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СТРУКТУРА ОДНОМЕРНЫХ СТОЯЧИХ МГД-ВОЛН 

В ДНЕВНОЙ ПЛАЗМОСФЕРЕ И НА ЕЕ ГРАНИЦЕ 

А.Р. Поляков 

STRUCTURE OF ONE-DIMENSIONAL STANDING MHD WAVES 

IN THE DAYSIDE PLASMASPHERE AND AT ITS BOUNDARY 

А.R. Polyakov 

Метод корреляционных функций флуктуаций амплитуды и фазы (КФАФ) использован для обработки колебаний, 

численно получаемых для модели стоячих МГД-волн в плоском прямоугольном резонаторе. Оказалось, что для изо-

тропных волн БМЗ-моды интервал между двумя соседними пиками корреляционных функций  каждый раз при раз-

личных параметрах модели определяется только частотой первой гармоники одной из возможных одномерных стоячих 

волн. Впервые метод КФАФ использован для обработки реальных, а не моделированных, записей геомагнитных возму-

щений. Для станций Борок и Монды в качестве конечного продукта получены распределения значений периода первой 

гармоники стоячей волны. Оказалось, что все характерные значения этих периодов полностью соответствуют известным 

МГД-волнам в плазмосфере и на ее границе. 

The method of correlation functions of amplitude and phase fluctuations (CFAP) has been used to process oscillations ob-

tained numerically for the model of standing MHD waves in a flat rectangular resonator. Given different model parameters, the 

interval between two adjacent peaks of correlation functions  for isotropic waves of fast magnetoacoustic mode is determined 

only by the first harmonic frequency of one of possible one-dimensional standing waves. The CFAP method has been applied to 

processing real (not simulated) records of geomagnetic disturbances for the first time. Distributions of periods of the first har-

monic of the standing wave have been obtained as the final product for stations Borok and Mondy. It turned out that all character-

istic values of these periods corresponded completely to the known MHD waves in the plasmasphere and on its boundary. 

 

Введение 

Основные принципы, на которых основан пред-

лагаемый здесь метод обработки записей колеба-

тельных процессов, были сформулированы в работе 

[Поляков, Потапов, 2001]. Под обработкой в данном 

случае подразумевается определенная последова-

тельность программно реализованных численных 

процедур, которые служат для преобразования ис-

ходной записи сигнала. Примером может служить 

любой метод цифровой фильтрации или метод спек-

трального анализа, когда исходный сигнал преобра-

зуется в зависимость спектральной функции от ча-

стоты. В предлагаемом методе конечным продуктом 

преобразования являются корреляционные функции 

флуктуаций амплитуды и фазы (КФАФ) обрабаты-

ваемого сигнала. В работах [Поляков, 2010а, б] этот 

метод был весьма успешно использован для иссле-

дования структуры стоячих сейсмических волн в 

оболочках Земли. 

Рассмотрим участок почти монохроматических 

колебаний, которые содержат малые по величине слу-

чайные изменения амплитуды и фазы. В этом случае 

спектральная линия участка имеет небольшой разброс 

по частоте, а на записи каждое отдельное колебание по 

своей форме, амплитуде и периоду немного отличает-

ся от всех остальных. Среди колебаний естественного 

происхождения так выглядят, например, регулярные 

геомагнитные пульсации Pc1 и Pg, которые могут ино-

гда сохранять этот колебательный режим в течение 

нескольких часов. Согласно работе [Гудзенко, 1961], 

подобные колебания можно считать периодически 

нестационарным случайным процессом, для которого 

справедливо обобщение эргодической теоремы. Это 

означает, что по всем отдельным колебаниям, которые 

входят в состав участка записи, мы можем определить 

одно среднее колебание, которое периодически повто-

ряется от начала до конца участка. Кроме того, при 

определении авто- и кросскорреляционных функций 

случайных изменений амплитуды и фазы мы можем 

использовать усреднение по ансамблю реализаций 

отдельных колебаний на участке записи. Именно в 

таком способе определения корреляционных функ-

ций заключается главная особенность предлагаемого 

здесь метода обработки, которая отличает его от всех 

прочих методов. Другой особенностью является ис-

пользование алгоритма практического определения 

среднего колебания, предложенного в работе [Гуд-

зенко, 1962]. Этот алгоритм был положен в основу 

компьютерной программы, созданной при выполне-

нии исследований в работах [Поляков, Потапов, 2001; 

Polyakov, Potapov, 2003]. Порядок выполнения про-

цедур обработки и их основные алгоритмы подробно 

описаны в указанных работах. Поэтому здесь просто 

кратко перечислены основные этапы обработки.  

Исходным является временной ряд цифровых от-

счетов x(ti), соответствующий интервалу записи ко-

лебательного процесса. После предварительной об-

работки (устранение выбросов, фильтрация и т. д.) 

