УДК 551.510.535 DOI: 10.12737/szf-81202206 Поступила в редакцию 23.06.2021 Принята к публикации 08.12.2021

МНОГОЛЕТНИЙ ТРЕНД РЕАКЦИИ Е-СЛОЯ ИОНОСФЕРЫ НА СОЛНЕЧНЫЕ ВСПЫШКИ

LONG-TERM TREND OF THE IONOSPHERIC E-LAYER RESPONSE TO SOLAR FLARES

Г.В. Гивишвили ወ

Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН, Москва, Троицк, Россия, givi@izmiran.ru

Л.Н. Лещенко 匝

Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН, Москва, Троицк, Россия, ln_lesh@mail.ru

G.V. Givishvili

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation RAS, Moscow, Troitsk, Russia, givi@izmiran.ru

L.N. Leshchenko

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation RAS, Moscow, Troitsk, Russia, ln_lesh@mail.ru

Аннотация. По данным наземного вертикального зондирования (ВЗ) ионосферы на ст. Москва и на пяти японских станциях с 1969 по 2015 г. проведено исследование многолетнего отклика Е-слоя на солнечные рентгеновские вспышки. Анализ проводился на основе разработанного ранее метода оценки соотношения скоростей ионизации рентгеновским q_x и ультрафиолетовым q_u излучением во время вспышек. Подтверждено существование долговременного (по меньшей мере, охватывающего 45-летний период наблюдений) возрастания доли рентгеновского излучения в суммарной скорости ионизации Е-слоя ионосферы, характеризующейся отношением q_x/q , где $q = q_x + q_y$. Показано, что отношение q_x/q возрастало в течение всего анализируемого периода со скоростью, не зависящей от цикла солнечной активности. Не выявлено также зависимости скорости тренда q_x/q от сезона, широты (в диапазоне 26°-56° N) и долготы (37°-128° Е).

Ключевые слова: слой Е ионосферы, вертикальное зондирование, солнечные вспышки, многолетний тренд.

введение

В работе [Иванов-Холодный и др., 1976] был предложен метод оценки соотношения вкладов рентгеновского и ультрафиолетового излучений Солнца в ионизацию Е-слоя ионосферы по ее реакции на солнечные рентгеновские вспышки. Попытка применить данный метод к оценке сезонной изменчивости соотношения долей скорости ионизации рентгеновским q_x и ультрафиолетовым q_u излучениями Солнца в ионизацию Е-слоя привела авторов работы [Иванов-Холодный и др., 1977] к выводу, что это соотношение меняется в течение года. Это обстоятельство дало основание авторам сделать вывод о том, что контроль за соотношением q_x/q_u позволит оценивать сезонную изменчивость основных газовых компонент на высотах области Е. Поэтому развитый метод был принят на вооружение в работе [Гивишвили и др., 2005] для оценки теперь уже долговременных вариаций вспышечных явлений, на основа-

Abstract. Using data from ground-based vertical sounding of the ionosphere (VS) at the station Moscow and five Japanese stations for the period from 1969 to 2015, we have examined the long-term response of the E layer to solar X-ray flares. The analysis relies on the previously developed method for estimating the ratio between rates of ionization by X-rays q_x and ultraviolet radiation q_u during flares. We confirmed the existence of a long-term (at least covering the 45-year observation period) increase in the proportion of X-rays in the total ionization rate of the ionospheric E layer, characterized by the ratio q_x/q , where $q = q_x + q$. The q_x/q ratio is shown to increase throughout the period of interest at a rate independent of the solar activity cycle. There is also no dependence of the q_x/q trend rate on the season, latitude $(26^{\circ}-56^{\circ} N)$, and longitude $(37^{\circ}-28^{\circ} E)$.

Keywords: ionospheric E layer, vertical sounding, solar flares, long-term trend.

нии которых можно было бы судить о многолетних изменениях газового состава нижней термосферы.

