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Abstract. For a model of an axially symmetric 
magnetosphere we have constructed a theory of stand- 
ing AlfvCn waves with large azimuthal wavenumbers, 
m >> 1. It is supposed that the source for such waves 
can be provided by extraneous currents in the iono- 
spheric E-layer. A monochromatic source excites an 
oscillation of the poloidal type on the magnetic shell, 
having an eigenfrequency of poloidal oscillation that 
coincides with the source frequency. This wave, while 
travelling across the magnetic shells, changes from the 
poloidal into the toroidal wave. On the magnetic shell, 
whose frequency of toroidal eigenoscillations coincides 
with the frequency of the wave concerned, it is totally 
absorbed due to energy dissipation in the ionosphere. 

1. Introduction 

The purpose of this paper is to construct a theory of 
standing Alfven waves which are of small scale across the 
magnetic field both in the azimuthal direction and normal 
to the magnetic shells. The transverse small-scale charac- 
ter is with regard to the smallness of the typical scales of 
variation of the wave field in the transverse directions 
as compared with the typical scale of variation of the 
magnetospheric parameters. as well as compared with the 
longitudinal wavelength. In particular. this means that the 
azimuthal wave number nr >> 1. 

The transverse small-scale character is a natural prop- 
erty of the Alfven oscillations in a transversally inhomo- 
geneous plasma (Timofeev, 1979 ; Mazur et al.. 1979). It 

is due to the smallness of the transverse dispersion of the 
Alfven waves (which is totally absent in an ideal MHD 
approximation and in a homogeneous magnetic field). 
The smallness of the dispersion leads to the fact that 
neighbouring field lines oscillate nearly independently of 
each other and. in the presence of a transverse inhomo- 
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geneity, with a different frequency. As a result, the oscil- 
lations scatter in phase, that is, the transverse structure of 
the oscillation field is reduced in size. Only the transverse 
dispersion can stop or prevent this comminution, but due 
to its smallness, this requires that the transverse wave- 
length should be small. However, the above reasoning 
proves the small-scale character of the Alfven wave in the 
direction normal to the magnetic shells. In the azimuthal 
direction the system is assumed homogeneous. and in this 
direction the wave can be both a small- and large-scale 
one. Which of these two possibilities is realized is deter- 
mined by the wave excitation mechanism. 

An important example of the excitation of an azi- 
muthally large-scale wave is Alfven resonance. which was 
discovered by Southwood (1974) and Chen and Hasegawa 
(1974), and was studied in many subsequent papers [see 
a review by Southwood and Hughes (1983)], specifically 
for an axially symmetric magnetospheric model in the 
papers of Leonovich and Mazur (1989a,b). The source of 
the Alfven oscillations in this case is provided by a fast 
magnetosonic wave which is generated outside or on the 
magnetospheric boundary and subsequently penetrates its 
depth. Such a wave has a global character, and its expan- 
sion in terms of azimuthal harmonics contains largely 
terms with m - 1. 

Alfvin waves with nz >> 1 can be excited either by insta- 
bilities capable of effectively generating transversally 
small-scale oscillations or by local sources in the magneto- 
sphere or the ionosphere. Such a source may be exem- 
plified by extraneous currents produced owing to the 
motion of neutrals in the E-layer. It is likely that the 
combined action of these mechanisms, i.e. extraneous cur- 
rents in the ionosphere gives rise to a priming disturbance 
which is subsequently enhanced by the instability and 
reaches the experimentally observed level. 

A theoretical investigation of azimuthally small-scale 
Alfven waves was initiated in a pioneering paper by Dungey 
(I 954) who considered the limit m + co. Eigenmodes, the 
so-called poloidal Alfvin waves, determined in this limit, 
are concentrated on the separated magnetic surfaces deter- 
mined by the mode frequency (in this paper these surfaces 
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are referred to as the poloidal resonant surfaces). A dis- 
turbed magnetic field of the poloidal mode oscillates in 
the direction normal to the magnetic shell, and the electric 
field oscillates azimuthally. In accordance with general 
properties of the Alfvkn wave, such a polarization implies 
that the azimuthal component of the wavevector is much 
larger than the normal component. This is by no means 
evident from the Dungey solution. because for it both 
these components are infinite. The longitudinal (along 
the geomagnetic field line) structure and the frequency 
spectrum of the poloidal mode are determined by the 
solution of a one-dimensional problem for eigenvalues 
(Radosky, 1967; Radosky and Carovillano, 1969; Cum- 
mings et ui., 1969; Krylov et al., 1981 ; Krylov and 
Lifshitz. 1984). Walker (1987) and Taylor and Walker 
( 1987) analysed the influence upon the longitudinal struc- 
ture of the poloidal mode of the finite plasma pressure. 

Poloidal oscillations with large but finite no were studied 
by Leonovich and Mazur (1990). By considering such n? 
values. it became possible to investigate the fine structure 
of the mode in the direction normal to the magnetic 
surfaces. It appeared that this structure is determined by 
the specific transverse dispersion caused by the curvature 
of the geomagnetic field lines. It was found that near the 
poloidal resonant surface, the wavelength normal to it is 
much larger than in azimuth, which is consistent with the 
poloidal polarization of the mode. But in regard to two 
important points, work was not completed. Firstly. the 
excitation mechanism for these modes was not considered. 
And secondly, the fate of the poloidal mode as it moves 
farther away from the poloidal resonance surface was not 
studied. The point here is that the transverse dispersion 
leads to the propagation of the wave across the magnetic 
shells, as a consequence of which the wavelength in the 
normal direction decreases, and the mode loses its poloidal 
character. 

These questions have been solved in the present paper. 
We have developed a complete theory of the phenomenon. 
and its main elements may be formulated as follows. In 
the longitudinal direction the mode is a standing wave. 
and in the transverse direction it is a tracclling wave. 
Extraneous currents in the ionosphere excite the mode 
near the poloidal resonance surface. and from it the wave 
travels toward the magnetic shell which we have called 
the toroidal resonance surface. In the process of such 
a motion, the wavelength in the normal decreases. and 
becomescomparable with and then less than the azimuthal 
one. The poloidal polarization of the mode is replaced 
with the toroidal polarization. At the same time. the mode 
amplitude decreases owing to the dissipation in the iono- 
sphere. If there is some instability that is stronger than 
the ionospheric dissipation, then the mode amplitude 
increases. The transverse propagation of the mode ends 
on the toroidal resonance surface where the mode is full) 
absorbed (see Fig. 1). 

Let us give a brief account of the organization of this 
paper. In Section 2, in terms of an approximation of ideal 
magnetic hydrodynamics of cold plasma. WC derive the 
partial differential equation describing a transversally 
small-scale monochromatic Alfvkn wave in an axisym- 
metric magnetosphere. Section 3 is devoted to the boun- 
dary condition on the ionosphere which takes into account 

Fig. 1. Spatial structure of the transversally small-scale standing 
Alfvtn wave in the axisymmetric magnetosphere (schematic). 
The functions R,, and ,fj describe the structure of the mode. 
respectively along (coordinate x’) and across (coordinate s’) 
the field line, and in azimuthal coordinate the structure of the 
mode is defined by the expression exp(iX-,s’). North-South 
symmetry is not assumed 

the dissipation and the possible existence of extraneous 
currents there. Based on the transverse small-scale charac- 
ter of the oscillations concerned, in Section 4 we apply 
to the starting equation the WKB approximation in the 
coordinate normal to the magnetic surface. In this section 
we consider the main order of approximation that defines 
the quasiclassical wavevector as the solution of the longi- 
tudinal problem for eigenvalues. In Section 5 this problem 
is investigated qualitatively ; specifically. a definition is 
given to the poloidal and toroidal longitudinal modes and 
to respective resonance surfaces. Section 6 is concerned 
with the solution of the longitudinal problem using different 
methods. Results of numerical calculations for a given 
magnetospheric model are described. Explicit solutions 
will be obtained for longitudinal harmonics with large 
numbers using the WKB approximation in the longi- 
tudinal coordinate. In Section 7 we examine the damping 
of the longitudinal modes owing to the dissipation in the 
ionosphere. Section 8 is devoted to the next order of WKB 
approximation in the transverse coordinate, in which the 
change in amplitude of the mode is determined as it moves 
across magnetic shells. Also, the validity range of the 
transverse WKB approximation is considered, and it is 
found that it is not satisfied in small neighbourhoods of 
the poloidal and the toroidal resonance surfaces. In the 
next two sections the solutions near these surfaces are 
obtained using the method of perturbation theory based 
on the smallness of deviations of the desired solutions 
from the poloidal and the toroidal modes, respectively. In 
Section I I the solutions are matched in different regions, 
thereby constructing a full solution in the entire region of 
its existence. Some preliminary remarks on comparison of 
our theory with experiments are made in Section 12. In the 
Conclusion, the main results of this work are formulated. 

2. Basic equations and relationships 

For describing the axisymmetrical magnetosphere, we 
shall make use of an orthogonal curvilinear coordinate 
system s’, .Y’. s’, in which the coordinate surfaces 
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s’ = const. coincide with magnetic shells, the coordinate 
s’ specifies the field line on a given shell, and the coor- 
dinate s3 specifies a point on a given field line (see Fig. 
1). In the axisymmetric system. it is natural to use the 
azimuthal angle cp as the coordinate I?. However. we shall, 
instead, be using a more general symbol s’, assuming that 
.? may even not coincide with cp. We denote by s? and 
.Y: the coordinates of intersection of the field line with the 
ionosphere of the magneto-conjugate hemispheres. These 
quantities depend on the magnetic shell: s: = .Y; (_Y’). 
The coordinate surfaces .Y? = const. include a separatrix. 
and it is natural to call it the equatorial surface. Put x1 = 0 
on it and assume x1 < 0, xi > 0. The axial symmetry of 
the magnetosphere does not imply the presence of North- 
South symmetry, that is. the symmetry with respect to the 
replacement si --+ --.Y1. 

