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Abstract. The review considers the current state of 

the theory of short-period ULF waves in plasma with 

admixture of heavy ions (ions whose mass significantly 

exceeds the mass of protons). The presence of heavy 

ions influences the spectrum and propagation character-

istics of waves in Pc1 range. We examine elements of 

the theory of quasi-parallel and quasi-perpendicular 

short-period ULF waves. It is usually suggested that 

quasi-parallel ion-cyclotron waves have a left circular 

polarization. Quasi-perpendicular ion-ion hybrid waves 

have linear polarization and can be poloidal and toroi-

dal. We discuss the theory of an equatorial resonator for 

Pc1 waves and determine its size from the density of 

heavy ions. In the radial direction, the waves can be 

locked in the vicinity of the plasmapause or in the re-

gion of a local minimum in the density of heavy ions. 

The equatorial resonator for arbitrary values of the wave 

vector components is considered. We note that ion-ion 

hybrid waves, in contrast to Alfvén waves, have a large 

parallel component of the magnetic field. 

Keywords: Pc1 geomagnetic pulsations, ULF 

waves, ion-ion hybrid waves, multicomponent plasma, 

heavy ions. 

 

 

 

 

 

INTRODUCTION 

Ultra-low frequency (ULF) waves are continuously 

observed in Earth’s magnetosphere. They are usually 

classified as short-period (Pc1-2 and Pi1) and long-

period (Pc3-5 and Pi2) waves. The most high-frequency 

of them are geomagnetic pulsations Рс1 (0.2–5 Hz). 

They play an important role in various magnetospheric 

processes, in particular in the magnetosphere-

ionosphere coupling [Demekhov, 2012; Fedorov et al., 

2016; Mishin et al., 2020], in the enrichment of the 

magnetosphere by heavy ions during substorms [Horne 

and Thorne, 1997], in the enhancement of proton pre-

cipitation [Lessard et al., 2011; Mishin et al., 2018], and 

in the acceleration of charged particles [Engebretson et 

al., 2007; Usanova et al., 2014]. Of the Pc1 pulsations, 

oscillations of a special type stand out whose sonogram 

resembles a string with pearls — such pulsations are 

called pearls [Guglielmi, Troitskaya, 1973; Fraser et al., 

2006; Guglielmi, Potapov, 2019; 2021]. Probably, this 

term was first used in [Sucksdorff, 1936]. 

Most of the Pc1-2 ULF waves observed in space are 

identified with electromagnetic ion cyclotron (EMIC) 

waves. They are assumed to be generated by ion-

cyclotron instability in the near-equatorial region of the 

magnetosphere due to pressure tensor anisotropy 

[Cornwall, 1965; Kennel, Petschek, 1966; Guglielmi, 

1968]. Theoretical [Horne, Thorne, 1993; Krall, Trivel-

piece, 1975] and experimental studies [Young et al., 

1981; Anderson et al., 1992b, 1996; Fraser, Nguyen, 

2001] have shown that ion-cyclotron waves have left-

hand circular polarization. For the ion-cyclotron insta-

bility to develop, the wave should be quasi-parallel, i.e. 

the quasi-parallel wavelength should be much shorter 

than the perpendicular one. 

For a long time, the main model explaining the for-

mation of the Pc1 wave packet was the bouncing wave 

packet model. According to this model, Pc1 pulsations 

are wave packets moving along the field line and expe-

riencing periodic reflections from the highly conductive 

ionosphere [Jacobs, Watanabe, 1964; Obayashi, 1965]. 

The structure of ion-cyclotron waves across field 

lines was studied in [Dmitrienko, Mazur, 1992], where 

it was found that due to the presence of a local mini-

mum in the radial profile of the Alfvén velocity near the 

plasmapause these waves can be closed into a resonator 

across magnetic shells  in this magnetospheric region. 

Later, it turned out that the bouncing wave packet 

model cannot explain all the Pc1 pulsations observed. 

On the one hand, satellite data shows that the pearl repe-

tition period is too short to be identified with the period 

of reflection of the packet from the ionosphere [Mursula 

et al., 2001; 2007]. On the other hand, in many cases the 

packet cannot run along the entire field line at all. This 

is due to the presence of heavy ions in magnetospheric 

plasma, i.e. ions whose mass is much greater than the 

mass of protons. Satellite data indicates a high content 

of oxygen ions in magnetospheric plasma during the 

magnetic storm recovery phase [Takahashi et al., 2006; 

Yang et al., 2010]. The importance of taking heavy ions 

into account for studying Pc1 pulsations was first noted 
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in [Gintzburg, 1963; Smith, Brice, 1964; Gurnett et al., 

1965; Guglielmi, 1967]. Of particular significance is the 

study of trajectories of ion-cyclotron wave packets in 

the magnetosphere, carried out in [Rauch, Roux, 1982]. 