Результаты анализа 68 вспышечных явлений, зарегистрированных на станции вертикального зондирования (ВЗ) Москвы с 1969 по 1990 гг., свидетельствовали о многолетнем росте относительного вклада рентгеновского излучения в суммарную ионизацию нижней термосферы в области высот 90–130 км. Поэтому естественным образом возник вопрос о природе выявленного эффекта: имеет ли он локальный или глобальный характер и, кроме того, существует ли какая-либо зависимость отношения q_x/q_u от широты места наблюдения и времени года. Цель настоящей работы состоит в попытке дать ответ на эти вопросы.

1. ТЕХНОЛОГИЯ ОЦЕНКИ РЕАКЦИИ f_0 Е НА ВСПЫШКУ

Вклад рентгеновского излучения в общую ионизацию области во время вспышки оценивается выражением [Иванов-Холодный и др., 1976]

$$q_{x} / q = \left\{ \left[f_{0} \mathbf{E}^{\mathbf{B}} / f_{0} \mathbf{E} \right]^{4} - 1 \right\} / \left\{ \left[J_{1-8}^{\mathbf{B}} / J_{1-8} \right]^{P} - 1 \right\}, \quad (1)$$

где $q=q_x+q_u$; $q_x/q=(q_x/q_u)(1-q_x/q)$; $J_{1-8}^{\rm B}$ — интенсивность рентгеновского излучения в диапазоне 1–8 Å во время вспышки; J_{1-8} — фоновая интенсивность того же излучения; $P=0.25\pm0.10$; $f_0{\rm E}$ — критическая частота Е-слоя. Поскольку $q_x/q_u \propto q_x/q$, соотношение скоростей ионизации рентгеновским и ультрафиолетовым излучением в дальнейшем будет отображаться в виде либо q_x/q_u , либо q_x/q_u .

Предположение о возможности оценки какихлибо вариаций газового состава нижней термосферы по данным регистрации вспышечных явлений основывается на том факте, что солнечное излучение в линиях 977 и 1026 Å воздействует исключительно на молекулярный кислород. Поэтому скорость ионизации $q_{\rm u}$, обусловленная этим источником, так или иначе зависит от его концентрации, т. е. $q_u \propto [O_2]$. А поскольку рентгеновское излучение взаимодействует со всеми атмосферными составляющими, $q_x \propto \{ [N_2] + [O_2] + [O] \}$. Отсюда следует, что отношение q_x/q_u (равнозначное отношению q_x/q) эквивалентно параметру $\eta = \{ [N_2] + [O_2] + [O] \} / [O_2]$. Для тех или иных гелиогеофизических условий η находится из эмпирической модели атмосферы, в частности, из модели MSIS [Hedin, 1991]. Таким образом, получаем

$$q_{\rm x} / q_{\rm u} \propto \eta.$$
 (2)

2. МАССИВ ДАННЫХ ИЗМЕРЕНИЙ

Для определения широтно-долготных особенностей проявления эффекта многолетних вариаций отклика Е-слоя на солнечные вспышки данные ВЗ ст. Москва, полученные с 1969 по 1994 г. были дополнены результатами измерений f_oE на сети японских станций ВЗ (далее — Москва и Япония) в табл. 1. Кроме того, возобновление регулярного мониторинга ионосферы в Москве с 2003 г. позволило привлечь к анализу новые данные регистрации вспышечных явлений.

Как можно видеть из табл. 1, количество зарегистрированных вспышечных явлений заметно менялось от одного пункта измерений к другому. В одних случаях это объяснялось техническими причинами, в других — степенью экранировки регулярного слоя Е спорадическими слоями E_s, в третьих — различиями в долготе. Из-за этого моменты одних и тех же вспышек на одних станциях приходились на светлое время суток с достаточно хорошо развитым слоем Е, а на других — на сумерки со слабо развитым слоем Е. По причине восьмичасовой разницы в поясном времени между Москвой и Японией массив вспышек по данным японских станций практически не пересекается с рядами вспышек, зарегистрированных в Москве. Таким образом, всего было обработано 176 случаев солнечных рентгеновских вспышек в Москве и 361 — на станциях Японии. Когда на нескольких японских станциях одна и та же вспышка

Рис. 1. Общая динамика изменений отношения q_x/q , найденного по вспышкам, зарегистрированным в Москве и Японии, а также среднемесячные значения F10.7

регистрировалась одновременно, найденные по ним значения q_x/q усреднялись. В результате к анализу привлечены 243 значения q_x/q .

