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Abstract. Ultralow-frequency (ULF) waves play an 

important role in energy transfer within Earth's magne-

tosphere due to intensive interaction with the surround-

ing plasma. Previous works have assumed that these 

waves are strictly divided by polarization into toroidal, 

when the magnetic field oscillates in the azimuthal di-

rection, and poloidal, when it oscillates in the radial 

direction. The former are azimuthally large-scale and 

are excited by external sources, whereas the latter are 

small-scale and are generated by internal plasma insta-

bilities. Observations show, however, that waves of 

mixed polarization often occur, and the nature of this 

mixing has not been explained. In this paper, we carry 

out a statistical study and show that the polarization of 

transverse waves has a normal distribution, and the 

maximum corresponds to oscillations of the toroidal and 

poloidal components with the same amplitude. At the 

same time, the spatial distributions of toroidal and po-

loidal waves are clearly different, but only lead to a 

small shift in the position of the distribution maximum. 

This result suggests that in order to compare the theory 

with ULF wave observations it is necessary to take into 

account the processes of polarization change, which can 

affect wave-particle interactions in the magnetosphere. 

Keywords: magnetosphere, ULF waves, Alfvén 

waves, polarization. 

 

 

 

 

 

 

INTRODUCTION 

Alfvén waves in the magnetosphere are eigenoscilla-

tions of geomagnetic field lines. These waves fall within 

the long-period part of the ultralow-frequency (ULF) range 

i.e. their wavelength is comparable to the size of Earth, 

which is why they play a key role in energy transfer 

through the entire magnetosphere [Guglielmi, Troitskaya, 

1973]. They can generate electric fields parallel to the 

magnetic field, which play a major role in electron acceler-

ation that cause auroras [Kostarev et al., 2021]. ULF waves 

are assumed to be vital to the quasi-viscous transfer of en-

ergy and momentum to the magnetosphere from the solar 

wind [Leonovich, Mishin, 1999] and to the acceleration of 

polar wind particles [Guglielmi, Lundin, 2001]. Plasma 

instabilities associated with ULF waves can play a signifi-

cant part in substorm initiation [Samson et al., 1992; An-

tonova et al., 2009; Golovchanskaya et al., 2018]. 

Alfvén waves in the magnetosphere are generated 

through a variety of mechanisms, both external (with 

respect to the magnetosphere) and internal. External 

mechanisms relate mainly to waves having a small azi-

muthal wave number (m~1). These mechanisms are 

somehow linked to the interaction of the magnetosphere 

with the solar wind: solar wind ram pressure pulses, 

hydromagnetic instabilities at the boundary of the mag-

netosphere, direct transition of waves from the solar 

wind to the magnetosphere [Agapitov, Cheremnykh, 

2013]. Azimuthally large-scale waves should have to-

roidal polarization when field lines oscillate in the azi-

muthal direction (Figure 1, left). In this case, the electric 

field vector oscillates in the radial direction.  

Intramagnetospheric mechanisms of ULF wave gen-
eration are related to waves with large azimuthal wave 
numbers (m≫1). These mechanisms include various 
plasma instabilities [Chen, Hasegawa, 1991], alternat-
ing currents inside the magnetosphere and/or the iono-
sphere [Mager, Klimushkin, 2007]. Azimuthally small-
scale waves are characterized by field-line oscillations 
in the radial direction (see Figure 1, right). In this case, 
the electric field vector oscillates in the azimuthal direc-
tion. Such Alfvén waves are called poloidal. Note that 
poloidal Alfvén waves should transform into toroidal 
ones. For impulse-excited waves, the transformation 
occurs in time, i.e. at first a wave has poloidal polariza-
tion that after some time is replaced by the toroidal one 
[Mann, Wright, 1995; Leonovich, Mazur, 1998]. For 
monochromatic waves, the transformation takes place in 
space, i.e. in one part of its localization region, the wave 
has poloidal polarization; in another part, toroidal; and 
gradually moves from the poloidal region to the toroidal 
one [Leonovich, Mazur, 1993; Klimushkin et al., 1995]. 
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Figure 1. Field-line oscillations in toroidal and poloidal 

Alfvén waves [Klimushkin et al., 2021]. The fundamental 

(top) and second (bottom) harmonics 

The presence of the two wave types differing both 

in generation mechanisms and polarization raises the 

question of how clearly these two groups are ex-

pressed in their observable manifestations: toroidal 

and poloidal waves do exist separately, or there is a 

smooth transition between them. To answer this ques-

tion, we should use satellite data since waves with 

m≫1 do not reach the Earth surface due to the screen-

ing effect of the atmosphere [Hughes, Southwood, 

1976]. In this paper, we address this question, using 

data from the Van Allen Probe A satellite. 