каждое значение x(ti) и время ti нормируется соот-

ветственно средней амплитудой и средним перио-

дом колебаний в интервале. Для каждого отсчета 

определяется производная y(ti)=dx/dt, и точки x(ti), 

y(ti) наносятся на фазовую плоскость прямоуголь-

ных координат (x, y). Каждое отдельное колебание 

на этой плоскости образует замкнутую траекторию 

(цикл), при малых флуктуациях не слишком отли-

чающуюся от окружности единичного радиуса. 

Среднее колебание или средний цикл определяется 

методом последовательных приближений, алго-

ритм которого подробно описан в [Гудзенко, 1962]. 

После этой процедуры для всех точек x(ti), y(ti) ис-

ходных циклов определяется фаза среднего коле-

бания Θi и отклонение вдоль направления нормали 

от среднего цикла n(Θi). Тангенциальные отклоне-

ния точек определяются соотношением γ(Θi)=Θi–ti. 

Физически фаза среднего колебания 
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2 ,t t       

где 2   – средняя частота с учетом нормировки 

времени. Нормальные и тангенциальные отклонения 

n и γ соответствуют случайным флуктуациям ампли-

туды и фазы колебаний. Полученные таким образом 

значения зависимостей n(Θi), γ(Θi) и их производных 

по времени dn/dt(Θi), dγ/dt(Θi) позволяют опреде-

лить для них кросс- и автокорреляционные функ-

ции. Конечным продуктом перечисленных проце-

дур обработки являются не сами эти функции, а их 

алгебраические комбинации, определяемые по 

формулам 
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где точка над символом означает производную по 

фазе Θ, угловые скобки – усреднение по ансамблю 

отдельных колебаний, τ – сдвиг фазы. Зависимость 

этих функций от фазы Θ по определению является 

периодической, поэтому ее можно представить в 

виде ряда Фурье, коэффициенты которого зависят 

только от τ. Конечным продуктом обработки явля-

ются коэффициенты нулевой гармоники ряда 

Фурье, которые совпадают со средними по фазе 

значениями каждой из функций. Эти зависящие от τ 

средние для простоты, не меняя особо смысла, бу-

дем называть корреляционными функциями флук-

туаций амплитуды и фазы (КФАФ).  

По результатам работ [Поляков, Потапов, 2001; 

Поляков, 2010а, б] оказалось, что эти функции обла-

дают очень любопытным и полезным для их даль-

нейшего использования свойством. Для колебаний в 

любой из точек внутри резонатора или волновода 

зависимости КФАФ от τ имеют вид последователь-

ности максимумов (пиков), следующих друг за дру-

гом через равные интервалы.  

В работе [Поляков, Потапов 2001] рассмотрена 

модель простейшего одномерного резонатора с «за-

крепленными» концами, колебания в котором воз-

буждаются волной «вынуждающей силы». Для ко-

лебаний в точке, находящейся вблизи одного из 

концов, удалось получить аналитические соотноше-

ния для КФАФ в приближении, когда частота ис-

точника не сильно отличается от одной из собствен-

ных частот резонатора. Оказалось, что зависимость 

КФАФ от τ определяется рядами гармонических 

функций (синус или косинус кратного аргумента), 

1( / ) ,х       

где ω, ω1 – частоты источника и первой гармоники 

резонатора. Суммирование производится по номе-

рам гармоник. Результатом суммирования являются 

чередующиеся через равные интервалы пики, а по-

ложение пика на оси τ определяется условием для 

аргумента x=2πk: 

1

2 ,k k


  


 (2) 

где k – номер пика. Интервал между двумя соседни-

ми пиками 

1

1

2 .k k


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
 (3) 

Перечисленные свойства КФАФ напоминают 

принцип действия дифракционной решетки. Дей-

ствительно, угловое распределение интенсивности 

света после прохождения через дифракционную 

решетку также определяется рядами гармонических 

функций кратного аргумента. Отличие состоит 

только в том, что суммирование производится по 

номерам не гармоник, а щелей решетки. Из усло-

вия, накладываемого на аргумент этих функций, 

следует известное условие для углового положения 

пика интенсивности, совершенно аналогичное 

условию (2). Получается, что пики зависимостей 

КФАФ от τ являются аналогом спектральных ли-

ний дифракционной решетки. 

Обнаруженное сходство вызывает естественное 

желание попытаться использовать метод КФАФ так 

же, как используется дифракционная решетка, т. е. 

для измерений. На входе программы обработки мы 

имеем запись колебаний в точке резонатора, а на 

выходе получаем последовательность пиков (линий) 

на зависимостях КФАФ от τ. По этим пикам можно 

напрямую измерить интервал . Частота ω совпа-

дает со средней частотой на исходном участке записи 

колебаний. Соотношение (3) дает возможность кос-

венного измерения ω1. Таким образом, если дифрак-

ционная решетка предназначена для определения 

длины волны света, то с помощью метода КФАФ 

мы можем экспериментально измерять частоту пер-

вой гармоники резонатора. 