2.1. Зависимость q_x/q от солнечной активности

На рис. 1 показаны результаты оценок параметра q_x/q в Москве (1969–2015 гг.) и Японии (1969–1994 гг.), рассчитанные по формуле (1).

Из него видно, что, во-первых, в обоих регионах абсолютные значения отношения q_x/q близки друг другу. Во-вторых, общей особенностью в них является очевидная зависимость от солнечной активности (СА), которую можно выразить формулой:

$$q_x / q = (q_x / q)_0 + a F10.7.$$
 (3)

В табл. 2 приведены коэффициенты линейной зависимости между значениями q_x/q и F10.7, определенные для каждого цикла или полуцикла СА.

Можно видеть, что для обоих регионов средние за весь период измерений коэффициенты *a* близки. Вместе с тем, начальные значения q_x/q для каждого цикла CA $(q_x/q)_0$ возрастают от цикла к циклу в обоих регионах. На рис. 2, *a*, *б* показаны зависимости q_x/q от *F*10.7 для неполного 20-го и двух полных — 21-го и 22-го циклов CA в обоих регионах. Заметный рост начальных значений $(q_x/q)_0$ от цикла к циклу по данным Москвы и Японии указывает на наличие дополнительного фактора, помимо CA.

2.2. Зависимость от сезона

Для анализа зависимости q_x/q от сезона их среднемесячные значения приводились к среднему уровню солнечной активности для всех случаев регистрации вспышек. Поскольку вспышечные явления редко наблюдаются в периоды низкой солнечной активности (см. рис. 1), этот уровень соответствовал F10.7=170. Анализ показал, что сезонные вариации (q_x/q)₁₇₀ как в Москве, так и в Японии не только близки друг другу, но, и это главное, они невелики (рис. 3). Исключение составляет аномально низкое значение (q_x/q)₁₇₀ в январе для Москвы. Это отклонение, вероятно, объясняется малым количеством регистрации вспышек, обусловленным особенностями развития зимнего слоя Е на широтах Москвы. Вместе с тем, в обоих регионах отношение

Таблица 1

TC			~ ~			
Коорлицаты	стациии	периопы	иаршолении	14	копичество	DOULTIMEN
координаты	cranquin,	перноды	паозподении	r1	KOJIN-ICCI BO	benbimen

Столица	IIIumora N	Подрото Е	Период,	Число	
Станция	широга, п	долгога, Е	годы	вспышек, п	
Москва	55.5	37.3	1969–2017	176	
Вакканаи	45.4	141.7	1969–1986	124	
Акита	39.7	140.1	1969–1984	35	
Кокубунджи	35.7	139.5	1970-2000	136	
Ямагава	31.2	130.6	1969–1986	56	
Окинава	26.3	127.8	1979–1986	10	

Таблица 2

Линейная зависимость q_x/q от F10.7 в пределах цикла (полуцикла) СА

№ цикла	Москва				Япония					
CA	Период	n	$(q_{\rm x}/q)_0$	а	R^2	Период	п	$(q_{\rm x}/q)_0$	а	R^2
20 (0.5)	02.69-07.73	25	0.0965	0.0007	0.264	01.69-05.73	29	0.0173	0.0013	0.612
21 (1.0)	04.78-07.85	40	0.1160	0.0010	0.294	01.78-01.85	48	0.1457	0.0010	0.319
22 (1.0)	02.86-08.94	35	0.2243	0.0008	0.283	02.86-04.95	40	0.2167	0.0009	0.495
23 (0.5)	нет наблюдений					11.97-03.00	9	0.2157	0.0013	0.381
24 (0.5)	12.06-06.15	11	0.1833	0.0015	0.502					
Среднее		0.1550	0.0010	0.335	Среднее		0.1489	0.0011	0.452	

Рис. 2. Зависимость q_x/q от F10.7 в 20-м, 21-м и 22-м циклах солнечной активности по данным Москвы (a), Японии (б)

Рис. 3. Сезонные вариации отношения $(q_x/q)_{170}$ в Москве и Японии

 $(q_x/q)_{170}$ достигает максимума в марте, тогда как летом и осенью оно всюду принимает промежуточные значения.

