typical of the geotail lobes. The
radial distribution of the Alfven speed is plotted in Mazur
and Leonovich (2006) based on satellite data for the dis-
tribution of plasma concentration and magnetic field in the
magnetosphere (Sergeev and Tsyganenko, 1980; Borovsky

Fig. 4. Distribution of the Alfven speed A(r) and SMS wave speed Cs(r)

in the magnetotail and in the solar wind. On the resonance shells r = rS

(points 2 and 3) and r = rA (points 1 and 4), the parallel phase velocity
ω̄/kz of a monochromatic wave is equal to, respectively, local speed Cs

of SMS waves and Alfven speed A.

et al., 1998). Since the main results of that study concern
the region of open field lines, the presence of plasma sheet
should not be an essential element in the calculations.

We introduce a cylindrical coordinate system (r, φ, z) in
which the origin r = 0 coincides with the axis of the plasma
cylinder. The background magnetic field is directed along
the z axis. We assume that plasma in the magnetosheath
moves along the z axis at velocity v0, while plasma is mo-
tionless in the geotail, in the absence of waves (see Fig. 3 ).
Transition from the magnetospheric parameters to the mag-
netosheath parameters occurs in a narrow transition layer
of thickness 
r � rm , where rm is the characteristic ra-
dius of the geotail. We set such a plasma density distri-
bution over the radius that its maximum is reached on the
axis of the plasma cylinder, falling to a minimum toward
its boundary. Magnetic field in the magnetotail is stronger
than in the solar wind. The distribution of the Alfven speed
A = B0/

√
4πρ0 over the radius is presented in Fig. 4. Such

a distribution is typical of plasma parameters in the geotail
lobes.

As can be seen here, a maximum concentration of res-
onance surfaces for SMS waves in the geotail lobes is
reached near the transitional layer. Using the same system
of MHD equations (1)–(4) for cylindrical harmonics of the
form exp(ikzz + imφ − iωt), where m = 0, 1, 2, 3 . . . is
the azimuthal wave number, produces the following equa-
tion for displacement ζ :

∂

∂r

ρ0�
2

k2
r

1

r

∂rζ

∂r
+ ρ0�

2ζ = 0, (17)

where �2 = ω̄2 − k2
z A2, ω̄ = ω − kzv0 is the Doppler-
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Fig. 5. The spatial structure of monochromatic MHD waves for azimuthal harmonic m = 1 with different values of parallel phase velocity ω̄/kz : (a)
oscillations for which there are resonance shells for SMS waves in the geotail (ω̄A(rS) = ω̄S(rS)), (b) oscillations with no resonance shells inside the
geotail.

modified oscillation frequency,

k2
r = ω̄4

ω̄2(A2 + S2) − k2
z A2S2

− k2
z − m2

r2
(18)

= k2
z

1 + β∗
(ω̄2

A − ω̄2
A1)(ω̄

2
A − ω̄2

A2)

(ω̄2
A − ω̄2

S)
,

and ω̄A = ω̄/kz A(r), ω̄S = √
β∗/(1 + β∗), β∗ = S2/A2.

We substitute ω̄ → ω̄ + iγs in the denominator of (18) to
take into account SMS wave dissipation.

Figure 5 shows the radial structure of two monochro-
matic harmonics. There are resonance surfaces for SMS
waves in the magnetosphere (Fig. 5(a)) for one of them, but
not for the other (Fig. 5(b)). This figure presents the unity-
normalized structure of the derivative dζ/dr determining
the maximum oscillation amplitude on the resonance sur-
faces. The resonance surfaces for the SMS wave are deter-
mined by the intersection points of functions Re(ω̄A(r)) and
ω̄S(r), where the real part of the denominator in (10) van-
ishes. As was noted above, the decrement of SMS waves
strongly depends on the plasma ion to electron temperature
ratio. In the solar wind the plasma electrons are hotter than
the ions (Te ≈ 3Ti ), therefore, we assume γ̄S ≈ 10−2ω in
the magnetosheath. In the tail lobes, on the contrary, the
plasma ions are hotter than the electrons (Ti ≈ 8Te), which
corresponds to γ̄S ≈ 0.8ω (see Appendix A). The decre-
ment of SMS waves chosen for the magnetosheath changes
to the one typical of the magnetosphere in the same transi-
tion layer as the other plasma parameters.

Consider the problem of the ion distribution function in
magnetospheric plasma transformed under the impact of the
MHD wave flux from the magnetosheath. We use kinetic
theory equations in the locally quasilinear approximation.
This means that, on each resonance shell inside the geotail,
we will consider the distribution function in the same man-
ner as if it were defined over the entire space, while assum-
ing the MHD oscillation field to correspond to this shell. We
assume the plasma to consist of the hydrogen ions and elec-
trons. The asymptotic (when t → ∞) equation for the ion

distribution function f (v‖) in the presence of SMS waves
has the following form (see Appendix B)

∂ f̄

∂t
≈ ∂

∂v‖
D̄

∂ f̄

∂v‖
, (19)

where we use the Maxwell distribution function

f̄ (v‖, t = 0) = n0√
πvT i

exp

(
− v2

‖
v2

T i

)
, (20)

as the initial condition for solving (19). Presumably, the
plasma acquires this state in the geomagnetic tail lobes dur-
ing the substorm recovery phase. Here n0 is the plasma ion
concentration, vT i = √

2Ti/mi is the thermal velocity of
plasma ions on the magnetic shell under scrutiny,

D̄ = π

2

v4
T i

v‖ B2
0

∞∑
m=0

×
∫ ∞

0

〈∣∣∇r B̄r (r, m, kz = ω/v‖, ω)
∣∣2

〉
dω (21)

is the ion diffusion coefficient in the velocity space, v‖ is ion
velocity along magnetic field lines, 〈|Br |〉 is the averaged
amplitude of the radial magnetic field of oscillation, m is
azimuthal wave number.

Multiplying (19) by f̄ on the left and integrating over v‖
yields

1

2

∂

∂t

∫ ∞

−∞
f̄ 2dv‖ ≈ −

∫ ∞

−∞
D̄

(
∂ f̄

∂v‖

)2

dv‖. (22)

Hence, if a new equilibrium state is reached (∂ f̄ /∂t = 0)
at the asymptotic t → ∞, a “plateau” must appear in the
distribution function (∂ f̄ /∂v‖ = 0) in the intervals of v‖
where D̄ �= 0.