 

Результаты модельного численного экспери-

мента 

Рассмотрим более реалистичную для геомагнит-
ных пульсаций модель, основанную на уравнениях 
МГД для плоского слоя при однородной плотности 
плазмы и постоянного магнитного поля, направлен-
ного вдоль оси ОZ:  
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 (4) 

где bx, bz – компоненты возмущения магнитного поля, 
V – альфвеновская скорость, δ – декремент затухания.  

Резонатором будем считать прямоугольник со 
сторонами lx, lz вдоль осей OX и OZ соответственно. 
Граничные условия соответствуют «закрепленным» 
концам: 

(0, ) ( , ) ( , ) 0,x x x z xb z b l z b l z     

( , 0) ( , ) ( , 0) ( , ) 0.x x z z z zb x b x l b x b x l      

Источником, возбуждающим волны в резонаторе, 

будем считать колебания bz-компоненты на стороне, 

расположенной на оси OZ:  
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 (0, ) ( , ) sin( ) sin( ) ( )zb z f z t kz t F t     (5) 

при 

0 zz l  ,  

где ω и k – частота и волновое число колебаний в 

источнике, F(t) – функция, определяемая случайным 

временным процессом. Наличие случайной функции 

в источнике необходимо по той причине, что без нее 

временные флуктуации амплитуды и фазы колеба-

ний в любых точках резонатора равны нулю. Для 

простоты в качестве F(t) нами был выбран обычный 

белый шум с гауссовским распределением, который 

при решении уравнений задавался генератором слу-

чайных чисел. 

Соотношения (4), (5) представляют собой самые 

простые волновые уравнения из физики плазмы, 

дополненные простейшими граничными условиями. 

Поэтому их решения нельзя считать электродина-

мическими, т. е. они не могут описывать никакой 

реальный физический объект. В данной работе (4), 

(5) играют роль модели обычного, в определенном 

смысле произвольного, резонатора для МГД-волн. 

Мы моделируем сигналы при значениях парамет-

ров, которыми можно управлять. Конечной целью 

является обработка этих сигналов методом КФАФ 

для выявления закономерностей, связанных с пика-

ми корреляционных функций. 

Для численного решения была использована яв-

ная разностная схема ([Аки, Ричардс, 1983] метод 

конечных разностей) и соответствующая этой схеме 

последовательность алгоритмов вычислений. Зада-

вая шаг пространственно-временной сетки h и зна-

чения параметров lx, lz, V, δ, ω, k, мы в результате 

вычислений получаем временные зависимости для 

компонент возмущения магнитного поля bx(t) и bz(t) 

в любой точке резонатора. 

На рис. 1 приведен пример зависимостей от τ 

всех функций (1) для bx-компоненты в точке, распо-

ложенной вблизи одного из закрепленных концов 

резонатора. Видно, что, как и в случае с одномер-

ным резонатором, эти зависимости представляют 

собой периодическую последовательность пиков 

или разрывов (для функции G1). При этом интервал 

между двумя соседними пиками 

1

2 2 ,z

z

l

V

 
    

 
 (6) 

где ω1z – частота первой гармоники альфвеновской 

стоячей волны.  

Эта и остальные подобные формулы для интер-

вала  получены в данной работе эмпирически. 

Вначале численно получаем решение bx(t) в задан-

ной точке. Затем для этого сигнала методом КФАФ 

получаем зависимости функций (1) от τ. Изменяя 

поочередно значения параметров модели и источни-

ка, отслеживаем связанные с ними изменения ин-

тервала между пиками  и определяем правую часть 

в соотношении (6). 

Колебания bz-компоненты возмущения магнит-

ного поля в модели плоского слоя обусловлены 

стоячими БМЗ-волнами. Для них эмпирическая 

формула для интервала между пиками  имеет вид 

 

Рис. 1. Пример зависимости всех КФАФ от фазового 

сдвига τ для колебаний bx-компоненты возмущения маг-

нитного поля в модели плоского слоя. 
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x

l
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где ω1x – частота первой гармоники одномерной 

стоячей волны вдоль оси OX. Если источник – 

функцию f(z, t) в (5) – перенести на смежную сто-

рону резонатора, расположенную вдоль оси OX, 

заменив при этом z на x, то аналогичная эмпириче-

ская формула будет иметь вид 
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2 2 ,z

z

l

V

 
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 
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где ω1z – частота первой гармоники одномерной сто-

ячей волны вдоль оси OZ. Получается, что для таких 

изотропных волн в двумерном резонаторе интервал 

между соседними пиками КФАФ может опреде-

ляться только двумя частотами, каждая из которых 

соответствует стоячей волне вдоль одной из коор-

динатных осей. 

Рассмотрим ситуацию, когда резонатор вдоль 

координаты x разделен на две области с разными 

значениями альфвеновской скорости V1 и V2 (рис. 2, б). 