 

1. DATA 

We have used Van Allen Probe A data from January 

2017 to October 2018 [Mauk et al., 2013]. During that 

period, the satellite made one full observation of the 

magnetosphere. We utilize only 4 s magnetic field vec-

tor measurements by the Electric and Magnetic Field 

Instrument Suite and Integrated Science (EMFISIS) for 

the analysis [Kletzing et al., 2013]. The satellite's orbit 

passes near the magnetic equator (magnetic latitude 

<20°); therefore, to describe the satellite's position in pro-

jection to the equator, we use the McIlwain parameter L 

[McIlwain, 1961] and local magnetic time (MLT). Van 

Allen Probe A is no more than 6 RE away from Earth, 

which makes it possible to exclude the magnetopause 

crossing in the time period under study. This configura-

tion of the satellite's orbit is convenient for studying 

transverse ULF waves, which are usually identified with 

Alfvén waves. We examine ULF waves at distances L>4 

since the satellite velocity increases near the perigee of 

the orbit, thereby causing distortions in ULF wave obser-

vations. 

ULF waves in the Pc4 and Pc5 ranges, covering 

wave periods from 45 to 600 s, are convenient to study 

using a field-aligned coordinate system. Direction along 

field lines is determined through 10-min moving aver-

age, which makes it possible to identify longitudinal 

disturbances of the magnetic field b||. Magnetic field 

disturbances across field lines are oriented radially from 

Earth br and azimuthally to the east ba. The choice of the 

10-min window is sufficient since Van Allen Probe A 

does not rise above L=6.5, and, according to earlier 

observations and model calculations at such distances, 

the frequency of Alfvén waves remains above 5 mHz 

(200 s period) [Takahashi et al., 2002]. 

Waves for statistical analysis were selected by 

searching for individual events. Pc4 and Pc5 disturb-

ances were preliminary extracted from magnetic field 

measurements, using a bandpass filter. The time period 

under study was divided into 15-min intervals with a 

step of 5 min, which ensured sufficient accuracy in de-

termining the start and end time of wave observation. 

For each magnetic field component and each 15-min 

interval, a fast Fourier transform was used to construct a 

frequency spectrum in which a signal at the frequency 

of a single peak was considered a wave if the peak's 

width at half maximum was less than 40 % of the peak's 

frequency. If the peaks were detected in consecutive 

intervals and their frequencies differed by no more than 

2 mHz, this case was considered a single event. Thus, 

each wave is characterized by the start and end time of 

its observation, frequency, and average amplitude in 

each of the three components. The wave amplitude was 

found after filtering in the ±1 mHz band from the peak's 

frequency. Wave polarization was defined as the ratio 

between these average amplitudes: if rb is the highest, 

such a wave is considered poloidal; if ab , toroidal; if 

b , compression. Further in the paper, we deal only 

with transverse waves when either a ,b b  or 

r .b b  

 

2. RESULTS 

Distribution of the satellite dwelling time over 

MLT sectors is almost uniform and has a maximum 

in the range L=5.5–6.0 (Figure 2, a). This maximum 

is determined by the apogee of the satellite's orbit; 

however, due to inclination of the orbit, it may shift 

to higher L-shells. 

 

Figure 2. Dwelling time of Van Allen Probe A in the outer magnetosphere from January 1, 2017 to October 31, 2018 (a). 

Occurrence rate of toroidal (b) and poloidal (c) waves. Results projected onto the equatorial plane L — MLT, cell size is 0.5 

RE ×1 hr (L>4) 
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Figure 2, b, c clearly shows that spatial distributions 

of poloidal and toroidal waves differ. Toroidal waves 

are concentrated in dusk and pre-noon sectors on large 

L-shells, whereas poloidal waves were mainly observed 

along the ion drift path from midnight to noon, through 

the dusk sector with maxima near noon and midnight. 

The obtained distributions of the occurrence rates of 

toroidal and poloidal waves have both similarities and 

differences from statistical studies of Pc4 and Pc5 

waves based on data from other spacecraft [Anderson, 

1993; Liu et al., 2009]. The result presented in Figure 2, 

c corresponds to the distribution of poloidal Pc4 accord-

ing to Van Allen Probes data collected during one full 

observation of the magnetosphere from October 2012 to 

July 2014 [Dai et al., 2015]. 

Figure 3 illustrates the distribution of values of the 

ab -to- rb  ratio on the log scale, which turned out to 

be close to the normal distribution with an average val-

ue of ~1. This result suggests that most of the observed 

transverse waves have mixed polarization, and 

a r .b b  

Nonetheless, the average value a r/b b
 
changes if 

the waves are grouped according to MLT sectors. Figure 4 

shows distributions in four MLT sectors: noon (MLT=09–

15 hr), dawn (MLT=03–09 hr), dusk (MLT=15–21 hr),  

 

Figure 3. Distribution of the ratio of average oscillation 

amplitudes in the azimuthal and radial magnetic field compo-

nents 
a r

/b b
 
for transverse waves 

 

and night (MLT=21–03 hr). There are more poloidal 

waves in the noon sector, and toroidal waves in the night 

sector. The distribution parameters in the dawn and dusk 

sectors are intermediate between noon and night. 