The length element ds in the orthogonal curvilinear 
coordinate system is specified by the quadratic form : 

where g1 = g,(s’,.~~) are diagonal elements of the metric 
tensor, and g = g, g:gj is its determinant. On each given 
field line it is possible to use. instead of the coordinate s’, 
the physical length /._whose differentials are related by 
the relation d/ = ,/gyds’. Put / = 0 on the equa- 
torial plane and introduce the quantities /f = /& (s’) cor- 
responding to the coordinates .Y-:. It should be borne in 
mind that the coordinate system (r’.s’./) is not an 
orthogonal one. 

A perturbed electromagnetic field of the mono- 
chromatic oscillation with a time dependence of the form 
exp (- iwt) obeys the equations : 

curlE = i:B. 
C 

curlB = -iz$E. 

where E^ is the dielectric permittivity tensor. In the approxi- 
mation of ideal magnetohydrodynamics. to which we shall 
confine ourselves, for the cold plasma this tensor is dia- 
gonal, and its physical components (i.e. the components 
in a local Euclidean basis) are given by the equalities 
(Akhiezer et ~1.. 1974) : 

&, , = 622 = c-;/I?, I;?? = - ‘%. 

Here, A = A(_Y’..Y’) = B,,:.S47r~) is the Alfven velocity. 
From the above relationships it is easy to obtain a known 
system of equations for covariant components of elrc- 
tric fields E,. Infinite longitudinal plasma conductivity 
(E?~ = - X) leads to the equality E: = 0. For the remain- 
ing two components. we have : 

The system of equations (I) can be represented in a 
convenient symmetric form. For this purpose. we intro- 
duce the following notations. To an arbitrary two-com- 
ponent covariant vector u, (i = 1. 2), we compare the 
contravariant vector .5’ according to the rule G’ = a,. 
-7 
u- = -u ,. In particular, to a two-dimensional gradient 
V, = c!/S.\-’ (i = 1, 2). we compare the operator Vi = 
(VZ, -V,). The identity a,$ = 0, in particular V,o’ = 0 
holds. Besides, we introduce a covariant vector ti-, = g,,d’. 
where g,, is a metric tensor. In other words. 8, = g,az, 
CZ = -g?g,. We have the identity C&L?’ = giut, where 
gl = gig2 and gt = uf/g,+ai/g2 is the square of the 
physical length of a two-component vector a. Using these 
notations we represent the system (1) as : 

Here : 

p+F)E, = 0. (2) 

and 6” is a unit tensor (Kronecker’s symbol). 
The system of equations (2) for the transversally small- 

scale oscillations of our interest can be reduced to a single 
equation. To do this. we invoke perturbation theory based 
on the fact that the transverse scale of the oscillation is 
much smaller than the longitudinal scale and, therefore, 
the operator ill is small compared with the operator p/. 
By expanding the desired solution : 

E,= E;“‘+Ej”+ . . . . 

as a series of perturbation theory, in the main order from 
equation (2) we have : 

A general solution of this equation is : 

E”” = _ V 0 
I I ’ 

where CD is an arbitrary function of coordinates. The func- 
tion @ is a scalar perturbation potential. 

The dependence of the potential @on coordinates is not 
defined in the main order of perturbation theory. The 
equation for it can be obtained as a solvability condition 
for the equation for a next approximation correction. We 
linearize equation (3) : 

P”E”‘-i”V @ = 0, i i (3) 

After acting on this relationship from the left by the 
operator V,. we obtain the desired equation for @ : 

v iT CD = 0 1 / 

A form that is more convenient for further use can be 
imparted to the equation obtained, if instead of the vari- 
able x3, we use the variable / : 

cv,i,v, fV2ipV2)0 = 0. (4) 



700 A. S. Leonovich and V. A. Mazur : A theory of transverse small-scale Alfvin waves 

Here, it is designated : 

(5) 

When deriving equation (4), we have availed ourselves of 
the transverse small-scale character of the oscillation and 
have removed the slowly varying term l/,/g3 from the 
operators V, and V2. Equation (4) is a basic one for the 
theory to be developed here. 

An important role in this theory is played by the quan- 
tity p; this especially applies to its dependence on coor- 
dinate /. The geometrical meaning of this dependence may 
be explained in the following way. Let us consider a thin 
flux tube of rectangular cross-section, having an identi- 
cally small size dx’ = dx’ in coordinates I’ and .x2, The 
physical size in these same coordinates Js, dx’ and 
J& ds’ is, generally speaking, different. The quantity p 
is their ratio. It is obvious that in a magnetic field with 
straight field lines it does not change along the field line. 
In other words, the dependence of p on r” is determined 
by the curvature of the field lines. This dependence was 
considered in greater detail by Leonovich and Mazur 
(1990). 

The potential 0 determines the wave’s electric field, 
and in terms of the first of Maxwell’s equations it also 
determines the magnetic field. In the main order of per- 
turbation theory, we have : 

E, = -V,@, E2 = -V,tD, E, = 0, 

As for the component B,, for it we have : 

(7) 

If we substitute here E, = -VI@, then we obtain B, = 0. 
However, unlike E3, the component B1 is zero only in the 
main order of ~rturbation theory. In the next order. from 
equation (3) it follows that : 

p-llE 
i 

= L-iiV cft. 
I 

By multiplying this relationship from the left by V,. we 
obtain : 

dln(l”) 
A,(VJE,) = 2-7. v v ‘“0 

’ ?(7/. 

where Ai = V:/gl+Vf/g2 is a two-dimensional Laplac- 
ian. The equalities (7) and (8) express B7 implicitly in 
terms of @. 

By virtue of the axiat symmetry of the magnetosphere 
supposed here. the dependence of the potential 0, on the 
coordinate x2 can be chosen to be : 

a+‘, x*, x3) = 6(x’, x3) eQ2, 

where k2 is the covariant azimuthal component of the 
wavevector. If x7 = cp, then kz = m is the azimuthal 
wavenumber. It must be stressed again that we are dealing 
with oscillations with m >> I. Obviously, with such a 
dependence on x’, we have V2@ = ik@. 

3. The boundary condition on the ionosphere 

The boundary condition for Alfven waves on the iono- 
sphere for simple models of the medium was obtained in 
many papers (Maltsev et al., 1974 ; Hughes, 1974 : Hughes 
and Southwood, 1976 ; Alperovich and Federov, 1984 ; 
see also reviews by Southwood and Hughes, 1983; 
Lyatsky and Maltsev, 1983). Within the framework 
of a more adequate model of the medium for Alfven 
waves of a general form, it was obtained in a paper by 
Leonovich and Mazur (1991). However. the cited papers 
neglected the existence in the ionosphere of extraneous 
currents which, according to the scenario presented in 
the Introduction, have the role of a source for the 
oscillations of our interest. 

The presence of an extraneous current in the ionosphere 
means that Ohm’s law in this medium has the form : 

j = &E+ji'"". (9) 

Here j is the density of current. E is the wave’s electric 
field, ci is the conductivity tensor (including longitudinal, 
Pedersen and Hall conductivities), and j(“*) is the density 
of extraneouscurrent. From the relationship (9). it follows 
that current jtexO is associated not with the wave’s field, 
but has some different sources. It seems Iikely that the 
most significant excitation mechanism for extraneous cur- 
rent in the frequency range of standing Alfven waves of 
our interest (f- lo- ‘-10e3 Hz) is the motion of neutrals 
in acoustic-gravity and internal gravity waves which 
entrains the magnetized electrons and unmagnetized ions 
in the ionospheric E-region in a different manner. It is also 
possible that extraneous currents are produced by local 
electric fields, including those of artificial origin. 

The derivation of the boundary condition for Alfvtn 
waves on the ionosphere, in the presence of extraneous 
currents there, can be accomplished using the same 
method as used in the cited papers. Without going into 
details (we intend to have it pubIished in a separate paper), 
we give oniy the final result : 

c2 cos xi_ ZE, 
E,llt =: Ti------- - + 

47cwCF’ iY f, (10) 

Here the indices ‘* + ” and “ - ” refer to the ionosphere of 
the conjugate hemispheres, x is the angle between the field 
line and the vertical to the ionosphere at the point of their 
intersection, Cy) is the integral Pedersen conductivity of 
the ionosphere, and .!a*) is a function. satisfying the equa- 
tion : 

where : 
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andj/:” is the density of extraneous field-aligned current 
at the ionosphere-magnetosphere interface (we shall con- 
sider the direction towards increasing coordinate (. i.e. 
from /_ to rC+ to be the positive direction for it in both 
hemispheres). 

If the relationship Ei = -V,@ is substituted into equa- 
tion (IO), then we obtain the boundary condition for the 
function @ : 

(121 

Here, it is designated : 

The parameters r, and V, have the dimensions of 
velocity. On the order of magnitude uf N 10’ km S.-I 
and V, - IO” km s- ’ for the dayside ionosphere, and 
z1* - IO3 km s’““’ and P’, - IO’ km s- ’ for the nightside 
ionosphere. The first term on the right-hand side of equa- 
tion (12) describes the dissipation of the waves in the 
ionosphere, and the second term represents its generation 
by extraneous currents. We shall consider both these 
effects to be small, that is, it will be assumed that the 
parameter t’+ is small and the parameter P’, is large. The 
precise meaning of this assumption will be formulated 
below. In developing the perturbation theory using the 
above parameters, in the main order we shall assume that : 

01, = 0. (13) f 

4. Structure of the o~iliatjons in transverse coordinate 

The transverse small-scaIe character of the oscillations 
under investigation makes using the WKB approximation 
quite natural. By choosing the dependence on the coor- 
dinate X’ in the form of one azimuthal harmonic, we 
assume that : 

0 = exp (iQ+ ik,s’), 

where Q = Q(xi,C) is the quasiclassical phase. The con- 
dition for the small-scale character of the potential in 
coordinate X’ : 

yields an analogous inequality for phase Q 

that is, the dependence of the function Q on thecoordinat~ 
x1 is much stronger than on the coordinate L. This means 
that from it one can separate the main term which depends 
only on x1. In other words, when expanding the phase as 
an asymptotjc series of the WKB approximation : 

Q=Qo+Q,+Qz+..., 

the term of the main order Q0 can be considered inde- 
pendent of the coordinate (. We designate : 

tj = Qo; exp[i(Q,+Q,+ . ..I] = N+h+ . . . . 

or, in other wards, we represent the WKB approximation 
as : 

4D(xi,xz,/, 0) = exp [ii/+‘, ~)+i~~~~][~(~~‘.~.#) 

+h(x’,t,W)+ . ..I* (14) 

Note also that the function : 

l&T’, .Y’, of = $(_T’, w) +kzs’, 

represents a full quasiclassical phase. 
Quasiclassical covariant components of the wavevector 

are known to be defined by the relationships : 

k, = 21&s’, k?_ = ii$/as’. 