There are three areas where a “plateau” forms in the dis-
tribution function f̄ : −CS max < v‖ < −CS min, CS min <

v‖ < v2 and v1 > v‖ > CS max. The CS max, CS min corre-
spond to the maximum and minimum velocities of the SMS
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Fig. 6. Distribution over the radius of the plasma flow velocities v0 in the magnetosheath and magnetospheric convection velocity v̄0 for different
velocities of the solar wind. Curves 1, 2, 3 in panel (a) correspond to the solar wind velocity distribution for v0 = 200, 400, 800 km/s, curves 4
and 5 are the magnetospheric convection velocities when v0 = 400, 800 km/s, in the absence of “upstream” FMS waves in the magnetosheath, and
curves 6, 7, 8 (v0 = 200, 400, 800 km/s) are the magnetospheric convection velocities for equal fluxes of “downstream” and “upstream” FMS waves
in the magnetosheath. Panel (b) shows the distribution of complete velocity v0 + v̄0 (curves 1, 2, 3 for v0 = 200, 400, 800 km/s) when the flux of
“downstream” FMS waves prevails over that of the “upstream” FMS waves in the magnetosheath.

waves for which the local dispersion equation ω2 = k2
z C2

S
holds true in our model. The value CS min ≈ 8 km/s is
reached on the axis of the plasma cylinder, CS max ≈ 2000
km/s in the vicinity of the magnetopause. The solar wind is
transparent in the intervals of parallel wave numbers kz <

min(k1, k2) and kz > max(k1, k2), where k1,2 = ω/v1,2,
v1 = v0 + Sw, v2 = v0 − Sw, Sw is sound velocity in the so-
lar wind. In our model of the medium the sound velocity in
the magnetosheath Sw = 177 km/s. For solar wind plasma
flows with v0 > 200 km/s we have v1 > v2 > 0 and the
solar wind is opaque when 0 < k1 < kz < k2. Consider-
ing the resonance conditions for plasma particles interacting
with waves (kz = ω/v‖), we find that the distribution func-
tion remains unchanged in the range v2 < v‖ < v1. The
area CS min < v‖ < v2 corresponds to “downstream”, while
the two other areas to “upstream” FMS waves in the solar
wind.

The level of the plateau in each of these areas is deter-
mined by the condition that the total number of particles
should remain the same and can be expressed through the
following relation

f̄ j =
∫ v‖max

v‖min

f̄ (v‖)dv‖

/
(v‖max − v‖min),

where j = 1, 2, 3 is the number of an area with a “plateau”,
and the values v‖max,min correspond to the maximum and
minimum value of the parallel velocity of particles in each
of these intervals.

The average velocity of plasma resulting from its interac-
tion with MHD waves is determined by the equation

v̄0 = 1

n0

∫ ∞

−∞
v‖ f̄ (v‖)dv‖.

Obviously, the contribution from symmetric (with respect
to v‖ = 0) parts of f̄ (v‖) is zero. Figure 6 shows the
distribution of v0(r) as calculated for the parameters of the

cylindrical model of the geotail we use in this study, for
different solar wind velocities in the magnetosheath.

Figure 6(a) presents the solar wind velocity v0(r) pro-
files taking into account the transition layer, and plasma
velocity profiles in the geotail lobes v̄0(r) calculated for
two limiting cases. The first of these (curves 4 and 5
in Fig. 6(a)) assumes that all waves in the magnetosheath
move “downstream” and no plateaux form in the ranges
−CS max < v‖ < −CS min and v1 > v‖ > CS max. Obviously,
in this case the impulse transferred by MHD waves to ions
in the geotail lobes is tailward v̄0(r) > 0. In the second
limiting case, the “downstream” and “upstream” fluxes of
waves are equal. It is evident from Fig. 5(a), that in this case
the impulse transferred to plasma ions is Earthward. From
satellite observations of solar wind oscillations, it is diffi-
cult to determine which portion of the wave flux is “down-
stream” or “upstream”.

The most probable seems to be an intermediate case be-
tween the two, when the “downstream” waves in the mag-
netosheath occupy a broader part of the spectrum than do
the “upstream” waves. The summarized plasma velocity
distribution v0(r) + v̄0(r) in the case when the “upstream”
waves are absent from the range −CS max < −300 km/s <

v‖ < −CS min is displayed in Fig. 6(b). Evidently, in this
case the impulse transferred to ions in the regions adjacent
to the transition layer reverses the plasma flow motion back
to Earth, whereas closer to the cylinder axis the motion be-
comes tailward again. Note that the model in question is
inapplicable to those inner parts of the geotail where the
plasma sheet lies. As will be seen later, another reason why
the obtained results cannot be used for the inner regions of
the geotail is that the characteristic time for the asymptotic
regime of the plasma flow to set in there is too long.

The characteristic time τ needed for the completely mo-
tionless plasma to switch to the asymptotic regime of its
motion is determined by the amplitude of MHD waves
transferring the momentum from the solar wind into the
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magnetosphere. To estimate this time, let us replace the
time derivative in (22) with τ−1, resulting in

τ ≈ 2
∫ ∞

−∞
f̄ 2dv‖

/ ∫ ∞

−∞
D̄

(
∂ f̄

∂v‖

)2

dv‖. (23)

For the f̄ function, let us choose the Maxwell distribution
of the form (20).