2.3. Широтно-долготная зависимость q_x/q

Чтобы исключить возможное влияние циклических вариаций на широтно-долготную структуру распределения параметра q_x/q , рассматривались данные измерений, соответствующие максимальной фазе одного цикла солнечной активности. Наиболее оптимальный в этом смысле период пришелся на четырехлетие (1979–1982 гг. со средним значением F10.7=208). Средние отношения q_x/q за каждый из рассматриваемых годов для каждой из японских станций и для Москвы показаны в табл. 3.

Усредненные за четыре года наблюдений значения q_x/q_u на всех пунктах измерений показаны на рис. 4. Из него как будто можно видеть тенденцию роста q_x/q_u с ростом широты. Однако она выражена столь слабо, что не выходит за пределы ±4.2 % относительно среднего для всех станций значения q_x/q , равного 0.347. В соответствии с моделью MSIS

Таблица 3

Год -	$q_{\rm x}/q$								
	Москва	Вакканаи	Акита	Кокубунджи	Ямагава	Окинава			
1979	0.345	0.375	0.410	0.340	0.310	0.456			
1980	0.300	0.350	0.364	0.340	0.350	0.272			
1981	0.390	0.325	0.359	0.320	0.386	_			
1982	0.364	0.339	0.329	0.325	0.306	0.315			
Сред.	0.350	0.347	0.366	0.331	0.338	0.348			

Значения q_x/q , полученные на разных станциях при высокой СА

Рис. 4. Широтный ход (темные треугольники) экспериментальных значений q_x/q_u , усредненных по данным Москвы и Японии в период весеннего равноденствия (март, апрель, май); широтная зависимость (светлые кружки) отношения $\eta = \{[N_2]+[O_2]+[O]\}/[O_2]$, определенного для высот 105–115 км 15 марта 1981 г. и координат станций из табл. 1 по модели MSIS [Hedin, 1991]

широтный ход соотношения N_2 , O_2 и O (параметра η) в пределах указанных границ также мало заметен. Следовательно, нет причин ожидать обнаружения каких-либо заметных особенностей и в пространственном распределении параметра η .

Кроме того, как эмпирические q_x/q_u , так и модельные значения η , характеризующие пространственные вариации газового состава верхней атмосферы на указанных высотах, не обнаруживают и значимых долготных эффектов. Для регионов, отстоящих друг от друга на восьмичасовые пояса, многолетние вариации отношения q_x/q_u практически одинаковы.

2.4. Общая оценка многолетнего тренда q_x/q

Поскольку отношение q_x/q лишь в малой степени зависит от сезона, а также от координат пункта наблюдения, но коррелирует с солнечной активностью и возрастает от цикла к циклу СА, общую динамику многолетней изменчивости среднегодовых значений q_x/q можно описать выражениями, определенными по данным наблюдений в период с 1969 по 1994 г., для Москвы

 $(q_x/q)_M(t) = 0.0068 \cdot cod + 0.0012 \cdot F10.7 - 13.343$ (4) и для Японии

 $(q_x/q)_{\Re}(t) = 0.0076 \cdot 20\partial + 0.0012 \cdot F10.7 - 14.934,$ (5) где год начинается с 1969.

На рис. 5 *a*, δ показаны временные вариации экспериментальных (среднегодовых) отношений $(q_x/q)_3$

Рис. 5. Экспериментальные значения $(q_x/q)_3$ и $(q_x/q)_p$, рассчитанные по формулам (4), (5) для Москвы и Японии, а также q_x/q , рассчитанные по формуле (6) по среднегодовым значениям F10.7. Сплошные прямые — линейные тренды экспериментальных значений $(q_x/q)_3$ в обоих регионах