From the former equality. it follows that : 

k $ = k,(X’, W) = c?$fx’. w)/Sx’. 

and the latter, as one would expect. yields the identity 
kz = k2. 

Despite the fact that k, and kz do not depend on /, the 
square of the wavevector : 

k: = k:/g, +kf/y,. 

does depend on 6. 
Substituting the expression (14) into equation (4), in 

the main order of the WKB approximation we obtain : 

LH=O, (15) 

where : 

q z J$$; = p,+T +p- ‘k;. 

In the same main order, we take the boundary condition 
in the form of equation (I 3). that is, we put : 

Hi,. = 0. 061 

At given values of X’ and CU. the relationships (15) and 
(16) can be considered as the problem for eigenvalues for 
the quantity K = k,/k,. One can make sure that such a 
treatment is possible by representing these relationships 
as : 

Let : 

K = k.y(X’, 02). H = H,(x’. /, co), (18) 

be the problem solutions for eigenvalues. Were, N = 1, 
2 . . is the harmonic number equal to the number of 
half-waves of the function H, on a field line. At a given 
value of kz, equations (15) and (16) can be treated as a 
problem for eigenvaiues for k !. It is clear that : 

k , = k~,~(~~l,~) = k~f&ll,O). 

From this, we have : 

(19) 
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Thus, the solution of the longitudinal problem for eigen- 
values defines the main order of the WKB approximation 
in transverse coordinate x’. 

To conclude this section, we wish to give formulas for 
the disturbed electric and magnetic fields in the WKB 
approximation. Substituting equation f 14) into equations 
(6). (7) and (8). in the main order we have : 

E, = -ik,Ne’$. E, = -Ik,He’C, El = 0, 

(21) 

5. A qualitative investigation of the longitudinal problem 
for eigenvalues 

The problem (151, (14) defines Hiv as a function of / up 
to within an arbitrary factor. In order to fix this factor 
subsequently, we shall consider the normalized solutions 
of this problem R,v(_v’, f, w) by the relationships : 

i(x’,k,.,k2Jo)R,. = 0. R..I,z = 0; 

Q 
$R;d/ = 1. 

(32) 

Here : 

and the line contour integral over the closed contour 
means integration along the fieId line “there and back” 
between the magneto-conjugate magnetospheres. 

The relationship k,/k: = h-(.I-‘. (it) at a given value of s’ 
defines the functional connection between the frequency (I) 
and the parameter x = h-, /k2. Let us introduce an inverse 
function : 

f# = tr>(s’.k,/‘k,). (33) 

Values of cuN can be regarded as the solution of the 
problem for eigenvalues (15). (16) for the parameter (CI 
at given values of the parameters X-, and A?. and the 
equality (23) as a local dispersion equation. Eigenfuno- 
tions corresponding to such a problem statement are 
R,~[s’.I,tu,(s’,k,~k~)]. 

A special role in a subsequent discussion is played by 
two limiting cases : x = 0 and JC = X, corresponding to 
poloidal and toroidal modes. Let us consider them in 
greater detail. 

When x = 0 (k, = 0). the problem for cigenvalues ( 15), 
( 16) takes the form : 

&(o)H = 0; HI, = 0. 

Its solutions will be designated as : 

w = R;(.sl). H = P,,(s’, /) 

and will be called the poloidal eigenfrequencies and the 
poloidal ei~enfunctions, respectively. The latter will be 
considered normalized by the condition : 

P -!-P’,di = 1. 
PA* 

It is easy to see that: 

np~(.u’) = os(s’.O), P>&‘,P) = k2RZi[X’,jj.n~,rs’>]. 

When I\: -+ 5 (k, -+ 3ci). from equations (15) and (16) 
we have : 

&+o)H = 0, Hi,_ = 0. 

The solutions of this problem-toroidal ei~e~frequencies 
and eigenfunctions=will be designated as : 

(0 = s-g@‘), H = T,,(s’, /). 

We shall assume the normalization condition 

We then get : 

n:, = w.y(x~, co), &(x’,r’) = k,R,&-‘. ,.Q:~(x’)]. 

The last equality should be understood so that when 
k, + cc, the function RN = T,/kl tends to zero. 

For the theory we develop here, a crucial role is played 
by the difference of the poloidal and toroidal frequencies. 
Their difference AC& = SzT, - Szg is called the polarization 
splitting of the spectrum. A usefui analytic expression can 
be obtained for it. We proceed from the identities : 

We multiply the first of them by Pv/p and the second. by 
PT.,. extract one from the other, and integrate along the 
field line. Upon t~dnsforming, by means of integration by 
parts, we obtain the equality : 

;- P,T,,, dt. (24) 

From equation (24) it follows that the polarization split- 
ting is due to the curvature of the geomagnetic field lines. 
indeed, in a magnetic field with straight field lines, the 
value of p = (gZ/,si {) ’ ’ does not depend on / and, there- 
fore, the right-hand side of equation (24) is zero. In the 
next section it will be shown that the difference AR,Y is 
small compared with the frequencies themselves. 

For the mode with a given frequency o, a special role 
is played by magnetic surfaces defined (at a given N) by 
the equations : 

$2:(x’) = w, n:.(r’, = w. c9 

Let us call them the poioidal and toroidal resonance sur- 
faces and let us denote their coordinates, that is, the solu- 
tions of equations (25), respectively, by X’ = s&,(w) and 
.Y’ = s+,(w). The distance between them can be charac- 
terized by the difference AX; = _Y~,-_x~~. If AQ, > 0, 
then with a monotonically decreasing function Qi, and 
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Q:., the poloidal surface lies inside the taroidal surface, 
s:,, > .& ; otherwise, x.:,~ < x~,. Taking into account 
that Aft, << C$. C$, it is easy to obtain an explicit 
expression for the quantity As;. Let the functions 
QFT(s’) near the resonance surfaces be represented as: 

(26) 

Here /,, is a typical scale of variation of the functions 
@:‘(.x’) which, when AQ,, CC f2:‘. can be considered equal 
for both functions. This inequality suggests that the val- 
idity ranges of the expansions (26) overlap. By extracting 
one from the other. we obtain : 

where it is designated xy = AC&/w and it is assumed that 
Xv<< 1. 

From the definitions of resonance surfaces it follows 
that on a poloidal surface the function X- iJ,V(.~‘, o) goes to 
zero, and on a toroidal surface it extends to infinity. We 
investigate its behaviour in the vicinities of these surfaces. 
For this purpose. we make use of perturbation theory. 
Near the p~loidal surface. when jsi -siyj << As\~, values 
of w’-R’;.- and h-f,, can be considered small. Put also 
H = PC+ h,, where h, is a small correction. By linearizing 
the problem (15), (16) in small values. we have : 

U,. = 0. 

We multiply this equation by P,. and integrate along the 
field line. Taking into account the Hermitian character 
(together with the boundary condition) of the operator 
i,, we obtain : 

In much the same way, near the toroidal surface, when 
1.~’ -.Y+,\ / << As: : 

Analytic estimates and results of numerical calculations 
given in the next section show that the constants u.f\ and 
it,‘, are positive. 

If the expansions (26) are applicable, then from equa- 
tions (28) and (29) we have. respectively : 

From this it is evident that the poloidal resonance surface 
is. in coordinate s’, a usual turning point, at which ki 
goes to zero. and the toroidal resonance surface is a singu- 
lar turning point where kf has a pole. Near the poloidal 
surface, the transparency region lies at .Y’ > &, and near 
the toroidal surface it lies at X’ < .~.i..~, i.e. the transparency 
region of the mode lines in the range x;~ < s’ < siN. 

Opacity regions where values of kf are negative lie 
outside this range. Asymptotic values of kf~V in these 
regions can be determined analytically. We shall not 
explain here the procedure of the derivation, but give the 
result : 

where pmln and prnax are, respectively, the minimum and 
maximum values of the function p = p(f) on the field line. 
In the simplest (dipole-field. for example) models of 
the geomagnetic field the pm,,,-and PmaX-values are 
reached, respectiveIy. on the equator and on the iono- 
sphere. 