В пределах каждой области скорости одинаковы во 

всех точках. Координату границы между областями 

обозначим lx1. Положение источника задается соот-

ношением (5). Это означает, что интервал между 

пиками  должен определяться частотой ω1x одномер-

ной стоячей волны вдоль координаты x. На рис. 2, а 

приведены зависимости G(τ) при различных соот-

ношениях между скоростями V1 и V2 для колебаний 
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Рис. 2. Зависимость КФАФ от τ в случае неоднород-

ной модели стоячих БМЗ-волн: функция G(τ) при различ-

ных значениях альфвеновской скорости первой и второй 

области (а); схема модели резонатора (б); функция G(τ) 

для колебаний в точках с разными координатами (в). 

bz-компоненты в точке, расположенной внутри пер-

вой области. Для верхней панели скорости обеих 

областей одинаковы. Такая ситуация полностью 

соответствует рассмотренному выше случаю одно-

родного резонатора. Поэтому интервал экс, экспе-

риментально измеренный по положению пиков на 

графике, практически точно совпадает с интервалом 

эмп, вычисленным по эмпирической формуле (7) с 

подстановкой всех заданных параметров модели. На 

следующей панели скорость V2 в 1.4 раза меньше 

скорости V1. Интервал экс заметно увеличивается, 

при этом эмпирическая формула для него имеет вид 

1

1

2 2 ,x

х

T

T


    


 (9) 

1 1
1

1 2

2 ,x x x
x

l l l
T

V V

 
  

 
  

где Т – период колебаний bz-компоненты в точке 

наблюдения. Период первой гармоники T1x равен 

времени пробега волны (туда и обратно) через обе 

области вдоль координаты x. Получается, что в дан-

ном случае частота первой гармоники ω1x соответ-

ствует стоячей волне, запертой между внешними 

границами первой и второй областей резонатора. На 

следующей панели скорость V2 снова уменьшается 

относительно V1, но уже в 7 раз. При этом видно, 

что интервал экс не увеличивается, а резко умень-

шается. Более того, при еще большем уменьшении 

скорости V2 (самая нижняя панель) этот интервал 

вообще остается без изменения. Эмпирическое со-

отношение для этих двух случаев имеет вид (9) при 

условии 

1
1

1

2 .x
x

l
T

V
   

Получается, что ω1x в этом случае является частотой 

первой гармоники стоячей волны, запертой только в 

первой области. Очевидно, что переход в значениях 

 от одной стоячей волны к другой обусловлен уве-

личением коэффициента отражения на границе 

между областями. Это свойство КФАФ позволяет 

сделать важный вывод. Если в реальном магнито-

сферном резонаторе вдоль одной из координат число 

точек отражения больше двух, интервал  будет 

определяться частотой первой гармоники таких стоя-

чих волн, которые запираются между двумя точками 

поворота при всех возможных комбинациях этих пар. 

На рис. 2, в приведены зависимости G(τ) для 

случая со значениями скоростей V1=0.5 и V2=0.071, 

когда интервал  определяется стоячей волной 

только в первой области. Они отличаются друг от 

друга тем, что получены для колебаний в точках с 

разными координатами x. Верхняя панель соответ-

ствует точке, расположенной внутри первой обла-

сти. Для двух других зависимостей точка наблюде-

ния находится за пределами этой области. Отчетли-

во видно, что интервал  во всех случаях имеет 

одинаковое значение, несмотря на то, что на нижней 

панели пики заметно искажены. Получается, что по 

значениям интервала  можно обнаружить одно-

мерную стоячую волну даже в том случае, если точка 

наблюдения колебаний находится на существенном 

расстоянии от одной из границ за пределами той 

области, где локализована эта волна. 

В магнитосфере вследствие немонотонного рас-

пределения скорости вдоль радиальной координаты 

альфвеновские волны могут быть заперты не только 

вдоль, но и поперек магнитного поля. При этом об-

ласть существования таких стоячих волн можно 

считать двумерным резонатором альфвеновских 

волн. В работе [Гульельми, Поляков, 1983] было 

показано, что учет малой поперечной дисперсии 

дает возможность определения положения таких 

резонаторов вдоль радиальной координаты. В работе 

[Леонович, Мазур, 1987] один из них был обнару-

жен на внешней кромке плазмопаузы в окрестности 

максимума альфвеновской скорости.  

С учетом поперечной дисперсии дисперсионное 

уравнение альфвеновских волн имеет вид 

2 2 2 2 2(1 ).z xk V S k    (10) 

Масштаб поперечной дисперсии S в области с хо-

лодной плазмой внутри плазмосферы определяется 

электронной инерционной (скиновой) длиной, а в 

области с горячей плазмой кольцевого тока – лар-

моровским радиусом протонов.  

Этому уравнению соответствует уравнение в 

частных производных для bx-компоненты возмуще-

ния магнитного поля. Так же как для модели плос-

кого слоя, резонатор будем считать прямоугольным 

с размерами lx, lz с аналогичными граничными усло-
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виями. Для колебаний в таком резонаторе альфве-

новских волн полученная эмпирическим путем 

формула для интервала между соседними пиками 

КФАФ имеет вид 

2

1

2 2 ,z x

x

l l

V S m

 
    


 (11) 

где m – номер гармоники стоячей волны вдоль 

направления магнитного поля. В отличие от всех 

прочих рассмотренных типов волн правая часть в 

(11) определяется более сложной комбинацией па-

раметров и зависит от целого числа m, которое мо-

жет принимать бесконечное число разных значений.  