и их расчетные оценки $(q_x/q)_P$, найденные по формулам (4), (5). Как можно видеть из рис. 5, δ , в Японии имело место почти полное совпадение значений $(q_x/q)_3$ и $(q_x/q)_p$. В Москве после 2003 г. расхождение между экспериментальными и расчетными значениями q_x/q было довольно велико, что отразилось на различии их линейных трендов. В Японии он составил 0.0074/год, в Москве — 0.0040/год. Это может объясняться двумя причинами. Во-первых, заметным снижением солнечной активности и крайне редкими случаями наблюдений вспышек. Так, например, в 2004 г. в Москве была отмечена одна вспышка,

в 2010 г. — две, в 2013 г. — две, а после 2017 г. ни одной. Во-вторых, возможным изменением спектра ионизирующего излучения Солнца, сопровождающим общее падение его активности, наблюдающееся в 23-м и 24-м циклах. Так или иначе, вопрос остается открытым.

Сходство значений $(q_x/q)_P$, определенных по среднегодовым значениям *F*10.7 для Москвы и Японии, позволяет представить обобщенную формулу многолетнего тренда q_x/q , характеризующего общую динамику изменчивости этого параметра. В пределах средних широт Северного полушария он примет вид

$$q_x / q(t) = 0.0072 \, cod + 0.0012 \, F10.7 - 14/139.$$
 (6)

3. ОБСУЖДЕНИЕ

Оценивая возможные долговременные последствия парникового эффекта для газового состава атмосферы, авторы работы [Roble, Dickinson, 1989] отметили, что гипотетический двукратный рост содержания СО2 и CH₄ способен заметно уменьшить концентрации N₂, О2 и О уже с высот 80 км. По их оценкам концентрация О₂ на высоте 120 км должна понизиться на ~40 %, [N₂] — на ~30 % и [O] — на ~20 %. В работе [Rishbeth, 1990; Rishbeth, Roble, 1992] проведена оценка последствий изменений критической частоты $f_{\rm o}$ Е и высоты максимума $h_{\rm m}$ Е слоя Е ионосферы. Расчеты показали, что изменения коснутся прежде всего $h_{\rm m}$ Е: она должна будет понизиться на ~2.5 км. Частота f₀E должна была бы возрасти, но незначительно, меньше погрешности измерений, равной ±0.05 МГц [https://www.sws.bom.gov.au/IPSHosted/INAG/uag.htm].

С 1996 по 2002 г. наблюдения в Москве не проводились ввиду отсутствия измерительной техники. Для того чтобы восполнить недостающее звено в ряду данных непрерывных наблюдений, определялась зависимость f_0 E от CA в каждом полуцикле спада и подъема CA с 1947 по 2020 г. по формуле

$$f_{0}E = (f_{0}E)_{0} + a F10.7, \tag{7}$$

где $(f_0 E)_0$ — значение $f_0 E$ в начале каждого полуцикла СА; F10.7 — текущий среднегодовой индекс солнечной активности; a — коэффициент связи $f_0 E$ с F10.7. Таким образом, были восстановлены значения $f_0 E$, соответствующие годам, в которых измерения не проводились.

Они показали, что зависимость f_0 Е от солнечной активности высока, тем не менее, не абсолютна. Более того, со временем она незначительно, но меняется. В частности, за 74 года наблюдений коэффициент *а* возрос в 1.13 раз, при среднем за этот временной интервал значении F10.7=123. Это означает, что за время регулярного мониторинга ионосферы газовый состав нижней термосферы менялся таким образом, что реакция области Е на солнечное ионизирующее излучение становилась в целом все более выраженной.

Что касается параметра $h_{\rm m}$ Е, следует отметить, что в методе ВЗ определяется не истинная высота максимума слоя, а его действующая высота h Е. Различие между ними состоит в следующем. Параметр $h_{\rm m}$ Е находится по данным измерений высотного распределения $N_{\rm e}$ преимущественно в ракетных экспериментах. На их основе строятся эмпирические модели ионосферы [Фаткуллин и др., 1981; Bilitza, 1997]. В первой модели $h_{\rm m}$ Е признается переменной величиной, зависящей от ряда гелиогеофизических условий и меняющейся в пределах 108–115 км. В модели IRI, напротив, принято, что $h_{\rm m}$ Е = 110 км независимо от условий наблюдения. Но поскольку это не соответствует действительности, вариативность текущих значений $h_{\rm m}$ Е оценивается по данным о h'Е, соответствующим тому или иному гелиогеофизическому условию.