In closing this section, we consider the question of the 
transverse group velocity of the oscillations being studied. 
We define its contravariant components in the usual way : 
CL, = ~~~~~k~. We have : 

(32) 

In order to obtain the formula for C7k,,v/J~, we differ- 
entiate equation (22) with respect to w. Taking into con- 
sideration that : 

we obtain the equation : 

We multiply it by R\ and integrate along the fielg line. In 
view of the ~ermitian character of the operator L and the 
normalization condition (22), we get : 

Similarly, we obtain the equality : 

Using the relationship : 
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we bring the expressions for group velocities into the 
form : 

Remember that /? = k2 and p = -k,. 
In the vicinities of the resonance surfaces these formulas 

simplify. Near the poloidal surface : 

and near the toroidal surface : 

From this and from the relationship (30) it is evident that 
the group velocity goes to zero on the poloidal surface by 
the law: 

21,: w (X’-X;N)’ ?, 0; _ h.’ -A& (36) 

and on the toroidal surface by the law: 

z:,;, w <x+, -xi) 3 ?, z>;. N A:,& --X1. (37) 

Formulas (33a.b) directly yield the equality : 

k ,,qi: + kzr,: = 0, (38) 

which means that the transverse group velocity z$ is per- 
pendicular to the phase gradient k, = V,$. i.e. is directed 
along the characteristic, the line of constant phase (see 
Fig. 2). Making use of the notion of group velocity one 
can introduce a new variable 5, the time taken by the wave 
to propagate along the characteristic. Put : 

Fig. 2. Constant phase lines Y(s’, x2) = const. (characteristics). 
Curves 1 correspond to values of k, > 0. and curves 2 refer to 
k, < 0. Concentric circles are the cross-sections of resonance 
surfaces : inner-poloidal. outer--toroidal. The characteristics 
are normal to the poloidal surface and are tangent to the toroidal 
surface. The group velocity of the waves is directed along the 
characteristic. The square corresponds to a possible position of 
the observation area on the STARE radar (Walker er al.. 1982) 
projected along field lines onto the equatorial plane 

dT-dx’ _dx2 
t7.k t:;, ’ (39) 

where it is assumed that the differentials of the coordinates 
dx’ and dx’ are taken along the characteristic, i.e. are 
related by the relation k, dx’ +kzdx’ = 0. Let us make 
the convention that time 5 is reckoned from the poloidal 
resonance surface. Then : 

T= (40) 

Using the relationships (36) and (37), it is easy to make 
sure that the integral (40) converges on the lower limit 
and diverges when x’ + x;,. This latter means that the 
time taken by the wave to approach the toroidal surface 
is infinite. 

From the definition (39) it follows that : 

where the differentials of the coordinates are also taken 
along the characteristic. Let the full time derivative of the 
function of coordinates x’, x’ be defined by the equality : 

The relationship (38) can then be represented as : 

a& o 
z=’ 

i.e. the phase is constant along the characteristic. 

6. Solving the longitudinal problem in the WKB 
approximation and numerically 

The solution of the longitudinal problem (22) for any 
realistic models of the geomagnetic field and plasma is. 
undoubtedly, a numerical problem. Only for harmonics 
with large numbers Ncan the analytical method, the WKB 
approximation in longitudinal coordinate (, be used. In 
this section we shall make use of both methods and shall 
compare their results. Let us start with the WKB method. 

We assume RN(/) = exp [is(/)], where s(/) is a large 
quasiclassical phase. Equation (22) takes the form : 

-s”+is”+i (lnq)‘s’+w’/A’ = 0. 

Here and later, the prime denotes the derivative with 
respect to /. As will be shown later, in order to obtain the 
result to the required accuracy, in the asymptotic expan- 
sion of phase s it is necessary to retain three terms : 

s = s,,+s,+s,+ . . 

In the main (zeroth) order, we have : 

s0(4 = +w 

In the next (first) order: 
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- 2s;,s’, -t- isi + i (In q)‘.sh = 0. 

from which we get : 

where C is a constant. In the second order: 

- ,?.&s~ -s;’ +is’; i-i (In q)'s', = 0. 

A little manipuiat~on yields : 

s2 = t_ & 
s 

A [@A)‘“--(Inq)“+2(lnA)“-2(Inq)“] dr”‘. 

We designate S = so+.sZ. A general solution can then be 
written as : 

c, sinS+czcos.T). 

The boundary condition (22) gives c2 = 0 and leads to the 
qu~ntization condition : 

+ 2(ln A )” - 2(ln q)"] die = 2xN. 

Assuming number N to be large and by solving this equa- 
tion using the iteration method. we obtain : 

2%~ 
I0 = w,* Z -- - 

1, 
A[(InA)“-(lnq)” 

+2(lnA)“-2(lnq)“] dC, (42) 

where : 

l,,g = f.,(_Y’) = P d/ 
-_I__ 
A(s’, t)’ 

is the transit time with a local Alfven velocity along the 
field line “there and back”. Since : 

(43) 

then the equaiity (42) defines fr) = w,~ as a function of the 
parameter k’. It can also be regarded as the equation, 
defining the function k^ = h-V(u). From the relationship 
(42) it is evident that the mode dispersion is manifest only 
in the second order of the WKB approximation. As far as 
the eigenmodes are concerned. subsequently it will be 
sufficient for us to limit ourselves to two orders. Using the 
normalization condition (22) we define the constant C, to 
give : 

From the equalities (42) and (43), the formulas : 

P A [(lnp)“- (In A)” f45a) 

- 2(ln p)“- 2(ln A )“] dG, 

+ 2(lnp)“- 2(ln A)“] de, (45b) 

follow as partial cases, and from equation (44) we have : 

(46) 

For the pola~zational splitting of spectrum. from equa- 
tions (45a.b) we get : 

Afz, = ;-& A (inp)“d(. (47) 

This same formula is obtainable from the equality (24) 
by substituting the expressions (46) into it. Proceeding in 
the same manner, from equations (28) and (29), we have : 

Note that the expressions (28), (29) for kiN can be 
obtained from equation (42), by expanding it, in the first 
case, in the small parameters O-Q:, and R?, and in the 
second case, in the parameters o- Sz’, and K- ‘. In this 
case, constants B:“,-’ are obtained immediately in the form 
of equation (48). Finally. we give, in the approximation 
under consideration, the formula for the group velocity : 

(49) 

Let us now describe the results of numerical calcu- 
lations. The goal of these calculations is to test and ilius- 
trate the above general considerations. In accordance with 
this goal, we have limited our attention to a relatively 
simple model of the magnetosphere. The geomagnetic field 
was assumed to be a dipole field. The equation for field 
Iines in this case has the form r = a cot? 8. where r is the 
radius vector of a point on the field line, 9 is the geo- 
magnetic latitude of this point, and u is the equatorial 
radius of the field line. Put s’ = CI, and X’ = 9. We can 
then demonstrate that : 

yl =cos~~(l+3sin~~)~~‘, g? = a”cosh@ 

and, consequently : 

p = a(l+3sin28)“‘. (50) 

A length element of the field line is given by the expression : 

dC = a cos 0( If 3 sin’ 0) ‘;’ df?. 

Points of intersection of the field line with the ionospheres 
of the conjugate hemispheres have Iatitudes 8, = 8, and 
8.. = -8,. where: 

fl, = arccos(R~/~)‘~~, 
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and R, is the radius of the upper boundary of the iono- 
sphere (reckoned from the Earth’s centre). Leonovich and 
Mazur (1991) gave a detailed explanation that this boun- 
dary should be chosen at 1000-2000 km altitude above 
the ground, i.e. where a rapid growth in Alfvtn velocity 
with height discontinues. Using in the meridional plane 
the variables a and 8 (of course, they are not orthogonal 
ones) as the coordinates, the geomagnetic field modulus 
can be represented as : 

&a, 0) = B”(%143B(@ ; 

b(O) = (1 +3sin’8)“‘coss60. 

Here B0 is the value of geomagnetic field in the equatorial 
plane on some separated magnetic shell a = a,. The 
Alfven velocity distribution was modelled by an 
expression of the form : 

Ata, 0) = A oh/4W~>l” ; (51) 

by fitting numerical values of the constants A,, p and v, 
this expression can be used to approximate a wide class 
of Alfven velocity distributions in the magnetosphere. Yet, 
of course, the expression (51) has limited capabilities. 
Thus, owing to the monotonic dependence on a, it cannot 
model the plasmapause. 

We shall verify the numerical calculations for the 
following values of constant a, = 4RE = 2.5 x IO4 km. 
R, = 7.9 x IO3 km, A0 = IO3 km SC’, p = 3/2 and v = l/4. 
Results of these calculations are presented in Figs 3-6. Let 
us comment on them. 

In Fig. 3, an interesting result is the multiple decrease 
of the value of AC& in going from N = 1 to N = 2. In 
view of the formula of the WKB approximation [equation 
(47)], one would expect a decrease by several times only. 

7 
= 0.6 

c” 

0.4 

0.2 

0 
2 3 4 5 6 I 8 9 10 

L 

Fig. 3. The dependence of the poloidal 0’; and the toroidal 01 
on eigenfrequencies for N = 1.2 on the Mcllwain parameter 
L = a/R,. The splitting of the frequencies AR, = Q’,.-Q’; is 
relatively large for N = 1 (a = AQ,iQ’; = 0.2 for f. = 2 ; 
‘7 = 0.35 for L = 6) and decreases abruptly with increasing N: 
for N = 2 (r) = AQ,/Qp = 0.018 for L = 2 : ty = 0.005 for L = 6), 
becoming negligibly small for N > 3 

Fig. 4. The dependence of A&, &h’ and Ax, that characterize 
the mode N = 1, on the McIlwain parameter, L 

_, -_---_I-_--- -- 
-5 1 r 

Fig. 5. The plot of the dimensionless ratio kf,a’/m’ vs the radial 
coordinate x’ s a reckoned from the resonance surface xr!, for 
the fundamental harmonic N = 1. The point .& lies on the 
magnetic shell 15. = 6. which corresponds to the frequency of the 
mode w = 0.018 s- ’ (i.e.f= 427~ = 0.03 Hz) 
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Fig. 6. The plot of group velocities V; and 2’; vs the radial 
coordinate X’ = u. lying on the same magnetic shell as in Fig. 5 

However, the WKB approximation is, strictly speaking, 
inapplicable for fundamental modes. but it usually also 
gives correct (on the order of magnitude) results for them. 
Incidentally, this result depends markedly on the chosen 
model for the shape of geomagnetic field lines. If we use 
a more general form of the equation for field lines 
r = a co? 0, where c( = 2 corresponds to the dipole field, 
then it turns out that when LY < 2 the ratio v = AR,/AR> 
is larger, and when x > 2. is smaller than in the dipole field. 
This ratio is minimal on inner magnetic shells (q z 2.5 for 
c(= 1.25and q z 4 for r = 2 when L = 2), and increases 
markedly at transition into the outer magnetosphere 
(r~ z 4.5 for c( = 1.25 and q z 25 for r = 2 when L = 6). 
Thus, we arrive at an important conclusion, namely a 
large value of the difference An,. which is needed for a 
successful application of the theory concerned, is always 
satisfied for N = 1. but may not hold for N b 2. 