Собственная частота прямоугольного однород-

ного резонатора альфвеновских волн получается, 

если в (10) заменить kx и kz на собственные значения 

π/lx и π/lz: 

2 2 2 2 2 2
2 2 2 2

2 2 2
.mn

z z x

m m n
V V S

l l l

  
     

Второе слагаемое в правой части определяет частоту 

стоячей волны поперек направления магнитного 

поля. Частота первой гармоники этой волны по по-

перечному номеру n 

1 .x

x z

VSm
l l

 
    

Интересно, что, хотя соотношение (11) получено 

эмпирически, в знаменателе правой части по комби-

нации параметров оказалась точно такая же частота. 

Во всех без исключения рассмотренных выше 

случаях эмпирическое соотношение для интервала 

между соседними пиками КФАФ имеет одинаковый, 

универсальный вид (3). При этом ω1 в знаменателе 

правой части является частотой первой гармоники 

одной из одномерных стоячих МГД-волн любого 

типа между двумя из всех возможных точек поворота 

внутри резонатора или волновода. Именно эту ча-

стоту можно измерять с помощью предлагаемого в 

данной работе метода обработки сигналов. 

В заключение этого раздела рассмотрим влияние 

неоднородности скорости вдоль направления стоя-

чей волны. Будем считать, что в модели плоского 

слоя (4), (5) зависимость альфвеновской скорости от 

координаты вдоль постоянного магнитного поля 

имеет вид 

2 2 2

0( ) ( / 2) .zV z V z l    (12) 

При такой параболической зависимости минималь-

ное значение скорости V0 будет в центре магнитной 

линии, а максимальное V(0) – на ее краях.  

В однородном случае для стоячей волны      

bx-компоненты получается соотношение (6). По 

этой формуле с учетом (12) эмпирически можно 

определить частоту ω1z, или, вернее, то, что находит-

ся в знаменателе правой части. На рис. 3 крестиками 

отмечена эта частота при различных отношениях 

скоростей V(0) и V0. Здесь же приведены собствен-

ные частоты первой и второй гармоник для стоячей 

волны вдоль координаты z. Для нормировки исполь-

зована частота ω1 первой гармоники при V(0)=V0. 

Отчетливо видно, что крестики совпадают с тре-

угольниками, а не с кружками. Это означает, что 

эмпирическая формула для интервала  при неодно-

родной скорости (12) должна иметь вид 

2

2 ,
/ 2z


  


  

где ω2z – частота второй гармоники. 

Полученное соотношение позволяет сделать 

важное обобщение формулы для интервала . Ока-

зывается, что при параболической зависимости ско-

рости (12) все собственные частоты становятся эк-

видистантными, начиная со второго номера гармо-

ники. При этом значение ω2z/2 совпадает с разно-

стью частоты двух соседних гармоник. В случаях с 

однородной скоростью собственные частоты экви-

дистантны с первого номера и частота первой гар-

моники в знаменателе правой части (6), (7), (8), (9) и 

(11) также совпадает с разностью частот двух сосед-

них гармоник. Очевидно, что в общем случае при 

произвольной зависимости волновой скорости от 

координаты вдоль направления стоячей волны соот-

ношение для интервала между пиками должно 

иметь вид 

1

2 ,
i i


  

 
 (13) 

где i – номер гармоники, начиная с которого соб-

ственные частоты стоячей волны ωi становятся эк-

видистантными или почти эквидистантными. 

 

Использование метода КФАФ для обработки 

записей геомагнитных пульсаций 

В этом разделе попытаемся применить метод 

КФАФ для обработки реальных, а не моделирован-

ных записей геомагнитных пульсаций. Для анализа 

были выбраны записи северо-южной компоненты 

возмущения геомагнитного поля на станциях Борок 

(L=2.9) и Монды (L=2.2) в течение одного часа от 

9
h
 до 10

h
 UT 10.04.00. Шаг оцифровки обеих записей 

составляет 0.1 с. Поле магнитосферы в это время ха-

рактеризуется средним уровнем возмущенности с 

индексом Kp=3. Обе точки наблюдения возмущений 

 

Рис. 3. Влияние продольной неоднородности скорости 

на значение интервала между соседними пиками КФАФ. 

Кружки  – частота первой гармоники; треугольники  – 

частота второй гармоники, деленная на 2; крестики + – 

частота, измеряемая методом КФАФ. 
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при этом находятся на освещенной стороне внутри 

плазмосферы. 

Первый этап обработки заключается в узкопо-

лосной фильтрации исходного сигнала. Для этого 

использовался немного модифицированный для 

наших целей фильтр Марме [Marmet, 1979]. Всего 

было использовано 20 различных фильтров, которые 

отличаются друг от друга значением центральной 

частоты полосы пропускания. Период колебаний с 

этой частотой лежит в диапазоне 0.6–5.4 с. 