Результаты расширения временного диапазона измерений и включения в них данных h'Е представлено на рис. 6 среднегодовыми значениями h'Е и $(f_0E)_{123}$, приведенными к среднему за весь рассматриваемый период значению F10.7=123. Разрывы в данных h'Е обусловлены не только техническими причинами, но также условиями их архивации.

Можно видеть, что середина 50-х гг. XX в. явилась переломным моментом в динамике многолетних трендов обоих ключевых параметров слоя Е ионосферы. В частности, отрицательный тренд $(f_0E)_{123}$, сменив знак в 1957 г., до настоящего времени остается положительным. Таким образом, в целом за 74 года наблюдений линейный тренд среднегодовой частоты $(f_0E)_{123}$ был положителен, но слаб, и составил +1.13·10⁻³ МГц/год. В конечном счете, это привело к увеличению $(f_0E)_{125}$ не более, чем на 0.1 МГц, тогда как понижение *h*'Е и соответственно h_m E составило 3.5 км.

Вместе с тем реальное содержание CO_2 в атмосфере во второй половине XX в. повысилось с 315 до 415 ppм [https://techcrunch.com/2019/05/12/co2-inthe-atmosphere-just-exceeded-415-parts-per-million-for-

the-first-time-in-human-history]. Иначе говоря, на высотах области Е концентрация CO_2 за обсуждаемый интервал времени повысилась не в два, а не более чем в 1.32 раза. Следовательно, какие-либо долговременные изменения в частоте f_0E , не связанные с циклической активностью Солнца, не должны были бы наблюдаться. Однако они наблюдаются, и их невозможно объяснить ни ошибками измерений, ни способами обработки и анализа данных измерений. Тем самым они подтверждают предположение о том, что ионизирующее излучение Солнца является доминирующим, но не единственным фактором, контролирующим изменчивость параметров слоя Е ионосферы.

В частности, это хорошо видно благодаря исключению влияния циклической изменчивости СА на частоту f_0E . Последнее достигается 11-летним усреднением методом скользящего среднего как F10.7, так и (f_0E)₁₂₃, а также оценкой линейного тренда 11-летних скользящих (F10.7)₁₁ и ((f_0E)₁₂₃)₁₁. Результаты такой операции показаны на рис. 7. Видно, что тренды обоих параметров значимы, но имеют противоположный знак.

В работе [Mikhailov, 2006] был сделан вывод о значимости геомагнитного контроля над долговременными трендами f_0E . Согласиться с этим утверждением сложно по следующим причинам. Во-первых, даже после сильных геомагнитных возмущений максимальные отклонения f_0E от невозмущенных значений не превышают 0.07 МГц [Beynon, Brown, 1959; Brown, Wynne, 1967; Иванов-Холодный, Нусинов,

Рис. 6. Линейные тренды $(f_0 E)_{123}$ и h'E для трех временных периодов и в целом для всего периода наблюдений в Москве

Рис. 7. Одиннадцатилетние скользящие средние индекса F10.7 и ($f_0 E$)₁₂₃ по данным мониторинга в Москве, а также их линейные тренды

1979]. Кроме того, упомянутые отклонения наблюдались в течение лишь одного-двух дней непосредственно за пиком редких возмущений типа геомагнитных бурь.

Во-вторых, долговременная изменчивость геомагнитной активности состоит из периодической и хаотической составляющих. Апериодический фактор значим на временных интервалах, ограниченных несколькими годами. Поэтому коэффициент корреляции между среднегодовыми значениями F10.7 и планетарным индексом геомагнитной активности K_p за период с 1946 по 2015 г. составил только 0.492. При усреднении методом одиннадцатилетнего скользящего среднего стохастическая компонента индекса K_p устраняется. При этом коэффициент корреляции между индексами (F10.7)₁₁ и (K_p)₁₁ резко возрастает и становится равным 0.931 (рис. 8).