To calculate the diffusion coefficient D̄, it is necessary to
specify the spectrum of MHD waves in the magnetosheath.
There are many onboard observations of variations in the
solar wind parameters. They are generally stochastic oscil-
lations with a “white noise” spectrum (Matthaeus and Gold-
stein, 1982). Here we shall use the model spectrum function
constructed in Leonovich and Mishin (1999)

〈|B̄r |2〉 = C�(kt , ω)ω−αk−2β
t , (24)

where C is a constant determined by the average oscilla-
tion amplitude, and �(kt , ω) is a step function determining
the upper and lower limits of the spectrum, as well as the
wave range for which the solar wind is an opacity region.
This function well describes properties of the spectrum of
magnetosonic waves observed in the solar wind (Matthaeus
and Goldstein, 1982; Marsh and Tu, 1990; Goldstein et al.,
1995). The function �(kt , ω) may be written as

�(kt , ω) = �(ω − ω̂)�(ωi − ω)

× [
�(k̄z − k̄2) + �(k̄1 − k̄z)

]
,

where �(x) is the Heaviside step function, and k̄1 =
−ω/Sw < k̄z < k̄2 = ω/Sw is the range of parallel
wave numbers corresponding to solar wind opacity for FMS
waves. Constant C in (24) is determined by the inverse
Fourier transformation

〈|Br |2〉 = 1

(2π)3/2

∞∑
m=0

∞∫
0

dω

∫ ∞

−∞
〈|B̄r |2〉dk̄z

= C

(2π)3/2

∞∑
m=0

∞∫
0

ω−αdω

×
∫ ∞

−∞
�(kt , ω)k−2β

t dk̄z,

where 〈|Br |2〉 is the mean square of the amplitude of the Br

component of the solar wind oscillation field at r = 2rm . In
our calculations we assume 〈|Br |〉 ∼ 0.2B0 ≈ 1 nT.

Figure 7 shows the distribution over the radius of the
characteristic time τ needed for the asymptotic regime to
set in in the geotail plasma flow, as calculated using for-
mula (23), in which the diffusion coefficient is determined
by (21), and the spectrum of FMS fluctuations in the mag-
netosheath (24) corresponds to the plasma flow profiles in
Fig. 6(b). It is evident that the values of τ comparable with
the time during which the geotail can be regarded as a sta-
ble enough plasma configuration (average interval between
two successive substorms ∼3–6 h) is achieved in the ranges
0.8rm < r < rm (for the v0 = 400 km/s solar wind) and
0.85rm < r < rm (for the v0 = 200, 800 km/s solar wind).

Fig. 7. Distribution over the radius of the characteristic time τ needed
for the asymptotic regime of the magnetospheric convection to set in
for different solar wind velocities in the magnetosheath. Curves 1, 2,
3 correspond to v0 = 200, 400, 800 km/s for an average amplitude of
stochastic FMS oscillations in the magnetosheath 〈|Br |〉 ∼ 1 nT.

It is in this range of magnetic shells that a maximum con-
centration of resonance surfaces for SMS waves is reached
in our model geotail.

The obtained values of τ can be regarded as the upper
limit of the time needed for the asymptotic regime to set
in in the plasma flow. Time τ decreases quadratically when
the amplitude of turbulent plasma oscillations in the magne-
tosheath increases. Moreover, a more accurate approach to
solving the initial problem (19) must take into account con-
tribution from MHD oscillations related to the evolution of
a Kelvin-Helmholtz instability at the magnetopause. The
solar wind being opaque for such oscillations (Leonovich,
2011a, b), the problem would be formulated in a different
manner than in this work.

These oscillations do not provide a significant contribu-
tion to the oscillation amplitude in the solar wind far from
the plasmapause. They can, however, produce a significant
additional contribution to the oscillation amplitude in the
magnetotail, in the region adjacent to the magnetopause.
To determine this contribution it is necessary to specify the
amplitude of these oscillations and solve the problem of de-
termining their spatial structure. In contrast to oscillations
in the magnetosheath, the amplitude of these oscillations is
uncertain, varying strongly as per the solar wind parame-
ters. Therefore, to avoid unnecessary complications of the
problem, the Kelvin-Helmholtz instability-related oscilla-
tions were not taken into account in the above suggested
approach. If the flux of unstable waves in the geotail is as-
sumed to be comparable with the wave flux discussed in this
work, we may expect a 1.5–2 fold increase in the amplitude
of the resonant SMS waves. As follows from the above cal-
culations, this means a 2–3-fold decrease in the character-
istic time τ as well as a somewhat wider range of magnetic
shells on which the asymptotic regime of magnetospheric
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Fig. 8. The curvilinear orthogonal coordinate system (x1, x2, x3) of
the dipole-like magnetic field lines and the non-orthogonal coordinate
system (a, φ, θ ) used in numerical calculations.

convection can set in.

5. Magnetosonic Resonance in a 2-D Inhomoge-
neous Dipole-Like Magnetosphere

Let us now address the features of magnetosonic reso-
nance in a dipole-like magnetosphere (Fig. 8). Unlike the
media models discussed above, resonance in this case arises
on closed field lines. The result is that, due to the bound-
ary conditions imposed on the ionosphere, SMS oscillations
form standing waves along field lines.

Let us introduce a curvilinear orthogonal coordinate sys-
tem (x1, x2, x3), in which the coordinate x3 is along the
field line, x1 is across the magnetic shells, and the azimuthal
x2 coordinate completes the right hand coordinate system.
The squared length element in this coordinate system is
found as

ds2 = g1(dx1)2 + g2(dx2)2 + g3(dx3)2,

where gi (i = 1, 2, 3) are metric coefficients. We assume
that the plasma and magnetic field are homogeneous along
the azimuthal coordinate x2.

It is convenient to describe the MHD field components
via electromagnetic potentials. According to the Helmholtz
expansion theorem (Korn and Korn, 1968), an arbitrary
vector field, at any point of which its first derivative is
determined, can be represented as a sum of the potential
and vortex fields. For the two-dimensional vector E =
(E1, E2, 0) this expansion has the form

E = −∇⊥ϕ + [∇⊥, �],

where ∇⊥ ≡ (∇1, ∇2) is the transverse 2-dimensional gra-
dient, ϕ and � are the scalar and vector potentials, re-
spectively. Under proper gauge calibration, the vector po-
tential has a longitudinal (field-aligned) component only,
� = (0, 0, ψ3 ≡ ψ). Using the linearized system (1)–
(4) we express the perturbed magnetic field components

through the potentials ϕ and ψ as

B1 = c

ω

g1√
g
∇3

(
k2ϕ − i

g2√
g
∇1ψ

)
,

B2 = c

ω

g2√
g
∇3

(
i∇1ϕ + k2

g1√
g
ψ

)
,

B3 = i
c

ω

g3√
g

(
∇1

g2√
g
∇1ψ − k2

2
g1√

g
ψ

)
. (25)