 
3. DISCUSSION 

Even in the first studies on the Alfvén-wave theory, 

waves were classified into azimuthally large-scale to-

roidal and azimuthally small-scale poloidal [Radoski, 

1967; Cummings et al., 1969]. Toroidal waves were 

associated with external generation sources; and poloi-

dal, with internal ones [Chen, Hasegawa, 1991]. In a 

statistical study [Anderson, 1993], observed ULF waves 

 

Figure 4. Distributions 
a r

/b b
 
for transverse waves 

in the dawn (a), noon (b), dusk (c), and night (d) sectors of 

the magnetosphere 
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with periods from 10 s to 10 min were divided into five 

types: Pc4 poloidal waves, fundamental modes of Pc5 

toroidal waves, high harmonics of toroidal waves, Pc5 

compression waves, and incoherent noise. Liu et al. 

[2009] examined separately toroidal and poloidal waves 

in the Pc4 and Pc5 ranges, using THEMIS observations, 

and highlighted differences in their spatial distribution. 

In later studies, individual wave types were studied such 

as Pc4 poloidal waves [Dai et al., 2015] or multi-

harmonic toroidal waves [Yamamoto et al., 2022]. 

There are also many case studies of Alfvén wave obser-

vation, which, despite the presence of oscillations sim-

ultaneously in several directions, classify the observed 

waves as toroidal or poloidal, depending on the direc-

tion in which the amplitude is maximum (e.g., [Dai et 

al., 2013; Korotova et al., 2016; Le et al., 2021]).  

The possibility that an Alfvén wave can change po-

larization has been explored [Radoski, 1974; Leonovich, 

Mazur, 1993, 1998; Mann, Wright, 1995], but little at-

tention was paid to it during observation analysis. We 

know only a few studies describing the observation of 

polarization change by satellites [Zolotukhina et al., 

2008; Sarris et al., 2009; Leonovich et al., 2015; Wei et 

al., 2019; Takahashi et al., 2018]. From the distributions 

shown in Figures 3 and 4 we can see that there is no 

rigid division into toroidal and poloidal waves. Statistics 

shows that transverse waves usually have mixed polari-

zation and often a r .b b  A similar result, but based 

on less statistics, was obtained in [Agapitov, Cher-

emnykh, 2011], yet it was not formulated explicitly 

there. Rubtsov et al. [2023a, b] have obtained similar 

distributions from Arase data. We assume that this is a 

consequence of observing the process when Alfvén 

waves change polarization at different stages. Extensive 

statistics of observations just gives the maximum prob-

ability density for the case corresponding to the middle 

of the change, i.e. a r .b b  

Moreover, it is surprising that poloidal waves domi-

nate on the dayside where there are seemingly more 

toroidal waves generated from the outside (Figure 4, b). 

This feature has also been found in some statistical stud-

ies [Chi, Le, 2015]. It may be related to the existence of 

long-lasting poloidal waves that can be observed on the 

dayside during several consecutive orbits of Van Allen 

Probes [Korotova et al., 2016; Rubtsov et al., 2021]. 

These waves can be generated at a small radial Alfvén 

frequency gradient [Choi, Lee, 2021] or be modes of the 

transverse Alfvén resonator [Leonovich, Mazur, 1990; 

Vetoulis, Chen, 1994; Klimushkin, 1998]. To answer 

this question requires further study of such observations. 

Note that the statistical results we have presented 

may have inaccuracies, including those related to the 

method of determining wave polarization. In this work, 

we have analyzed average oscillation amplitudes in all 

magnetic field components over the period of wave ob-

servation. However, transverse waves of odd harmonics 

have a node near the magnetic equator, which can lead 

to underestimation of their average amplitudes. At the 

same time, poloidal Alfvén waves at finite plasma pres-

sure have a field-aligned component that has an anti-

node at the equator [Klimushkin et al., 2004]. Taken 

together, this can result in classification of odd harmon-

ics of transverse waves as compression waves and they 

will not be included in the current statistics. Poloidal 

waves have the most noticeable compression component 

[Klimushkin et al., 2004], so we can assume that their 

number is underestimated in this work. 

 

CONCLUSION 

From the results of Van Allen Probe A observations 

we have found that there are no individual maxima cor-

responding to purely toroidal and purely poloidal waves 

in the polarization distribution of transverse ULF waves. 

The polarization distribution of waves is normal, and its 

maximum pertains to the approximate equality of aver-

age oscillation amplitudes of the azimuthal ab
 
and 

radial rb
 

magnetic field components. At the same 

time, the maximum distribution shifts in different MLT 

sectors: at the dayside — to the poloidal region, and at 

night — to the toroidal one. 

The data obtained makes us to reconsider the gener-

ally accepted approach to Alfvén waves from the con-

ceptual point of view, when poloidal and toroidal waves 

were considered separately. The noticeable asymmetry 

in space indicates that the factors determining one or 

another wave polarization are constant. In the future, it 

is important to determine what caused the result 

a rb b : the development of a wave or the operation 

of different mechanisms of wave excitation in the same 

spatial region. In the former case, it is necessary to find 

out the spatial and temporal scales of the polarization 

change. In the latter case, questions arise as to which 

mechanism is responsible for generating a specific po-

larization (toroidal and poloidal) and whether these 

mechanisms can act simultaneously or sequentially, 

which yields the statistical result. a r .b b
 
Finally, it 

is important to figure out how Alfvén waves interact 

with charged particles inside the magnetosphere in both 

the former and latter cases. 
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