Иначе говоря, геомагнитная активность на больших временных масштабах сама зависит от циклических вариаций СА, а поскольку солнечный фактор есть основной источник перемен как для геомагнитного поля, так и для ионосферы, вывод о существовании долговременного контроля геомагнитной активности над f_0 Е заведомо преувеличен. Это и было подтверждено в работе [Bremer, 1992]. Метод совместного анализа данных наземных измерений параметров слоя Е и результатов спутни-

Рис. 8. Одиннадцатилетние сглаженные индексы солнечной — *F*10.7 и геомагнитной — *K*_p активности

ковых измерений потоков рентгеновского излучения Солнца дает неоспоримое свидетельство драматических изменений концентрации О₂, происходящих на высотах нижней термосферы, но спутниковые измерения потоков рентгеновского излучения стали проводиться лишь с 1969 г. Поэтому оценки вклада этого излучения в суммарную скорость ионизации по указанной методике возможны только с этого времени. И они показывают, что тренд q_x/q резко контрастирует с трендом (f_0E)₁₂₃ за общий для них период времени. Если частота (f_0E)₁₂₃ повысилась менее чем на 3 % (см. рис. 6), отношение q_x/q , согласно рис. 5, *a*, выросло с 0.22 до 0.40, т. е. примерно в два раза.

Причина, объясняющая отмеченные долголетние (климатического масштаба) изменения параметров слоя Е ионосферы и отношения q_x/q , с высокой степенью вероятности связана с уменьшением содержания O_2 в верхней атмосфере, поскольку только этот процесс объясняет всю совокупность последствий, а именно, повышение q_x/q и (f_0 E)₁₂₃ с одновременным понижением *h*'Е. При этом темп убывания [O_2] заведомо превышает оценки [Roble, Dickinson, 1989], связанные с удвоением концентрации CO_2 в атмосфере.

Вместе с тем, приведенные оценки скорости уменьшения содержания O_2 на высотах, превышающих уровень турбопаузы, требуют уточнения, поскольку основаны на упрощенной схеме фотохимических реакций.

ЗАКЛЮЧЕНИЕ

Выводы, касающиеся трендов q_x/q , $(f_0E)_{123}$ и h'E, могут быть сформулированы следующим образом.

1. Данные наземных измерений методом ВЗ и спутниковых измерений потоков рентгеновского излучения Солнца показали, что в регионе, охватывающем диапазон широт $26^{\circ}-56^{\circ}$ N и долгот $37^{\circ}-128^{\circ}$ E, отношение q_x/q возросло примерное вдвое с 1969 г.

2. В указанном регионе в скорости возрастания q_x/q не обнаружились заметные ни долготные, ни широтные особенности. Сезонные вариации также были выражены слабо.

3. Расширение временного диапазона измерений методом ВЗ на ст. Москва до 74 лет подтверждает факт возрастания частоты $(f_0E)_{123}$ в целом. Однако ее линейный тренд был мал и незначим. Важно, однако, то, что его знак был противоположен тренду солнечной активности — параметру F10.7. Тренд h'E был велик и значим.

4. Знаки трендов (f_oE)₁₂₃ и h E были противоположны и соответствовали прогнозируемым изменениям, обусловленным парниковым эффектом, однако их амплитуды многократно превышали реальный рост содержания CO₂ в атмосфере.

5. Совпадение знаков трендов $(f_0 E)_{123}$ и q_x/q , а также их противоположность знаку тренда h'Eсвидетельствует о том, что в их основе лежит общая причина — уменьшение концентрации O_2 , контролирующей критическую частоту и высоту максимума слоя Е ионосферы.

Вместе с тем, эти выводы порождают два вопроса, ждущих своего решения.

1. Какова реальная скорость убыли O₂?

2. Что произошло в середине 50-х гг. XX в., что резко изменило знак и величину тренда $(f_0E)_{123}$ и h'E?

СПИСОК ЛИТЕРАТУРЫ

Гивишвили Г.В., Иванов-Холодный Г.С., Лещенко Л.Н., Чертопруд В.В. Солнечные вспышки и газовый состав верхней атмосферы. *Геомагнетизм и аэрономия*. М.: Наука, 2005. Т. 45, № 2. С. 263–267.