After some transformation, the system of linearized equa-
tions (1)–(4) is reduced to a system of two related equations
for the potentials ϕ and ψ (see Leonovich et al., 2006)

∇1 L̂T ∇1ϕ

−k2
2

(
L̂ Pϕ + S2

A2

ϕ√
g1g2

∇1 ln B0∇1 ln
√

g3 Pσ
0

B0

)
= ik2

(
∇1 L̂T

g1√
g
ψ − L̂ P

g2√
g
∇1ψ

)
, (26)

B0
√

g3

4πρ0
L̂0

B0√
g3


̃ψ + S2
ψ + ω2ψ

= −i
B0

√
g3

4πk2ρ0
L̂0 B0 L̂T ∇1ϕ

−iϕk2S2 g3√
g
∇1 ln

√
g3 Pσ

0

B0
. (27)

where p = √
g2/g1, σ = 1/γ . In (26) we introduced

the toroidal L̂T and poloidal L̂ P longitudinal operators, as
follows

L̂T = 1√
g3

∇3
p√
g3

∇3 + p
ω2

A2
,

L̂ P = 1√
g3

∇3
p−1

√
g3

∇3 + p−1 ω2

A2
,

and in (27) the longitudinal operator L̂0

L̂0 = γ

ω2

P1−σ
0√

g
∇3

√
g

g3

Pσ
0

ρ0
∇3 + 1,

and the differential operators analogous to the Laplace op-
erator:


̃ = g3√
g
∇1

g2√
g
∇1 − k2

2

g2
+ ∇3

g2√
g
∇3

g1√
g
,


 = B0

Pσ
0

1√
g1g2

(
∇1

pPσ
0

B0
∇1 − k2

2

p

Pσ
0

B0

+ ∇3

√
g

g3

Pσ
0

ρ0
∇3

ρ0

B0
√

g3

)
.

In a homogeneous plasma, the right-hand parts of these
equations vanish. The operator in the left-hand part of
(26) then provides the dispersion equation for the Alfven
waves ω2 = k2

‖ A2, where k2
‖ ≡ k2

3/g3 is the field-aligned
component of the wave vector. The operator in the left-
hand part of (27) yields the dispersion equation for the slow
and fast magnetosonic waves:

ω4 − ω2k2(A2 + S2) + k2k2
‖ A2S2 = 0, (28)
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where k2 = k2
‖ + k2

⊥ is the squared total wave vector, and
k2
⊥ = k2

1/g1 + k2
2/g2 is the squared transverse wave vec-

tor component. Thus, Alfven oscillations are described by
the scalar potential ϕ, and magnetosonic modes are charac-
terized by the longitudinal component ψ of the vector po-
tential. The solution of the dispersion equation (28) can be
represented as

ω2 = k2

2
(A2 + S2) ±

√
k4

4
(A2 + S2)2 − k2k2

‖ A2S2.

Here the plus/minus sign corresponds to the FMS/SMS
waves. If one of the inequalities S � A, A � S, or
|k‖| � |k⊥| holds, the following approximate dispersion
equations can be obtained: ω2 ≈ k2C2

F for the FMS waves,
where C2

F = A2 + S2 and ω2 ≈ k2
‖C2

S for the SMS waves,
where C2

S = A2S2/(A2 + S2).
In an inhomogeneous plasma, the right-hand parts of (26)

and (27) describe the interaction of the Alfven and magne-
tosonic modes. Although the potential ψ describes both the
fast and slow magnetosonic modes, in the linear approxi-
mation this potential can be decomposed as the sum of the
component ψF , related to the FMS wave, and ψS , related to
the SMS wave, that is ψ = ψF + ψS . Away from the res-
onance surface, the main contribution to potential ψ comes
almost exclusively from the FMS oscillations (ψ ≈ ψF ).
Neglecting the small component (∼ S/A � 1) related to
the derivatives along the longitudinal coordinate x3 in the
operator L̂0 in (27), we obtain an equation that describes
the FMS wave field far from the resonant surface:

A2
̃ψF + S2
ψF + ω2ψF = 0. (29)

An approximate solution of (29) was found in Leonovich
and Mazur (2000, 2001) where feedback from the mode
driven by the FMS wave was shown to be small, thus mak-
ing it possible to use the decoupled equation (29) to describe
FMS oscillations throughout the entire region of their exis-
tence, even inside the resonant region.

For the magnetosphere the typical eigenfrequencies of
fundamental harmonics of standing Alfven and SMS waves,
as determined by the background plasma, differ consider-
ably. This means that interaction between the Alfven and
SMS waves, possible in a finite-pressure plasma embed-
ded in a curved magnetic field (Southwood and Saunders,
1985), is negligible. While examining the SMS oscillation
structure described by Eq. (27) one may put ϕ = 0 in its
right-hand part. Therefore, in the vicinity of the resonant
surface we obtain the equation for the resonant SMS oscil-
lations:

B0
√

g3

4πρ0
L̂0

B0√
g3


̃ψS + S2
ψS + ω2ψS

= A2S2

ω2

ρ0/
√

g1g2

B0 Pσ
0

∇3

√
g

g3

Pσ
0

ρ0
∇3

B0√
g3


̃ψF . (30)

The right-hand part of (30) represents the driver—
monochromatic FMS wave field—that will be treated as a
function known from the solution of (29). At the frequen-
cies in question, the magnetosphere as a whole is an opacity

region for FMS. If we assume the source of FMS oscilla-
tions to be either outside, or at the boundary of, the magne-
tosphere, their amplitude decreases exponentially inside the
magnetosphere on a scale proportional to m. FMS oscilla-
tions with m � 1 practically do not penetrate into the mag-
netosphere. Only oscillations with m ∼ 1 on resonant shells
have an amplitude sufficient to drive SMS waves effectively.
Therefore, we shall consider oscillations with m ∼ 1.