We have defined the value of (, given in Fig. 4 (for 
N= l)as: 

1 d In (Q’,,QX,) ’ 2 1 dInRj; 

21,& dx’ 
~zzz~ 

2 i ds’ + 

on the order of magnitude /, _ a. It depends weakly on 
number N. On the contrary. the value of Ax,, = 2a,& 
depends strongly on N. From the figure it is evident that 
Ax;. the width of the transparency region for the mode 
N = 1, is quite appreciable in the magnetosphere, from 
10” to lo4 km. This, projected into the ionosphere, gives 
some 100 km. But values of As: when N > I are very 
small, 100 km or less. 

The plot of kf,& vs the coordinate x’ for the mode N = 1 
in Fig. 5 totally agrees with all qualitative conclusions of 
the preceding section. With our choice of the coordinates 
s’=u and x’ = cp. the physical components of the 

wavevector k^, = k,/,/‘:y,. k^? = h-:ijg: = rn/Jly> on the 

equator are h?, = X-,. i2 = nr/a. Thus, in Fig. 5 the ab- 
scissa axis indicates the square of the ratio of equator- 
ial values of physical components of the wavevector 
&yjF$ = kfa’lnz’. The asymptotic value of this ratio for 

x’ - .Y+*~ -+ co is a’/pi,” = - 1, and for x’ - .xiN --) - cc, 
it is a*/~&~ = - (1 + 3 sin2 0,) = - (4 - 3&/a)- ‘. By 
analysing the definitions (28) and (29) of the quantities 
ll’“N and u.;, it becomes possible to obtain the following 
estimates : 

wp N - ~NA & WI: - ct,Ai/a4, (53) 

where A0 is a characteristic value of Alfvtn velocity. Simi- 
larly, an estimate of characteristic equatorial values of 
physical components of group velocity 6,; = ~3:~ and 
fii = aa:, : 

z$ - t;i, - cc,A/m 

follows from equations (33a,b). It agrees well with the 
plots given in Fig. 6. 

7. The damping of longitudinal modes on the ionosphere 

In order to take account of the wave energy dissipation in 
the ionosphere, it is necessary to retain the first term on the 
right-hand side of the boundary condition (12). Instead of 
equations (15) and (16), we then arrive at the following 
problem for eigenvalues : 

i(x’,k,,k,,w)H= 0, HI,+ = Ti(c,/u)(ilH/aP)lr+. 

(54) 

Its solutions will differ from former eigenvalues of k,, for 
some corrections 6k ,N : 

k, = k,,~(.U’,O)+fik,N(.~‘.O). 

As is known, the quantity Sk iN is related to a local damp- 
ing decrement of the mode yh. = yN(x’, o) by the following 
relationship : 

Sk,,, = iy,V/rs,L,. (55) 

Indeed, when it is satisfied, the correction to the quasi- 
classical phase can be put into the form : 

s 

\’ 
(yq = 6k ,N dx” z iI( 

A 

where we introduce the designation : 

(56) 

The definition (39) is used in the last equality. Thus, in 
accordance with equation (14), we have the factor: 

exp (i&j) = exp (- r), 

which describes the attenuation of the wave as it propa- 
gates along the characteristic. Note that if this matter is 
treated strictly formally, then the equality (55) should be 
considered as the definition of the decrement yN. 

For the actual determination of the correction 6k IN, we 
use perturbation theory. Put H =fN(RN+hN), wheref, is 
a constant that does not depend on /, and we linearize the 
problem (54) in small corrections 6k ,,W and h, : 
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i(s’,kIN,k7,~)hh.+~kln; 
c%%‘, km, kz, a) 

c3k, 
--R,v = 0; 

(57) 

We multiply the first of these relationships by R,, and 
integrate along the field line. As a result, we obtain : 

6k,, = -+-h,d,/fR,b,;$ RNd/. (58) 

Since di/Jk, = 2k,&. then in accordance with equa- 
tion (33a) : 

? 

_- 

R,: R,,,d/ = 2k, R,&RKd/ = -2~;. 
I i 

By then comparing equations (55) and (58). we obtain the 
equality : 

P 
R,Lh,vdf = 2iwy., (59) 

On transforming its left-hand side by means of integration 
by parts and using the boundary condition. we obtain the 
following expression for the decrement : 

Here it is designated q:” = q,,(/?) = p?X-f, +p; ‘ki. 
where p+ = p(t*). Together with the equality (55). this 
formula-defines the correction 6k,,w. Note also that the 
local decrement yN can be considered as a correction to 
the eigenfrequency [equation (23)] caused by the damping 
on the ionosphere : co = co, - iy,. In this case the decre- 
ment should be regarded as a function of the variables .\-I 
and X: yN = Y,~[x’, UI~(X’, JC)]. Near the poloidal surface. 
from equation (60) we have : 

and near the toroidal surface : 

For large numbers N, when formulas of the longitudinal 
WKB approximation are applicable. on substituting the 
expression (44) into equation (60). we get : 

(63) 

where A i = A(/,) is the value of Alfven velocity on the 
boundary with the ionosphere. In this approximation 73, 
does actually not depend on N. Formula (63) can be used 
to estimate ‘Jo. The typical values of A_ _ (3 x IO’--3 x 
104) km s- ‘. t’* - IO’ km s- ’ for the dayside ionosphere, 
and r, - 10’ km s- ’ for the nightside ionosphere. Then 

z‘+/ )A, - 0.03-0.003 for the dayside ionosphere and 

L’zlA, - 0.3-0.03 for the nightside ionosphere. The small- 
ness of the parameters L’*/A, ensures the weakness of the 
damping of the mode, i.e. the smallness of the decrement 
y,,, as compared with the difference of neighbouring eigen- 
frequencies (say, w,~ and w,~+ ,) which, on the order of 
magnitude, is l/tA. 

8. Distribution of the oscillation amplitude in transverse 
coordinate 

The main order of the WKB approximation in coordinate 
X’ equations (15) and (16) defines the function H = H,, 
up to an arbitrary factor which can depend on I’ and w. 
In other words, the solution in this order can be repre- 
sented as : 

H&‘,/, co) =fN(x’, o)R,&‘, /. w). (64) 

The function ,f:v should be treated as the standing wave 
amplitude on a given magnetic shell. The equation defin- 
ing ,fv is the solvability condition for the correction of the 
next order of WKB approximation in coordinate x’. 

Put: 

H = H,&& =fv(Rh.+h,v). (65) 

Here. the correction of the next order 4, is represented as 
$,v =f,JrN, which does not detract from generality. It will 
be assumed that the function h,&, involves not only the 
corrections associated with the next order of WKB 
approximation, but also the damping in the ionosphere. 
This means that the function /I,~ satisfies the boundary 
condition (57). 

On substituting equation (65) into equation (4). in the 
next (after the main) order of WKB approximation we 
have : 

-,f,ih,+i[V,(k,,f~i,R,)+k,i,V,(,/NRN)] = 0. 

We multiply this equation by ,f,R,, and integrate along 
the held line. Taking into account the Hermitian character 
of the operator i,- with respect to the functions that go to 
zero when / = /+, we arrive at the relationship : 

V ,k ,,f,t 
iF 
R,& R,&f d/ f if;, 

i 
R,&hJv d/ = 0. 

Finally. using the equalities (33) and (59), we obtain : 

V,r;,.f'v = - 2i'/$f;b (66) 

The relationship obtained has a simple physical 
meaning. Let E be the energy density of Alfven oscillations. 
It consists of the energy of the disturbed magnetic field 
and the kinetic energy of the plasma particles : 

where vt-. = c[EB,,]/Bi is the electric drift velocity of 
plasma in the wave’s field, On substituting here the 
relationships (2 1) and (64), we obtain : 
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We then calculate the value of E, the energy of the oscil- 
lation contained by a thin flux tube with unit size in coor- 
dinates s’ and .Y’ (i.e. ds’ = 1 and ds’ = 1 The cross- 

r sectional area ofsuch a tube 0 = J&J? = ,,l.ql. We have : 

1 
)y = 

-? 
? Cod/ 

On the other hand. by integrating the transverse contra- 
variant components of the Poynting vector : 

over the volume of the same flux tube, we find the 
contravariant vector components of the tube’s transverse 
energy flux : 

(67) 

The relationships (21), (64) and (33) are used here. From 
the formulas obtained, it is evident that the equality (66) 
is the equation of oscillation energy balance of the flux 
tube 

V,Sl = - 2;‘J. 

In this case it is. of course, taken into consideration that. 
by virtue of axial symmetry, V$’ = 0. It is easy to solve 
equation (66) : 

j; = Cz.; ’ ’ exp (- I-), (68) 

where C is a constant that does not depend on x’. It 
should be noted that the exponential part of this formula 
was essentially determined in the preceding section [for- 
mula (56)]. By combining formulas (14), (20), (64) and 
(68), we obtain the solution in two main orders of WKB 
approximation : 

C 
@(.Y’./.(!)) = 7: 

From the relationship (36) it is evident that the integral 
in the exponent of formula (68) converges on the lower 
limit. Consequently. the amplitude ,jIv itself, due to the 
presence of a pre-exponent, has the singularity 
,fY - (s ’ - .&, “’ on the poloidal surface. With distance 
from the poloidal surface, ,fIv decreases both due to an 
increase in group velocity ci, and as a consequence of the 
damping on the ionosphere. On the toroidal surface the 
pre-exponent in equation (68) becomes infinite by the law 

(,x$,.-s’)- 3 ‘. But since the integral in the exponent also 
tends to infinity (due to the infinite time taken by the wave 
to approach the toroidal surface), the full amplitude.{:, 
tends to zero. 