Иванов-Холодный Г.С., Нусинов А.А. Образование и динамика дневного среднеширотного слоя Е ионосферы. Труды Института прикладной геофизики. М.: Госкомгидромет, 1979. Вып. 37. 129 с.

Иванов-Холодный Г.С., Лещенко Л.Н., Одинцова И.Н. Соотношение рентгеновского и ультрафиолетового излучений солнечных вспышек в ионизации Е-области ионосферы. *Геомагнетизм и аэрономия*. М.: Наука, 1976. Т. 16, № 2. С. 246–250.

Иванов-Холодный Г.С., Лещенко Л.Н., Нусинов А.А., Одинцова И.Н. Влияние сезонных вариаций нейтральной атмосферы на ионизацию Е-области ионосферы. *Геомагнетизм и аэрономия*. М.: Наука, 1977. Т. 17, № 5. С. 839–846.

Фаткуллин М.Н., Зеленова Т.И., Козлов В.К. и др. Эмпирические модели среднеширотной ионосферы. М.: Наука, 1981. 255 с.

Beynon W.L.G., Brown G.M. Geomagnetic distortion of region-*E. J. Atmos. Terr. Phys.* 1959. Vol. 14, iss. 1-2. P. 138–166. DOI: 10.1016/0021-9169(59)90062-5.

Bilitza D. International Reference Ionosphere — Status 1995/96. *Adv. Space Res.* 1997. Vol. 20, no. 9. P. 1751–1754. DOI: 10.1016/S0273-1177(97)00584-X.

Bremer J. Ionospheric trends in mid-latitude as a possible indicator of the atmospheric greenhouse effect. *J. Atmos. Terr. Phys.* 1992. Vol. 54, no. 11-12. P. 1505–1511. DOI: 10.1016/0021-9169(92)90157-G.

Brown W.J.G., Wynne R. Solar daily disturbance variation in the lover ionosphere. *Planet. Space Sci.* 1967. Vol. 15, iss. 11. P. 1677–1686. DOI: 10.1016/0032-0633(67)90006-2.

Hedin A.E. Extension of the MSIS thermospheric model into the middle and lower atmosphere. *J. Geophys. Res.* 1991. Vol. 96, iss. 2. P. 1159–1172. DOI: 10.1029/90JA02125.

Mikhailov A.V. Trends in the ionospheric E-region. *Phys. Chem. Earth.* 2006. Vol. 31, iss. 1-3. P. 22–32. DOI: 10.1016/j.pce.2005.02.005.

Rishbeth H. A greenhouse effect in the ionosphere? *Planet. Space Sci.* 1990. Vol. 38, iss.7. P. 945–948. DOI: 10.1016/0032-0633(90)90061-T.

Rishbeth H., Roble R.G. Cooling of the upper atmosphere by enhanced greenhouse gases — modelling of thermospheric and ionospheric effects. *Planet. Space Sci.* 1992. Vol. 40, iss. 7. P. 1011–1026. DOI: 10.1016/0032-0633(92)90141-A.

Roble R.G., Dickinson R.E. How will changes in carbon dioxide and methane modify the mean structure of the meso-sphere and thermosphere? *Geophys. Res. Lett.* 1989. Vol. 16, iss. 7. P. 1441–1444. DOI: 10.1029/GL016i012p01441.

Shieber J. CO2 in the atmosphere just exceeded 415 parts per million for the first time in human history. Mauna Loa Observatory. 2019.

URL: https://www.sws.bom.gov.au/IPSHosted/INAG/uag.htm (дата обращения 20 февраля 2022 г.).

URL: https://techcrunch.com/2019/05/12/co2-in-the-atmospherejust-exceeded-415-parts-per-million-for-the-first-time-in-human-history (дата обращения 20 февраля 2022 г.).

Как цитировать эту статью:

Гивишвили Г.В., Лещенко Л.Н. Многолетний тренд реакции Е-слоя ионосферы на солнечные вспышки. *Солнечно-земная физика*. 2022. Т. 8, № 1. С. 51–57. DOI: 10.12737/szf-81202206.