The boundary condition for SMS waves on the iono-
sphere, taking into account its finite conductivity, has the
form (Leonovich and Mazur, 1996; Leonovich et al., 2006)

ψS|l=l± = ∓i
v±
ω

∂ψS

∂l

∣∣∣∣
�=�±

, (31)

where the signs “±” refer to the intersection points of the
field lines with the Northern and Southern ionospheres; �

is the coordinate measured along the field line from the
equator, d� = √

g3dx3,

v± = c2 cos χ±
4π�

(±)
p

,

�(±)
p is the height-integrated Pedersen conductivity of the

ionosphere.
As we will see, the typical scale of resonant SMS os-

cillations across magnetic shells is much smaller than their
longitudinal wave length, |∇1ψs/ψs | � |∇3ψs/ψs |. There-
fore, a solution to (30) may be sought using the method of
different scales, representing the potential ψS as

ψS = U (x1)(S(x1, x3) + h(x1, x3)), (32)

where the function U (x1) describes, in the main order, the
small-scale transverse structure of oscillations along the x1

coordinate, whereas the function S(x1, x3) describes the
oscillation structure along magnetic field lines. The typ-
ical scale of S(x1, x3) along x1 is assumed to be much
larger than the scale of U (x1). The small correction term
h(x1, x3) describes the oscillation structure in higher orders
of the perturbation theory.

An equation for the longitudinal structure can be obtained
if one retains in (30) only the main-order terms (∼ ∇2

1ψS)
of perturbation theory:

∂

∂�
α(x1, �)

∂ H

∂�
+ ω2

C2
S

α(x1, �)H = 0, (33)

where H(x1, x3) = S(x1, x3)B0/(g2
√

g3), α(x1, �) =
Pσ

0
√

g1g2/ρ0. We assume that, in the main order, the
functions S(x1, x3) satisfy the homogeneous boundary con-
ditions in the ionosphere: S(x1, x3

±) = 0. The solu-
tion of (33), with such boundary conditions, is a series of
eigenfunctions SN (x1, �) and corresponding eigenfrequen-
cies �SN (x1), where N = 1, 2, 3 . . . is the longitudinal
wavenumber. In the two first orders of the WKB approx-
imation, the solution of (33) satisfying the above boundary
conditions has the form

SN (x1, x3) =
√√√√ 2

tS

g3g3/2
1

Pσ
0 g1/2

2

CS

A2
sin

(
�SN

∫ l

l−

dl

CS

)
. (34)
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Fig. 9. (a) Equatorial distribution of the Alfven speed A and the SMS waves speed CS across the magnetic shells (L = a/RE , RE is Earth radius). (b)
Distribution across the magnetic shells of eigenfrequencies fSN = �SN /2π of the first three harmonics of standing SMS waves and the travel time
along the field line between conjugate ionospheres tS at the SMS wave velocity CS .

Fig. 10. The spatial structure of the resonant SMS oscillations. (a) Structure along the magnetic field lines of the first three harmonics of standing SMS
waves SN (θ) (N = 1, 2, 3 ) at the magnetic shell a = 6.6RE . (b) Transverse structure of magnetic field components of the first harmonic (N = 1):
the amplitude |Bi | and phase αi distributions close to the equatorial plane (i = x, y, z).

where �SN = π N/ts ,

ts =
∫ �+

�−

d�′

Cs
(35)

is the travel time along a field line between the magnetocon-
jugate ionospheres at SMS wave speed. The eigenfunctions
(34) are normalized by the following condition∫ l+

l−

pPσ
0

g1g3

A2

C2
S

S2
N dl = 1. (36)

Only numerical solutions can be found to equations (33),
however, describing the longitudinal structure of the fun-
damental and low-N magnetosonic harmonics. For a nu-
merical solution, we use the coordinate system (a, φ, θ ) re-
lated to the dipole magnetic field lines (see Fig. 8). The
plasma distribution is set using a self-consistent model of
the dipole magnetosphere (Leonovich et al., 2004). The ra-
dial distributions of the Alfven and magnetosonic speeds
in the equatorial magnetospheric plane derived from this

model are shown in Fig. 9(a). Such a distribution of plasma
parameters is typical of the Earth’s dayside magnetosphere.

All the following calculations concern the magnetic shell
corresponding to the geosynchronous orbit, a = 6.6RE .
Figure 9(b) shows the radial distributions of the eigen-
frequencies of the first three harmonics of standing SMS
waves, obtained from a numerical solution of (33) for the
ionosphere under homogeneous boundary conditions. The
same figure displays the distribution of transit time tS de-
termining, in the WKB approximation, the frequencies of
standing SMS waves. It is easily verifiable that the numeri-
cally calculated frequencies of the first harmonics differ sig-
nificantly from the WKB ones. They occupy the lowest-
frequency part of the spectrum of MHD oscillations ob-
served in Earth’s magnetosphere ( f � 1 mHz).

Figure 10(a) shows the field-aligned structures of the
first three harmonics of standing SMS waves. The funda-
mental harmonics of standing SMS waves differ from their
WKB representation (34) radically. The main peculiarity of
fundamental SMS harmonics is a rapid decrease in ampli-
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tude when approaching the ionosphere. Such a structure of
SN (x1, x3) results in a number of important consequences.
First, resonant SMS oscillations are impossible to detect on
the ground or by a low-orbit satellite. Second, the iono-
sphere cannot be an absorber of the resonant SMS wave en-
ergy. SMS wave damping in the magnetosphere is caused
by their resonant interaction with the background plasma
particles.

Note that such a structure of standing SMS waves is only
typical of long magnetic field lines in the outer magneto-
sphere. In the inner plasmasphere (on magnetic shells L <

2), the distribution of standing SMS wave amplitudes on
short field lines is such as to feature sharp peaks at the iono-
spheric F2-region altitudes (Leonovich et al., 2010). More-
over, the plasma ion to electron temperature ratio in this
plasmaspheric region is such that SMS waves exhibit weak
enough dissipation (Te > 2Ti and γ /ω ∼ 10). Therefore,
standing SMS waves can exist in the plasmasphere long
enough, thus making their registration possible—based, for
example, on observations of the ionospheric total electron
concentration variations as detected by the GPS network re-
ceivers (Afraimovich et al., 2009).

Let us now address the structure of resonant SMS oscil-
lations across magnetic shells. Let us pre-multiply (30) by
SN pPσ

0 /
√

g3S2 and integrate along the field line between
the conjugate ionospheres. The correction term hN (x1, x3)

in (32) satisfies the following ionospheric boundary condi-
tion (see (31))

hN |l=l± = ∓iUN (x1)
v±
ω

∂SN

∂l

∣∣∣∣
l=l±

.