The behaviour of the amplitude will be different in the 
presence of an instability of the Alfvin waves considered 
here [for a review of possible instabilities see, for example. 
Southwood and Hughes (1983)]. If the action of the insta- 
bility mechanism is stronger than the dissipation in the 
ionosphere. then the wave will be excited rather than 
damped. Such a situation can be described phenomeno- 
logically if the quantity Y,~ is considered negative. Then, 
the exponential representation in equation (69) increases 
from the poloidal to the toroidal surface, and on the 
latter it becomes infinite. 

To conclude this section, let us discuss the crucial ques- 
tion of the applicability conditions of the WKB approxi- 
mation in coordinate .I-‘. The initial form of this condition 
is known to be : 

<< 1. (70) 

For analysing this inequality, we use the model expression 

(71) 

___ 
Here k^:,? = k,.,;Jg,,2(0) are the physical components of 
the wavevector in the equatorial plane ( = 0. Not only 
does the expression (71) represent correctly the qualitative 
behaviour features of the function li^f(.u’), but it is also 
true on the order of magnitude. 

From the expression (71) it follows that the inequality 
(70) can be satisfied only if: 

k’2A1,v >> 1, (72) 

where A.tc- = jg,(x +h’ --s$~) is a typical physical distance 
between the resonance surfaces (in the equatorial plane, 
say). Since between the resonance surfaces, on the order 
of magnitude. k^, - c?, then the condition (72) means that 
many transverse wavelengths find room between these 
surfaces. Since on the order of magnitude @ = m/u, the 
inequality (72) can be rewritten as 171 >>a/A& - I /a,, For 
the fundamental harmonic (N = l), this leads to the con- 
dition which does actually not differ from our originally 
assumed ttz >> 1. However, already for the next harmonic 
(N = 2) the requirement for the azimuthal wavenumber 
becomes more stringent: m >> l&10’, depending on the 
geomagnetic field model. 

Even if the inequality (72) is satisfied, the condition (70) 
is violated near the resonance surfaces. Assuming that 
inequality (72) is satisfied, it is easy to see that the WKB 
approximation is applicable if: 

1s ’ - s,!,~ 1 3 i.,,v, /s ’ - .x; h: / >> 2, ,v, (73) 

where : 

‘.I,\ - AX&A&)’ ‘, i,,\ - A,+(&A$$. (74) 

It should be emphasized that E.,,, i.r, << Ax-k. Thus. in the 
ncighbourhoods of the resonance surfaces 1s’ -s&l < 
ip, and /X -.~j, / < A,, the formulas of transverse W K B 
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approximation are inapplicable. In particular, the con- 
clusions that the amplitudeJY on the resonance surfaces 
becomes infinite (or goes to zero), are wrong. For inves- 
tigating the solution in these neighbourhoods, it is neces- 
sary to abandon, by returning to equation (4) the WKB 
approximation. 

9. Solution near the poloidal resonance surface 

For disturbances that depend on the coordinate .Y’ by the 
Iaw exp (%Y~s~). equation (4) assumes the form : 

[V,L&o)V1 --fig&!.Q]@ = 0, (75) 

We shah find its solution near the poloidal surface using 
perturbation theory based on the fact that the desired 
solution is close to the poloidal mode. This implies : 

i.e. the first term in equation (75) is a small one. In the 
main order of perturbation theory, by omitting this term 
and using also the zeroth-order approximation for the 
boundary condition, we have : 

i,(u)@ = 0, @,li, = 0. 

The solution of this problem for eigenvalues is well known 
to us: 

Qt = UkP*\J, <*2 = @‘, (77) 

where U, is a factor that does not depend on C. By com- 
paring equation (77) with equations (14) and (64). one 
can see that in the region where the WKB approximation 
in transverse coordinate is applicable : 

?I, = (l/LZ),f,<exp (iul). (78) 

In the main order of the perturbation theory developed 
here, the factor U, is not defined because the solution (77) 
is degenerate. The equation for U,. as usual in such a case. 
represents the solvability condition for the correction of 
the next approximation. 

We put : 

and linearize equation (75). letting the first term in this 
equation, the function (pib and the difference CO’--Rf“ be 
small quantities. By multiplying the obtained equality by 
P,v and integrating along the field line. we obtain : 

For calculating the last term in this relationship, we 
linearize the boundary condition (12) : 

Here we have, finally, included the term with extraneous 

currents in the ionosphere. It will be demonstrated below 
that it should. indeed, be taken into account only in the 
immediate vicinity of the poloidal surface. By means of 
i~teg~tion by parts, using the relationship (61), we 
obtain : 

where it is designated : 

Taking also the equality (28) into account. from equation 
(79) we obtain the desired equation for the function U, : 

We wish to stress that this is an inhomogeneous equation 
and defines the solution together with its amplitude. 

The coefficients of equation (82) are functions of coor- 
dinate x1. The most important dependence on s’ belongs 
to the coefficient of U,Y enclosed in square brackets. On 
the poloidal surface it nearly goes to zero. The other 
quantities. w$, I,, and T,~, can usually be considered con- 
stant in the region of our interest. If the poloidal surface 
lies not too close to the extremum of the function 
Qf;i(.u’), the expansion (26) then holds near this surface. 
Then : 

We introduce the dimensionless variable : 

i” = (.u i - .&)/&~, 

be defining the constant ir, by the relationship: 

. 

wP,/, 

i > 

’ -: --. /"Phi = k;(u’ . (83) 

Equation (82) can then be brought into the form : 

d ’ Cr,v __.- ,II-. f({+ic ,,,,, )&T,, = ;/Y_ ! 
dc- /.PK <u 2 ’ (84) 

where it is designated : 

It is easy to see that the quantity &, has the same dimen- 
sion as the coordinate .Y’ and is the typical scale of the 
solution in this coordinate (for i:rn. < I ). The param- 
eter aph characterizes the role of the damping on the 
ionosphere. When tipN CC I this role is negligible, and when 
E~,~ >> I, on the contrary, it is the damping that determines 
the form of the solution, namely the first term in equation 
(82) in this case can be omitted. For the magneiospheric 
model described in Section 6, in view of the relationship 
(53) we have the estimation : 

It wholly agrees with the definition (74). From this esti- 



A. S. Leonovich and V. A. Mazur : A theory of transverse small-scale Alfvkn waves 711 

mation it follows that the condition for the poloidal 
character of the mode [equation (76)j equivalent to the 
inequality kz&h, >> 1, is satisfied if M >> I/u,~. But we 
assume the last inequality to be satisfied. 

For the unique solution of equation j&4), it is necessary 
to impose the boundary conditions in coordinate .ir: In the 
opacity region, ir; --+ - ,Y_. the boundedness condltlon for 
the solution seems natural. In the transparency region. 
< -+ ix. we require that the solution have the form of 
an escaping wave that carries along the energy from the 
poloidal surface. Such a requirement is based upon the 
remarkable property of the solution near the toroidal sur- 
face. In the next section, it will be shown that the wave 
incident on the toroidal surface is totally absorbed on it. 
This means that there is no wave reflected from the tor- 
oidal surface and travelling toward the poloidal surface. 

The desired solution of equation (84) is expressed in 
terms of a standard function G(r) which satisfies the 
inhomogeneous Airy equation : 

G"+,_G= 1 (86) 

and the above boundary conditions. This function has the 
following integral representation 

s 

I 
G(Z) = -i exp (is: - is”/3) ds, 

0 

and the asymptotic representations : 

~-+-cc; (87a) 

G(z) = 
:-+cE; (87b) 

from which it is evident that it does, indeed, satisfy the 
requirement conditions. The function G(Z) was described 
in greater detail by Leonovich and Mazur (1989a) [they 
denoted it by $(:)I. An important property ofthe function 
G(I) becomes clear when comparing it in the asymptotic 
region z -+ .X with the solution of the homogeneous Airy 
equation : 

G"+zG=O. 

By applying, when -I >> 1. the WKB approximation to the 
last equation, we obtain a general solution for it : 

Comparing with equation (87b) one can see that the func- 
tion G(Z) in the asymptotic region coincides with one of 
the solutions of the homogeneous equation. In other 
words. the presence of the right-hand side in equation (86) 
is substantial only for z - 1, and in the region : >> 1 the 
right-hand side can be omitted because this will not affect 
the solution. In this case, of course, one should bear in 
mind that the amplitude and phase of the solution in the 
asymptotic region are defined by the right-hand side in 
the region .Y - 1. An investigation by means of the Green’s 
function shows that such a property of the function G(Z) 
is due to the reduction in size of the spatial scale of the 
soiution when moving farther into the region z >> 1. The 

smaller the scale of the solution is. the greater is the reason 
for neglecting the inhomogeneous term of the equation. 
When applied to the solution ofequation (84) given below, 
the property of the function G(z) concerned means that 
the inhomogeneous term in the boundary condition (80) 
should be taken into account only in the region 
IX’ -sr!J m ilp/$* This justifies ignoring it when using the 
WKB approximation in coordinate xi. 

Using the function G(Z), the solution of equation (84) 
is representable as : 

In accord with formula (77), for the disturbed electric field 
potential we have : 

Remember that these formulas are apphcable near the 
poloidal surface when Ix’ - xiN / cc AxA. 

10. The solution near the totoidal resonance surface 

As in the preceding section, we shall seek the solution 
using perturbation theory, under the assumption that it is 
dose to the toroidai mode. Thismeans that the inequality : 

(90) 

opposite to equation (76), is valid, and the second term 
in square brackets of equation (75) should be considered 
small. In the main order of perturbation theory, we have : 

where I’,% is a factor independent of P. In the region where 
the WKB approximation in coordinate x’ is applicable, 
we have : 

In the next order. we assume : 

ct, = V,(x’, w) T,(x’, ff) + l+bN. 