После фильтрации вся часовая запись разбивается 

на отдельные участки, вмещающие 30–40 отдельных 

колебаний. Для каждого такого участка записи по-

чти монохроматических колебаний компьютерная 

программа метода КФАФ выдает зависимости кор-

реляционных функций G, G1 и G2 от сдвига фазы τ. 

Первые же опыты обработки по указанной схеме 

позволили обнаружить любопытную особенность. 

Оказалось, что для некоторых участков указанные 

корреляционные функции по характеру зависимости 

от τ сильно похожи на те, которые получаются для 

колебаний в модели плоского слоя. На рис. 4, а, б 

приведены примеры таких зависимостей для двух 

случаев. В каждом из них указано название станции, 

время начала участка колебаний, отчитываемое от 

начала часовой записи и средний период колебаний. 

Все три функции безразмерны, а сдвиг фазы τ с уче-

том масштабного коэффициента измеряется в ради-

анах. На рис. 4, в для сравнения приведены те же 

функции, полученные для альфвеновских колебаний 

в модели плоского слоя из предыдущего раздела 

данной работы. Сравнение графиков обнаруживает 

их абсолютное подобие. Действительно, функция 

G(τ) на рис. 4, а, б так же как и на рис. 4, в, имеет 

вид периодической последовательности пиков. При 

этом в обоих случаях между главными пиками 

наблюдаются небольшие по высоте дополнительные 

пики. Функции G1(τ) для реальных колебаний, так 

же как и для моделированных, имеют вид последо-

вательностей разрывов, или резких скачков от отри-

цательных значений к положительным. Функция 

G2(τ) на всех без исключения графиках имеет вид 

последовательности пиков, перевернутых вниз. Для 

реальных колебаний это особенно хорошо заметно 

на рис. 4, а.  

Очевидно, что такое четкое подобие функций 

невозможно объяснить простым случайным совпа-

дением, поскольку для каждого участка реальных 

колебаний не одна, а сразу три функции оказывают-

ся подобны теоретическим. Для данного исследова-

ния это подобие следует считать важным экспери-

ментальным результатом, поскольку оно указывает 

на то, что интервал между соседними пиками  для 

геомагнитных пульсаций, так же как и для модели-

рованных колебаний, должен определяться соотно-

шением (3). Из него получается более удобная фор-

мула для периода первой гармоники одномерных 

стоячих волн 

1 .
2

T T





  

Интервал между соседними пиками  удобнее всего 

измерить по графику G(τ) (рис. 4, а, б), период T 

колебаний после фильтрации совпадает с периодом 

колебаний с центральной частотой полосы пропус-

кания, следовательно, по этой формуле мы можем 

косвенно измерить период T1.  

Следует отметить, что для реальных стоячих 

волн в системе ионосфера–магнитосфера скорость 

Альфвена может быть сильно неоднородна. При 

этом, согласно (13), период T1 должен соответство-

вать разности двух соседних собственных частот. В 

данной работе этот период мы будем считать пери-

одом первой гармоники только лишь для того, что-

бы он имел простой физический смысл.  

Вся дальнейшая обработка записей возмущения 

магнитного поля была направлена на измерения пе-

риодов T1 по указанной схеме. В результате по записи 

ст. Борок было получено примерно 1500 измерений, 

а по записи ст. Монды – 1600. Этого оказалось 

вполне достаточно, для того чтобы построить функ-

ции распределения значений T1 для каждой станции. 

Графики этих функций представлены на рис. 5. По 

оси ординат отложено число измерений N, которое 

приходится на то или иное значение T1, период (ось 

абсцисс) измеряется в секундах. Из сравнения рис. 5, 

а и б следует прежде всего, что в обоих случаях 

наблюдается одинаковая последовательность мак-

симумов (пиков). Каждому такому пику на распре-

делениях присвоен соответствующий номер. 

При интерпретации полученных результатов 

необходимо иметь в виду, что, согласно выводам 

предыдущего раздела, каждому максимуму распре-

деления должна соответствовать своя одномерная 

стоячая волна в магнитосфере, причем она может 

быть как альфвеновской, так и БМЗ-волной. Стан-

ция наблюдения колебаний должна при этом нахо-

диться внутри или где-то поблизости от того места, 

где эта волна локализована. В данном случае речь 

идет о стоячих волнах в дневной плазмосфере. По-

пытаемся выяснить, каким именно стоячим волнам 

соответствует каждый из пиков полученных распре-

делений. Очевидно, что как минимум один из них 

должен быть обусловлен альфвеновской стоячей 

волной вдоль направления магнитного поля. При 

этом на разных L-оболочках эти пики должны иметь 

разные значения периода T1, т. е. на рис. 5, а и б они 

должны быть сдвинуты друг относительно друга. 

Чтобы сдвиги были лучше видны, проведены верти-

кальные штриховые линии. Сдвинутыми оказыва-

ются сразу три пика с номерами 2, 3 и 4. Величина 

сдвига для всех пиков примерно одинакова и со-

ставляет 2.2 с.  