Given this boundary condition and (33), we obtain the fol-
lowing equation for function UN (x1):

(ω + iγN )2 − �2
SN

ω2
∇2

1U 2
N

−
[
β1N + (k2

2β2N + β3N )
(ω + iγN )2 − �2

SN

ω2

]
UN

= �N ,

(37)

where

β1N =
l+∫

l−

pPσ
0

g3
SN

(
∇3

g2√
g
∇3

g1√
g

SN + �2
SN

C2
S

SN

)
dl,

β2N =
l+∫

l−

pPσ
0

g2g3

A2

C2
S

S2
N dl,

β3N = −
l+∫

l−

pPσ
0

g3

A2

S2
SN ∇3

g2√
g
∇3

g1√
g

SN dl,

�N = �2
SN

ω2

l+∫
l−

pPσ
0

g3

A2

C2
S

SN 
̃ψF dl.

Here, the damping decrement, γN , for each of the harmon-
ics of standing SMS waves is determined, near the reso-

nance surface, by the plasma ion to electron temperature
ratio.

Let the function �SN (x1) change monotonically, so that
a linear dependence

�SN (x1) ≈ ω

(
1 − x1 − x1

SN

L

)
(38)

be used to approximate �SN (x1) in the vicinity of the reso-
nant surface.

This approximation is valid at |x1 − x1
SN | � L , where

L = |∂ ln �SN /∂x1|−1 is the typical scale of the �SN vari-
ation at x1 = x1

SN . Substituting (38) into (37) and intro-
ducing the dimensionless variable ξ = (x1 − x1

SN )/λSN ,
where λSN = 1/

√
β3N , we obtain an equation describing

the transverse structure of magnetosonic resonance

(ξ + iε)
∂2UN

∂ξ 2
− [cN + (1 + dN )(ξ + iε)]UN = G N .

(39)

The coefficients of this equation are: ε = γN L/ωλSN is
the dimensionless width of the resonance, cN = β1N LλSN ,
dN = β2N k2

2λ
2
SN , and G N = �N λSN L . These coefficients

may be considered as constants because they vary insignifi-
cantly within the localization region of the desired solution
UN (ξ).

Solution to (39) has the form (see Leonovich and Mazur,
1997)

UN (ξ) = iG N (0)

∞∫
0

exp[ik(ξ + iε) + iζ(k)]

k2 + 1 + dN
dk, (40)

where

ζ(k) = cN√
1 + dN

arctan
k√

1 + dN
.

As ξ → 0 the bulk of the integrand (40) accumulates in the
domain k � 1, making it possible to set ζ(k) ≈ ζ(∞) in
the exponent, while neglecting all the terms but k2 in the
denominator. This yields

UN (ξ)
ξ→0≈ G N (0)eiζ(∞)(ξ + iε) ln(ξ + iε). (41)

In the asymptotic |ξ | → ∞ the bulk of the integrand (40)
accumulates in the domain k � 1, making it possible to set
k = 0 in ζ(k) and in the denominator. The integral is then
easily calculated

UN (ξ)
|ξ |→∞≈ − G N (0)

1 + dN

1

ξ + iε
.

Thus, the amplitude of the resonant SMS oscillations away
from the resonant plane decreases asymptotically as ∝
|ξ |−1. This behavior satisfies the boundary conditions on
the x1 coordinate—resonant oscillations have a finite am-
plitude far from the resonance surface. The magnetic field
components of the oscillation near the resonance surface are
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described by following expressions

B1N ≈ −i
B N

λSN
ln(ξ + iε)

(
g1√

g
∇3

g2√
g

SN

)
,

B2N ≈ k2 B N (ξ + iε) ln(ξ + iε)

(
g2√

g
∇3

g1√
g

SN

)
,

B3N ≈ i
B N

λ2
SN

1

(ξ + iε)

SN

g1
,

where B N = (c/ω)G N (0)eiζ(∞). The longitudinal (com-
pressional) magnetic component B3N has the strongest sin-
gularity, ∝ ξ−1. The radial magnetic component B1N

has a weaker logarithmic singularity, and the azimuthal
component B2N is regular. Figure 10(b) shows the radial
amplitude-phase structure of the physical components of
the wave magnetic field (Bx ≡ B1/

√
g1 = |Bx |eiαx , By ≡

B2/
√

g2 = |By |eiαy , and Bz ≡ B3/
√

g3 = |Bz|eiαz ) of the
fundamental harmonic (N = 1) of SMS waves near the res-
onant magnetic shell a = 6.6RE . The response to the FMS
wave is normalized in such a manner as to make the peak
value |Bz| = 1 at the resonance surface.

The initial oscillation phase is chosen to be zero in an
asymptotically distant region right of the resonant shell. For
numerical calculations the damping rate and the imaginary
correction factor were chosen to be rather small, ε = 10−2,
to expose the resonant structure. The amplitude of the reso-
nant SMS oscillations is controlled by the FMS wave ampli-
tude and the SMS damping rate. When γN and ε increase,
the maximum amplitude decreases and the resonant peak
widens. Passing through the resonant peak the phase of the
compressional Bz component changes approximately by π ,
the phase of the Bx component by ∼ π/2, while the phase
of the By component remains practically the same.

6. Conclusion
In this paper we would like to emphasize the possibil-

ity of resonant conversion of large-scale fast magnetosonic
waves into localized slow magnetosonic oscillations. Sev-
eral magnetospheric processes are discussed in which mag-
netosonic resonance may play an appreciable role.

1. The problem of the magnetosonic waves incidence
on and reflexion from the plasma transition layer is solved.
The conditions for the Alfven and magnetosonic resonances
are realized when FMS waves pass from the solar wind into
the magnetosphere through the magnetopause, as well as
in the regions of well-developed ring current in the magne-
tosphere. Some field components of resonant oscillations
have singularities on the resonance surfaces, in the absence
of dissipation.

To regularize singularities near the resonant surfaces, ef-
fective decrements are introduced both for the Alfven and
SMS waves as imaginary additions to the oscillation fre-
quency. Dissipation of the Alfven oscillations is small
enough. The decrement of the SMS oscillations, in con-
trast, can be rather large. Its value is determined by the
plasma ion to electron temperature ratio near the resonant
surface for the SMS wave. Oscillations reaching the reso-
nant surface for SMS waves are absorbed completely in its
neighbourhood.