The linearization of the boundary condition yields : 

(93) 

Here the term with extraneous currents is omitted because 
of the extremely small-scale character of the solution (see 
below). We linearize equation (75), multiply the relation- 
ship obtained by T.q. and integrate along the field line. As 
a result, we get : 
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Integrating by parts using the relationship (93) and using 
formula (62) we have : 

Taking also the definition (29) into account we obtain the 
desired equation for V, : 

V,[(w+i?‘,~j’-_fzTN2]VIV.~-k11z.~,lih, = 0. (94) 

Let us find the solution of this equation for the case 
when the expansion (26) holds for the function !Jf;(.u’). 
Introduce the dimensionless variable : 

by defining the constant E.TN by the relationship 

A 
u2 

/-T.V = jpyf’ (95) 

Equation (94) can then be rewritten in the form : 

(96) 

where : 

As in the preceding section. the quantity E,,,, stands for 
the typical scale of the solution in the neighbourhood of 
the toroidal surface, and the parameter ET& characterizes 
the role of the ionospheric damping in this neigh- 
bourhood. For the magnetospheric model used here, in 
view of the estimation (53), on the order of magnitude we 
have : 

2T.V - Cli.(l,t?z’). (97) 

This relationship is also consistent with the definition (74). 
The toroidality condition (90). in view of equation (97). 
again leads to the inequality nz >> ljxy. 

Introduce into our treatment the function g(z) that 
satisfies the equation : 

(rg’) -_.q = 0. 

and is bounded when -_ + ;c This function is expressed 
in terms of one of the cylindrical functions, the modified 
zeroth-order Hankel function : 

g(z) = KJ3:’ 2)_ (98) 

It has, as z >> I, the following asymptotic representation 

g(z) 2 (J&2)zY’ ‘exp(-2:’ ‘). (99) 

At small z: 

.4(-) = - (1 :?I in z. (100) 

The point z = 0 is a singular (branch) point. The be- 
haviour of the function g(z) at negative z is determined 
by the way in which the singular point is indented. In our 
case this method is due to the presence of the damping, 
and is specified by the rule 2 = ~,7+is-,.~. This leads to the 
following asymptotic representation when z + - cc : 

g(z) “N (&/2)(-z))“4exp[-2i(-z)“‘-in/4]. (101) 

The solution of equation (96) has the form : 

where I> is an arbitrary constant. In accordance with 
equation (91), from this we have: 

This solution, in the transparency region, represents a 
wave escaping toward the toroidal surface and absorbed 
in its neighbourhood on a scale IX’--.~_i,~/ - j+rh.. The 
reflected wave is totally absent. In the opacity region the 
solution decreases exponentially with the distance from 
the toroidal surface. It should be stressed that formulas 
( 102) and ( 103) hold when /s ’ - .Y& / cc A$,. . 

11. Global structure of the mode (matching of solutions 
in different regions) 

In order to obtain a full description of the spatial structure 
of the mode, it is necessary to match the solutions obtained 
in preceding sections for different regions in x’. With 
such a description, it will be convenient for us to use the 
dimensionless function r,,,(x’, /) defined by the equality : 

rN = (qNfA/A)’ ‘R,. 

It satisfies the relationship : 

(r-i.) = 1, 

where. for the arbitrary function F= F(f), it is desig- 
nated : 

(F) = :, F(f) ;. 

being an average along the field line. Near the poloidal 
and toroidal surfaces, we have, respectively : 

r,c. = (~,&I-A)‘:~P,~~, rN = (t,,p/A ) ‘!2T,hJ. 

For large N when the WKB approximation in coordinate 
/ is applicable : 

Using this definition the solution (89) for a perturbed 
potential near the poloidal surface will be represented as : 
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where : 

is a typical value of perturbed potential. Here, as in the 
above, the index zero denotes the equatorial values of cor- 
responding quantities. The validity ranges of the soiu- 
tion (104) and of the WKB approximation in transverse 
coordinate overlap. In the overlapping region /iP,% << 
X’ -x:, << Ax:, in accordance with equation (87b), from 
equation (104) we have : 

On the other hand, from equations (30) and (34). in view 
of the definition (83), we have : 

where it is designated rk, = o/.:~~//~ is a typical value of 
transverse group velocity in the neighbourhood of the 
poloidaf surface, from which : 

By comparing equation (69) with equation (105) in the 
overlapping region, one can see that functionally they 
wholly coincide. in both the coordinate s’ and the coor- 
dinate /. This permits us to define the constant C. Sub- 
stituting it into the general formula (69). we obtain the 
solution in the validity range of the WKB approximation 
matched with the solution in the neighbourhood of the 
poloidal surface : 

In much the same way, we match the solution (I 06) 
with the solution in the neighbourhood of the toroidal 
surface. In their common validity range i.,, << si, - 
s’ <<As,\. from equations (30) and (35), in view of the 
definition (95). we have : 

where r.i, = tni~,// v is a typical value of 2%: in the neigh- 

bourhood of the toroidal surface. We put: 

(107) 

being a full run-on of the quasiclassical phase between the 
resonance surfaces. It must be emphasized that the integral 
(107) converges on the upper limit, on the order of mag- 

nitude $ N k^?Ax,iV h maX >> 1. In view of this definition. 
for 0 d s-f,* - X’ << Ax;’ we have : 

Unfortunately. proceeding in this way it is impossible to 
calculate the value of I-(x’) because the integraf defining 
it diverges when X’ -+ ,v:,. Introduce an auxiliary coor- 
dinate 2 enclosed in the same limits: 0 < .x&,,-_~l << 
As,;,. One can then write : 

= r(.T’) - E*,?$ ($g2 +6is(-$g 
It is easy to make sure that the quantity : 

is actually independent of the coordinate Z’ if the latter is 
enclosed in the above limits. Thus, near the toroidal 
surface. we have : 

The relationships obtained permit the formula of WKB 
approximation (106) near the toroidal surface to be rep- 
resented as : 

Using the asymptotic representation (99) we make sure 
that the solution (103) in the domain (x+~-x’) >> L.,.& 
functionally coincides with the solution (109), and by 
comparing them, it becomes possible to determine the 
constant D. After that. equation (103) assumes the form : 

Form&s (1041, (106) and (I IO), taken together. 
describe a perturbed potential of the mode under inves- 
tigation throughout the entire range of its existence. except 
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for intervals lying deep in the opacity regions, i.e. when 
X’ - ~4~ >> &As and when x r!,-x’ x JPN. The solution in 
them is given by the WKB approximation [asymptotic 
values of klN are defined by the relationship (31)]. We do 
not write the corresponding formulas because the ampli- 
tude of the mode in these intervals is negligibly small, i.e. 
the oscillation in them can virtually be considered absent. 

By knowing the perturbed electric potential (I?‘, it is easy 
to calculate the components of the perturbed electric field. 
Let us develop the expressions for the physical com- 
ponents & = EJ&. We designate : 

E= -iE$. 

being a typical value of the perturbed electric field. Near 
the poloidal surface, when /xi -x&I << Ax;, we have : 

where o = Jz = &. 
Between the resonance surfaces, when X’ -xi!, >> APN 

and .x& -x1 >> ATN, where the WKB approximation 
holds : 

Near the toroidal surface, when IX’ -x:~~] CC AX,:. : 

From these expressions it is directly evident how. in 
going from the poloidal to the toroidal surface, the polar- 
ization of the mode changes from poloidal to toroidal. 
The amplitude of the perturbed electric field varies from 
a value of order g-on the poloidal surface to a value of 
order (&./&,,) e -‘E on the toroidal surface. The factor 
(,&,/&) = (t’i!,,jt#,V)’ ‘, equal, on the order of magni- 
tude, to (cx,+)~~~ >> 1, describes the increase in wave 
amplitude due to a decrease of the typical value of group 
velocity in the toroidal (compared with that in the pol- 
oidal) surface. The factor e-’ describes the damping 
of the wave as a consequence of the dissipation on the 
ionosphere. On the order of magnitude, i= + PPJ(~,~/~). If 
there is an instability that is stronger than the dissipation 

in the ionosphere, then f < 0. In this case, the wave ampli- 
tude in the neighbourhood of the toroidal surface is able 
to increase quite substantially. 

Near the poioidai surface, even if the damping is 
totally neglected (i.e. when .spN = 0), the wave field 
remains a finite one in magnitude, namety the function 
G[(x’ -xi&,)/IpN] and its derivatives are regular. This 
means that the transverse dispersion of the wave has time 
to pump out the energy supplied by the source (extraneous 
currents in the ionosphere). The transverse group velocity, 
though going to zero on the poloidal surface, does so 
rather slowly, as (x’ -xiN) I@. On the contrary, on the 
toroidal surface, when ET,&’ = 0, the electric field has a 
singularity, E, m (x’-.x~.~)-‘. On this surface the group 
velocity goes to zero quickly, as (x;, --.x’)~~~. With the 
small damping taken into account, the field singuIarity is 
regularized : 

By knowing the perturbed potential CD, using formulas 
(6), (7) and (8) one can find the wave’s perturbed magnetic 
field. Its longitudinal structure is described by the function 
a&/d/. From the same considerations as when intro- 
ducing the function rN, we introduce in our treatment the 
function : 

b 
N 

= (w%)‘,‘~ WV 

to ai . 

It is easy to see that it satisfies the relationship 

(b;) = 1. 

Near the poloidal and the toroidal surface, respectively, 

For large N: 

We introduce also the typical vaiue of perturbed magnetic 
field : 

B” = i(c/A,)g = (@c/A,)6. 