Сдвиг для этих трех пиков означает, что каждый 

из них должен быть обусловлен именно продольной 

альфвеновской волной. Наличие этих пиков легко 

объяснить, если учесть немонотонность изменения 

альфвеновской скорости вдоль направления магнит-

ного поля. При этом все пространство вдоль поля 

между проводящими слоями в сопряженных ионо-

сферах можно условно разделить на три области. 

Две из них называются ионосферными альфвеновскими 

резонаторами (ИАР) [Поляков, Рапопорт, 1981] и 

располагаются на концах магнитной линии в про-

межутках между максимумом альфвеновской скоро-

сти на высоте 800 км и проводящим слоем ионосферы. 
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Рис. 4. Примеры зависимостей КФАФ от τ для участков фильтрованных записей геомагнитных возмущений на стан-

ции Монды (а, б); для альфвеновских колебаний в МГД-модели плоского слоя (в). 

 

Рис. 5. Функции распределения периода первой гармоники одномерной стоячей волны для станций Борок (а) и Мон-

ды (б). 

 

Между максимумами скорости в сопряженных 

ионосферах расположена третья магнитосферная 

область. Граница между двумя областями является 

точкой поворота для продольных альфвеновских 

волн. В этом случае, как было показано в первой 

части, должно наблюдаться несколько характерных 

значений периода T1, каждое из которых соответ-

ствует стоячей волне между двумя такими точками 

при всех возможных комбинациях этих пар. Оче-

видно, что пик 2 на обоих распределениях соответ-

ствует стоячей волне на магнитосферном участке. 

Значение T1 для него определяется временем про-

бега между внешними границами ИАР в сопряжен-

ных ионосферах. Пик 3 соответствует стоячей волне 
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между проводящим слоем ионосферы и максиму-

мом альфвеновской скорости в сопряженной ионо-

сфере. Период T1 при этом определяется суммой 

времени пробега магнитосферного участка и времени 

пробега одного ИАР. Пик 4 соответствует стоячей 

волне между двумя проводящими слоями, и его пе-

риод равен сумме времени пробега на магнитосфер-

ном участке и времени пробега двух ИАР.  

Разность значений T1 для пиков 2, 3 и для пиков 

3, 4 должна совпадать с периодом первой гармоники 

стоячей волны в ионосферном альфвеновском резо-

наторе. На рис. 5 эта разность примерно одинакова 

для обеих пар пиков и для обоих распределений и 

составляет 4.3 с. В работе [Поляков, Рапопорт, 1981] 

период первой гармоники собственных частот ИАР, 

полученный теоретически для характерных пара-

метров ионосферы, имеет почти то же значение 5 с. 

Для интерпретации пиков 1 и 5 важным обстоя-

тельством является тот факт, что каждый не имеет 

сдвига на распределениях станций Борок и Монды, 

что отчетливо наблюдается по вертикальным 

штриховым линиям. Это должно означать, что пи-

ки 1 и 5 обусловлены не альфвеновскими, а стоя-

чими БМЗ-волнами. Пространственная структура, в 

которой внутри плазмосферы могут возникать та-

кие волны, впервые была обнаружена в работе 

[Гульельми, 1972] и получила название магнитозву-

кового канала под сводом плазмосферы. Как было 

показано в первой части данной работы, этот канал 

должен давать такие значения периода T1, которые 

соответствуют периоду первой гармоники каждой 

из одномерных стоячих волн. Согласно [Гульельми, 

1972], период первой гармоники стоячей волны по-

перек магнитного поля в радиальном направлении 

соответствует нижнему пределу частотного диапа-

зона канала и имеет значение 10 с. Это хорошо со-

гласуется с периодом T1=10 c пика 1 для обоих рас-

пределений на рис. 5, значит, пик 1 обусловлен сто-

ячей волной радиального направления. В работе 

[Гульельми, 1972] приведены изолинии распределе-

ния альфвеновской скорости дневной плазмосферы 

в меридиональной плоскости. Хорошо видно, что 

размер канала в радиальном направлении примерно 

в три раза меньше его размера вдоль направления 

магнитного поля. Если считать, что период T1 

определяется временем пробега между точками 

поворота, то его значение для радиального направ-

ления также должно быть в три раза меньше, чем 

для направления вдоль магнитного поля. На рис. 2 

для обоих распределений отношение периодов T1 

пика 5 и пика 1 составляет примерно 2,7, т. е. не-

плохо соответствует указанному соотношению. Это 

значит, что пик 5 соответствует одномерной стоячей 

волне вдоль направления магнитного поля. 

Главным отличительным признаком остальных 

пиков являются большие значения периодов T1. Это 

требует слишком большого расстояния между точ-

ками поворота для обычных стоячих МГД-волн при 

тех значениях альфвеновской скорости, которые 

характерны для плазмосферы. Кроме того, пиков 

слишком много, чтобы можно было пытаться ин-

терпретировать их обычными альфвеновскими и 

стоячими БМЗ-волнами.  