It was shown that, if dissipation of oscillations near the
resonant surfaces for SMS waves is large enough, the pres-
ence of strongly decaying resonant SMS oscillations in the
system changes the wave field substantially. When γs ∼ ω

this influence extends up to the resonant surface for the
Alfven waves. Specifically, the hodograph rotation direc-
tion is not reversed for monochromatic oscillations when
we pass through the Alfven resonant surface. This phe-
nomenon is applicable for identifying the presence of a res-
onance surface for SMS waves in the plasma configuration
under consideration.

2. Magnetosonic resonance may be used to transfer
the momentum from fast magnetosonic waves penetrating
into the geotail lobes from the magnetosheath, to the back-
ground plasma. A rather wide (in frequency and wave num-
bers) range of waves is shown to exist for which the condi-
tions for magnetosonic resonance are satisfied in the geotail.
The highest concentration of resonance shells is achieved
in the geotail regions adjacent to the magnetopause. The
framework of quasilinear theory is used to obtain an ap-
proximate solution to the equation describing the evolution
of the plasma ion distribution function under the impact of
an MHD wave flux. It is shown that, on the time asymptotic
(when t → ∞), an Earthward plasma flow moving at 50–
150 km/s is established in the geotail lobe regions adjoining
the magnetopause.

The characteristic time τ needed for the asymptotic
regime to set in in the plasma flow in the regions adjoin-
ing the magnetopause was found to be comparable with the
mean time interval ∼3–6 h, during which the geotail con-
figuration can be regarded as stable. It increased sharply
on the inner magnetic shells, however. Thus, the FMS wave
flux moving from the magnetosheath into the magnetopause
transfers its momentum to plasma ions in the geotail lobes
which is capable of forming an Earthward flow of magne-
tospheric convection. This mechanism may explain the for-
mation of an Earthward flow of magnetospheric convection
in the geotail lobes (on open field lines) during prolonged
periods of the Northern IMF component.

3. The problem of the spatial distribution of resonant
SMS oscillation field in an axi-symmetric magnetosphere
with a dipole-like magnetic field is solved. These oscilla-
tions are peculiar in that their longitudinal structure rep-
resents a wave standing along field lines due to boundary
conditions on the ends of field lines crossing the highly con-
ductive ionosphere twice. On the long field lines examined
in this work (at the L ∼ 5–10 magnetic shells) the oscilla-
tion amplitude is maximum near the equatorial surface de-
creasing rapidly away from it. Therefore, resonant SMS
oscillations can only be observed near the magnetospheric
equatorial plane.

The frequency spectra of the fundamental harmonics of
standing Alfven and SMS waves differ by about two orders
of magnitude, so that an effective coupling between these
two branches of MHD oscillations is impossible in a mildly
disturbed magnetosphere. If dissipation of SMS waves is
not too high—allowing their resonant structure to be con-
spicuous enough—it is the longitudinal components of the
magnetic field and velocity of the oscillations that have the
largest amplitude. Passing through the resonant peak, the
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phase of the compressional component B‖ changes by π .
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Appendix A. Local Decrement of SMS Waves
Let us consider a homogeneous plasma the parameters of

which are equal to the parameters at the point of magne-
tosonic resonance, x = xS , under consideration. The dis-
persion equation for low-frequency oscillations of plasma
with a maxwellian distribution of particles over velocities
(see Akhiezer et al., 1974) is

1 +
∑
α=i,e

ω2
pα

k2v2
α

[
1 + i

√
π zα

0 exα

∞∑
n=−∞

In(xα)w(zα
n )

]
= 0,

(A.1)

where summation is with respect to the kind of the parti-
cles (the α index denotes the plasma ions and electrons) and
to the cyclotron harmonics (the n index). The notation is:
k is the wave vector module, xα = k2

⊥ρ2
α , ρα = vα/ωα

is the Larmor radius, ωα = eB0/mαc is the cyclotron
frequency, ωpα =

√
4πnαe2/mα is the plasma frequency

and vα = √
Tα/mα is the thermal velocity of particles

of the α kind, zα
n = (ω − nωα)/

√
2kzvα . The modi-

fied Bessel function In(xα) is approximately represented as
In(xα) ≈ (xα/2)n/n! when the values of the argument are
small (we will assume the condition |k⊥ρα| � 1 to be sat-
isfied). Function w(z) is the probability integral having the
following asymptotic representations (see Abramowitz and
Stegun, 1964):

w(z) = e−z2

(
1 + 2i√

π

∫ z

0
et2

dt

)
≈

{
1 − z2 + 2i z/

√
π, |z| � 1,

exp(−z2) + i/
√

π z, |z| � 1.

In the known extreme case (see Akhiezer et al., 1974) vi �
|ω/kz| � ve, it is possible to confine ourselves to the zero
harmonics in the sum with respect to n in (A.1) and write
down the dispersion equation approximately as

ω2
pi

k2

(
1

v2
s

(1 + i
√

π z0
e) − k2

z

ω2

)
≈ 0,

where ω2
pi/v

2
s = ω2

pe/v
2
e , vs = √

Te/mi . In the zero-order
perturbation theory the solution of this equation gives, for
the extreme case Te � Ti , the dispersion equation for SMS
waves: ω2 = k2

z v
2
s . Taking into account the next order

of perturbation theory, we obtain the dispersion equation
including the oscillation energy absorption

ω2 = k2
z v

2
s

(
1 − i

√
πme

2mi

)
.

In this extreme case (Te/Ti → ∞) the value of interest
is ε̄s = γ̄s/Re(ω) ≡ ε̄s∞ = −√

πme/2mi/2 ≈ −0.015.
The total solution of (A.1) calculated numerically in the
range 10−2 < Te/Ti < 102 is presented in Fig. A.1. The
calculated curve ε̄s(Te/Ti ) has a universal form in a wide

Fig. A.1. SMS oscillation decrement γ̄s ≡ Im ω to frequency Re ω ratio
versus the plasma non-isothermality parameter log(Te/Ti ).

enough range of variation of the plasma parameters (1 nT ≤
B0 ≤ 10 T; 1 km/s ≤ A ≤ 104 km/s; 10−2 ≤ β ≤ 1).