Using these notatio_ns we write down the physical com- 
ponents & = B,JJg,. When Ix’--.$,,,I CC Ax,; : 

vi: pk:,+p-- ‘kf crA, 
(I 15a) 
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12. Some remarks on the comparison of theory with 
experiment 

Detailed comparisons of the theory presented here with 
observational data on hydromagnetic magnetospheric 
oscillations (ULF waves) are beyond the scope of this 
paper and must be the subject of special investigation. In 
the context of such an investigation it is necessary, in 
particular, to explore the possibility of deriving fine trans- 
verse structure of the Alfven oscillations on the basis of 
existing observational data as well as to propose new 
experiments aimed at studying the fine structure. Such an 
analysis would also require a further development of the 
theory, namely the transition from monochromatic to 
broad-banded oscillations and from separate harmonics 
in azimuth to their superposition. Yet, we consider it 
appropriate to make some simple remarks. 

One of the main theoretical conclusions is the estab- 
lishment of the fact that a purely poloidal mode of 
Alfvenic oscillations in the magnetosphere is nonexist- 
ent. 

The oscillations with large values of m, considered in 
this paper, are excited as poloidal ones (the disturbed 
magnetic field oscillates in the radial direction), but as 
they travel across the magnetic shells their radial spatial 
structure rapidly becomes fine, which, in accordance with 
the polarization properties of the Alfven wave, makes 
them lose their poloidal character. As a result, throughout 
most of the transparency region the oscillation has radiai 
and azimuthal components of the magnetic field. com- 
parable in magnitude, while near the toroidal surface, 
predominantly the azimuthal component. This fact is also 
supported by satellite observations of the poloidal oscil- 
lations of the magnetosphere ; usually, in addition to the 
predominant radial component of the oscillations of a 
disturbed magnetic field, an azimuthal component of a 
comparable magnitude is recorded (Anderson et al.. 

1990 ; Takahashi et al., 1990 ; Takahashi and Anderson, 
1992). 

Oscillations with small values of m that are generated, 
for example, through field-line resonance, have from the 
outset a toroidal character, and fine structuring of their 
radial spatial structure in the process of their propagation 
only enhances their toroidal character (Southwood. 1974 ; 
Chen and Hasegawa, 1974). 

These theoretical conclusions are associated naturally 
with the known experimental fact : about half of the ob- 
served Alfven oscillations are composed of nonstructured 
oscillations, about 30% correspond to toroidal oscil- 
lations, 10% are made up by oscillations with a large 
proportion of the compressible component, and only 5% 
refer to poloidal oscillations with the predominant radial 
component (Anderson et al., 1990). This is quite under- 
standable in the context of the above theory. A purely 
poloidal oscillation can be recorded only in a narrow 
neighbourhood near the poloidal surface where, however, 
only the monochromatic osciltation will be a poloidal one. 
If the disturbance is a broad-banded one, then the surface. 
a resonance one for a given frequency, will not be a res- 
onance one for another frequency, which further reduces 
the probability of detecting poloidal oscillations. 

An other remark concerns hodographs for magnetic 
field disturbances and plasma velocity. 

The behaviour of the hodograph in different areas inside 
of the transparency region, constructed in accordance with 
formulas (114)-( 1 l6), is shown in Fig. 7. An interesting 
behavioural feature of the hodograph is the reversal of the 
rotation direction of the disturbance vector as one moves 
from the poloidal to toroidal resonance surface. For posi- 
tive k2 near the poloidal surface, the vector of the dis- 
turbed magnetic field and the plasma velocity rotates 
clockwise, and near the toroidal surface it rotates anti- 

Fig. 7. Hodographs of monochromatic transverse small-scale 
Alfven oscillations at different points inside the transparency 
region. To ease the comparison with observations, the hodo- 
graphs arc constructed in the planes (II,, BJ and (u,,z~~). The 
most interesting peculiarities are a change in orientation of the 
polarization ellipse when moving from the polaidal point of turn 
to the toroidal point. and the rotation reversal of the hodograph 
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clockwise. In between the resonance surfaces, that is, 
in most of the transparency region, the oscillations are 
linearly polarized. 

Such behaviour of the hodograph can serve as the indi- 
cator of the os~ilIat~ons under consideration. 

These results can be compared with the coordinated 
observations on satellite GEOS and in the conjugated 
(along the geomagnetic field line) ionospheric &region by 
the STARE radar (Walker c”t ul., f 982). It should be noted 
that such a comparison should be carried out with some 
caution. The point here is that the oscillations recorded 
on the satellite included the predominant part of the com- 
pressible component, in addition to which a poloidal- 
type oscillation was recorded. Besides, the period of the 
oscillations varied in the course of the observation from 
213 to 300 s, which indicates a broad-banded character of 
the oscillations* It might, however, be anticipated that 
instantaneous values of the recorded parameters cor- 
respond to the parameters of the monochromatic wave 
recorded at a given point. As far as the larger contribution 
of the compressibie component is concerned. on the ter- 
restrial surface it does not seem to be recorded ; therefore, 
the data from the STARE radar can be compared with the 
results ofour theory. Walker et al. (1982) give polarization 
ellipses for oscillations constructed based on observations 
of the plasma motions in a 40 x 40 km square in the 
ionospheric E-region. If it is assumed that the obser- 
vational square is located as shown in Fig. 2 of this 
paper, then the behaviour of the hodo~raphs in Fig. 5 
from the cited paper, in view of the data in Fig. 4 from 
the same paper, agrees quite well with our theoretical 
picture. 

tions (15), (I@]. The eigenfnn~tio~s of this problem 
R&V’, tr, m) that represent standing waves with N nodes 
on the field line. describe the longitudinal stricture of the 
oscillation field, and eigenvalues of li&x’, w) are eigen- 
values of the qnasiciassical wavevector. They depend on 
the coordinate X’ and frequency o as the parameters. For 
harmonics with targe longitudinal wavenumbers, N >> 1, 
we have obtained equation (42) relating il-rX to x’ and w 
and to the explicit expression (44) for &. 

(3) We have introduced the notions of the poloidal and 
the toroidal resonance surfaces, on which the quasi- 
classical wavevector k&x’, 0) goes, res~ectiveiy, to zero 
and to infinity, and the polarization of the oscillations has 
a strictly polo~da1 and toroidal character. ~efinitjons were 
given to the ~oloidal. a;(.~‘), and the toroidal. a$(~‘). 
eigenfrequencies as the frequencies of such oscillations 
which on a given magnetic surface X’ are, respectively. 
poloidal and toroidal ones. It has been found that, 
except for small neighbourhoods of the extrema of the 
functions !Z$,(X’) and Qi,(x’), the transparency region, 
kf&~~,t) > 0, of the mode with a given frequency lies 
between the poloidal and toroidat resonance surfaces. 
It has been shown that, as a consequence of the curva- 
ture of geomagnetic field lines, the Alfven wave under 
study propagates (even in the approximation of ideal 
MHD) across the magnetic sheIis. The expressions (33) 
have been obtained for transverse components of group 
veIocity. 

The last remark is on the localization of the mono- 
chromatic poloidal oscillations. In observations on satel- 
lites. nearly monochromatic oscillations of the magnetic 
field components are recorded in rather narrow ranges of 
the magnetic she& (Engebretson or al., 1988; Anderson 
et al., 1990; Takahashi or al.. 1990). The width of these 
ranges in the equatorial region. I”-3R,. agrees well with 
the distance between the poloidal and toroidal resonance 
surfaces for the second harmonic obtained in our numeri- 
cal model. We wish to stress that it is just the second 
harmonic which has an antinode at the equator, unlike 
the first and third harmonics which have a node in mag- 
netic field there. 

(4) In the next order of the WKB approximation we have 
obtained the expression (68) which describes the variation 
in oscillation amplitude across the magnetic shells. This 
variation is due both to a change in transverse group 
velocity and to the dissipation of the wave in the iono- 
sphere. If an instability of the oscillations involved occurs 
in the magnetosphere, then their amplitude can increase 
in the course of the propagation. 

13. Conclusion 

Let us formulate the main results of this work. 

(5) The validity range of the WKB approxinlat~on is 
violated near the toroidal and poloidal magnetic surfaces 
which are a usual turning point and a singular turning 
point in coordinate x’. The solution in the neigh- 
bourhoods of these surfaces has been found in terms of 
perturbation theory based on the closeness of the oscil- 
lations under investigation to the poloidal and toroidal 
modes near the corresponding surfaces. It has been shown 
that the mode generated near the poloidal surface by 
extraneous currents in the ionosphere. after propagating 
through the transparency region, is totally absorbed in the 
neighbourhood of the toroidai surface. A matching of 
solutions in different regions has been Carried out, as well 
as obtaining formulas (11 l)--( 116) describing the global 
structure of the oscjllations concerned. 

(1) Based on the equation of ideal magnetic hydro- (6) For a magnetospheric model involving a dipole model 
dynamics we have obtained a partial di~erential equation of the geomagnetic field and the model (51) of the Alfvin 
(4) which. together with the boul~dary condition on the velocity distribution, the longitudinal problem for eigen- 
ionosphere (12). describes the scalar potential of mono- values [equations (IS), (16)] has been solved. The quah- 
chromatic transversally small-scale (171 >> 1) standing tative results obtained in this paper have been shown to 
AIfvCn waves in the axjsymmetri~ magnetosphere. be in full agreement with results of numeri~dl calculations. 

(2) It has been shown that the WKB approximation in 
coordinate X’ normal to magnetic surfaces. is applicable 
for solving equation (4). Using this approximation we 
have formulated a one-dimensional (in ~on&itudina~ coor- 
dinate e) boundary-value problem for eig~n~~aIues fequa- 

(7) It is shown that some of the simplest results of the 
theory presented here agree quite wet1 with experimental 
evidence. 
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script and for typing the text. We are grateful to A. D. M. 
Walker for valuable remarks which have helped us to improve 
considerably the presentation of our work. 
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