Наиболее подходящим объяснением для пиков с 

номерами 6–11 является их связь с поперечной сто-

ячей альфвеновской волной вдоль радиального 

направления. Как было уже упомянуто в первой ча-

сти, такие стоячие волны могут быть локализованы 

на внешней кромке плазмопаузы в окрестности мак-

симума альфвеновской скорости. Для таких стоячих 

волн для периодов T1, которые в данной работе изме-

ряются методом КФАФ, имеет место соотношение 

1
1 ,

2

zlT
T T

S m


 

 
 (14) 

где T1z – период первой гармоники вдоль магнитного 

поля или время пробега вдоль поля с альфвеновской 

скоростью (туда и обратно) между точками пово-

рота, m – номер гармоники продольной стоячей 

волны, l – расстояние между точками поворота в 

поперечном радиальном направлении, S – масштаб 

поперечной дисперсии, который в данном случае 

совпадает с ларморовским радиусом протонов коль-

цевого тока. Эта формула позволяет без особых 

противоречий объяснить наличие пиков 6–11. Дей-

ствительно, как было уже показано выше, период T1z 

может принимать три разных значения, значит для 

каждого номера m гармоники в соотношении (14) 

должны иметь место три пика, аналогичные пикам 

2, 3 и 4 продольных стоячих альфвеновских волн на 

L-оболочках ст. Борок и ст. Монды. При этом ин-

тервал между соседними пиками в тройке должен 

быть одинаковым и определяться временем пробега 

волны в ионосферном альфвеновском резонаторе. 

Очевидно, что одной такой тройкой с m=2 являются 

пики с номерами 6, 7 и 8, поскольку интервалы 

между пиками 6, 7 и 7, 8 почти совпадают. Осталь-

ные пики с номерами 9, 10 и 11 образуют вторую 

тройку с m=1. Это подтверждается тем обстоятель-

ством, что на обоих распределениях отношение пе-

риодов T1 для 9 и 6, для 10 и 7, и даже для 11 и 8 на 

рис. 5, б каждый раз оказывается равным 2. 

Кроме того, соотношение (14) позволяет прояс-

нить вопрос, связанный с большими значениями T1 

пиков с номерами 6–11. Очевидно, что эта особен-

ность является прямым следствием наличия множи-

теля l/s. Ларморовский радиус протонов кольцевого 

тока s должен быть равен нескольким десяткам ки-

лометров. Поперечный размер резонатора l – это 

толщина плазмопаузы, которая составляет примерно 

600 км, значит по порядку величины l/s20. Для 

сравнения рассмотрим отношение периодов T1 пи-

ков 2 и 9. Для пика 2 период T1 определяется време-

нем пробега с альфвеновской скоростью магнито-

сферного участка на оболочке с L2.5. Для пика 9 

период T1z – это то же самое время, только для обо-

лочки плазмопаузы. Для грубой оценки эти периоды 

можно считать одинаковыми. Из соотношения (14) с 

учетом того, что для пика 9 m=1, получаем 

l/sπT19/T12. Для обоих графиков рис. 5 отношение 

периодов T19 и T12 девятого и второго пиков состав-

ляет примерно 7. В результате получается точно 

такая же оценка l/s7π20. 

История изучения резонаторов и волноводов 

МГД-волн в плазмосфере насчитывает уже сорок 
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лет. Об этом свидетельствует, например, дата выхода 

работы [Гульельми, 1972]. За это время существова-

ние перечисленных выше резонаторов и волноводов 

не один раз подтверждалось как теоретически, так и 

экспериментально. Поэтому для наших исследований 

плазмосферу можно считать своего рода эталонным 

объектом. Тот факт, что пики распределений на рис. 5 

совершенно непротиворечиво интерпретируются из-

вестными стоячими волнами, должен убедительно 

подтверждать достоверность результатов, которые 

получаются с помощью метода КФАФ.  

 

Заключение 

Перечислим основные результаты. 

1. Для объемного резонатора изотропных волн в 

отличие от одномерного резонатора интервал , 

определяемый методом КФАФ, определяется часто-

той первой гармоники каждой из одномерных стоя-

чих волн в отдельности. Если вдоль одного из 

направлений имеют место не две, а несколько воз-

можных точек поворота, то интервал  для этого 

направления определяется частотами каждой из стоя-

чих волн при разных комбинациях двух таких точек. 

2. Для поперечных стоячих альфвеновских волн 

интервал  оказался зависимым от номера гармоники 

вдоль постоянного магнитного поля. Это значит, что 

он может принимать не одно, а бесконечное множе-

ство разных значений. 

3. Метод КФАФ впервые был использован для 

обработки реальных записей геомагнитных возму-

щений. Для записей станций Борок и Монды в каче-

стве конечного продукта метода получены распре-

деления периодов Т1. 

4. Оказалось, что все характерные значения этих 

периодов полностью соответствуют известным стоя-

чим МГД-волнам в плазмосфере и на ее границе. 
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