It should be noted, however, that, unlike the Alfven os-
cillations, the damping decrement of SMS oscillations for
Te/Ti ≥ 1 is rather large (|ε̄s | ∼ 1). Therefore the reg-
ularizing factor εs in the denominator of (10), should be
localized near x = xS on such a scale where the oscil-
lations in question can be treated as SMS waves. Obvi-
ously, this scale is determined by the size of the trans-
parency region for the SMS waves 
s = xs − x01. If the
linear expansion for the Alfven speed of the form A2(x) ≈
A2

S[1 − (x − xS)/as] is applicable near xS, x01, we have

s ≈ k2

z asβ
∗/[(k2

z + k2
y)(1 + β∗)2 − 2k2

z β
∗]. For small

magnitudes β∗ � 1 this scale 
s ≈ asβ
∗k2

z /(k
2
z + k2

y) is
much smaller than the scale as = (∂ ln(A2(x))/∂x)−1

x=xs
,

and when β∗ ∼ 1 they are comparable. To localize the
decrement of SMS oscillations near x = xS we will per-
form a substitution ω → ω − iγs in the denominator of
(10), where the model expression

γs = −γ̄s exp[−(x − xs)
2/
2

s ], (A.2)

will be chosen for the decrement γs , or, similarly, εs =
−ε̄s exp(−(x−xs)

2/
2
s ) used in the numerical calculations.

Obviously, this approach cannot be used for the case of
SMS waves incident on the transition layer. These waves
will decay strongly in their entire region of existence.

Appendix B. Ion Distribution Function as Trans-
formed under the Impact of Resonant
SMS Waves

In the presence of SMS waves, the asymptotic form of the
equation for the ion distribution function (when t → ∞)
has the form (see Sizonenko and Stepanov, 1968; Akhiezer
et al., 1974)

∂ f

∂t
≈ ∂

∂v‖
D

∂ f

∂v‖
, (B.1)
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where

D = π

(
e

mi

)2 ∫
d3k

∣∣∣∣E3 J0(λ) + i
k‖v⊥
ω

J ′
0(λ)E2

∣∣∣∣2

×δ(ω − k‖v‖) (B.2)

is the ion diffusion coefficient in the velocity space. Here,
f ≡ f (v‖, v⊥, t) is the ion distribution function over veloc-
ities, v‖,⊥ are ion velocities along and across magnetic field
lines, J0(λ) is the Bessel function, λ = k⊥v⊥/ωi , k‖, k⊥ are
the parallel and perpendicular wave vector components, ωi

is ion gyrofrequency, and the various components of field
oscillations are subscripted with i = 1, 2, 3: E3 ≡ 〈E‖〉 is
the averaged amplitude of the oscillation electric field along
the magnetic field after averaging over the wave number
spectrum, E1 is the average amplitude of the field along k⊥,
and E2 is the average amplitude along the vector [B0k⊥].
The relationship between the oscillation frequency and the
wave vector components is determined by the local disper-
sion equation.

In the ideal MHD approximation, E3 = 0 for all types of
MHD waves, while for the E2 component we have

E2 =
〈
− ω

kzc

kr B̃r + kφ B̃φ

k⊥

〉
,

the angular brackets 〈 〉 denote averaging over the wave
vector phases, where kr , kφ, kz are the radial, azimuthal
and parallel components of the local Cartesian coordinate
system in a cylindrical model, and the tilde above denotes a
spatial harmonic of the Fourier transform. For example

B̃r = 1

(2π)3/2

∫
d3rBr (r)e−ikr.

Note that E2 = 0 for the Alfven waves, while the Br com-
ponent of the SMS wave field is singular, and the Bφ com-
ponent has a finite amplitude in the absence of dissipation
on the resonance surface. Using the natural assumption that
the ion Larmor radius ρi is small as compared to the wave-
length k⊥ρi = k⊥vT i/ωi � 1, where vT i ∼ v⊥ is ion ther-
mal velocity, we obtain

D ≈ π

4

v4
⊥

B2
0

∫
d3k

〈∣∣∣kr B̃r

∣∣∣2
〉
δ(ω − kzv‖)

for the diffusion coefficient.
From the solution of (17) we know the structure of the

wave field harmonic of the form

B̄r (r, m, kz, ω)

= 1

(2π)3/2

∫
Br (r, t)e−i(kz z+mφ−ωt)dφdzdt,

for which the diffusion coefficient can be written as

D ≈ π

4

v4
⊥

v‖ B2
0

∞∑
m=0

∫ ∞

0

〈∣∣∇r B̄r (r, m, kz = ω/v‖, ω)
∣∣2

〉
dω.

Here the integrand δ function was used for integrating over
kz . Averaging is over the phases of the frequency harmonic,
as well as over the azimuthal and parallel harmonics of the

wave vector. Thus it is clear that coupling occurs when the
parallel wave phase velocity ω/k‖ is the same as the parallel
plasma ion velocity v‖.

As the initial condition for solving (B.1), we use the
Maxwell distribution function

f (v‖, v⊥) = n0

π3/2v3
T i

exp

(
−v2

‖ + v2
⊥

v2
T i

)
.

This function describes the equilibrium plasma state in the
absence of waves.

As follows from the form of the diffusion coefficient
(B.2), Eq. (B.1) does not change the dependence of the
distribution function on v⊥. Integrating (B.1) over v⊥, we
obtain

∂ f̄

∂t
≈ ∂

∂v‖
D̄

∂ f̄

∂v‖
,

where

f̄ (v‖) =
∫ 2π

0
dφ

∫ ∞

0
v⊥ f (v‖, v⊥)dv⊥

= n0√
πvT i

exp

(
− v2

‖
v2

T i

)
,

D̄ = 1

πv2
T i

∫ 2π

0
dφ

∫ ∞

0
v⊥ De−v2

⊥/v2
T i dv⊥

≈ π

2

v4
T i

v‖ B2
0

∞∑
m=0

∫ ∞

0

〈∣∣∇r B̄r (r, m, kz = ω/v‖, ω)
∣∣2

〉
dω.
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