The structure of Pc1 ion-cyclotron waves along the 

field line in plasma with heavy ions was examined in 

[Guglielmi et al., 2000, 2001]. The authors showed that 

such waves can be closed along the field line into a res-

onator in the equatorial region of the field line. Thus, 

the packet can oscillate only between boundaries (wave 

reflection points) of the resonator. These effects were 

further studied in [Lundin, Guglielmi, 2006; Guglielmi, 

Kangas, 2007; Guglielmi, Potapov, 2012]. 

In addition, it was found that in many cases Pc1 pul-

sations have linear polarization [Young et al., 1981; 

Anderson et al., 1992b, 1996; Fraser, Nguyen 2001]. 

Such waves cannot be identified with ion-cyclotron 

modes, which must be left-hand polarized. Lee et al. 

[2008] suggested that linearly polarized Pc1 pulsations 

may be identified with ion-ion hybrid (IIH) waves, 

which can exist in plasma with the presence of ions of 

two or more types — lighter and heavier [Buchsbaum, 

1960]. In Earth’s magnetosphere, it is natural to identify 

light ions with protons, and heavy ions with oxygen and 

sometimes helium ions. 

In [Mithaiwala et al., 2007; Klimushkin et al., 

2010; Farmer, Morales, 2013; Kim et al., 2015a], it has 

been found that the IIH modes should be closed along 

the field line into a resonator in the near-equatorial 

region of the magnetosphere. Indeed, linearly polar-

ized Pc1 pulsations are usually observed near the geo-

magnetic equator [Anderson et al., 1992a; Horne, 

Thorne, 1993; Lotoaniu, 2005; Chen et al., 2009]. It is 

worth noting that theoretically IIH modes arise in the 

opposite limit compared to ion-cyclotron modes: they 

should be quasi-perpendicular, i.e. their perpendicular 

wavelength should be much shorter than the parallel 

one. The theory of IIH waves in Earth’s magneto-

sphere has been discussed in [Klimushkin et al., 2006, 

2010; Mikhailova, 2011; Kazakov and Fulop, 2013; 

Kim et al., 2015b, 2019; Mikhailova et al., 2020a, b]. 

Some observed events indicate a strong latitudinal lo-

calization of Pc1 waves [Mursula et al., 1994; Enge-

bretson et al., 2002, 2008; Yahnin et al., 2007], which 

also allows us to associate them with quasi-

perpendicular IIH modes. The IIH waves can also exist 

in Mercury’s magnetosphere, where sodium plays the 

role of heavy ions [Glassmeier et al., 2003, 2004; Kim 

et al., 2008, 2013]. 

It is hardly possible to encompass all the available 

theoretical models explaining the formation mecha-

nisms and the structure of Pc1 pulsations in one re-

view. This paper presents different approaches to the 

study of short-period ULF waves in a multicompo-

nent plasma: quasi-parallel and quasi-perpendicular 

approximations. In geophysics, the quasi-parallel 

approximation usually means wave propagation at an 

angle not exceeding 45° with respect to the surround-

ing magnetic field, and the quasi-perpendicular ap-

proximation implies wave propagation at an angle 

from 60° to 90° [Brunelli, Namgaladze, 1988]. From 

this point on, the term “quasi-parallel” stands for a 

large value of the parallel wave vector component 

k  ; and the quasi-perpendicular approximation, a 

large value of the perpendicular wave vector component 

k  . 

The review has the following structure. Section 1 

contains the main equations used for analytical calcula-

tions. Section 2 deals with the quasi-parallel approxima-

tion used to study the wave structure along field lines 

(Subsection 2.1) and the spatial structure of ion-

cyclotron waves in plasma with heavy ions (Subsection 

2.2). Section 3 is devoted to the quasi-perpendicular 

approximation, the parallel structure of waves in the 

vicinity of the geomagnetic equator (Subsection 3.2), 

the possibility of the existence of toroidal and poloidal 

modes (Subsection 3.3), and the resonator for IIH waves 

across magnetic shells (Subsection 3.4). Section 4 dis-

cusses the localization of waves for an arbitrary wave 

vector. Section 5 addresses unresolved problems and 

presents the conclusion. 

 

1. MAIN EQUATIONS 

To study ULF waves in a dipole-like magneto-

sphere, an axially symmetric coordinate system { x
1
, x

2
, 

x
3
} is used such that the radial coordinate x

1
 determines 

the number of the magnetic shell, the azimuthal coordi-

nate x
2
 marks the field line, and parallel coordinate x

3
 

indicates a point on the field line (Figure 1). We may 

employ the McIlvaine parameter L as the radial coordi-

nate, and the azimuth angle φ as the azimuthal coordi-

nate. The physical length of a vector in such a coordi-

nate system is determined by the expression 

.ii idl g dx  Here, gi is the metric tensor component, 

and ig  is the Lame coefficient. Determinant of the 

metric tensor: g=g1g2g3. 

In the dipole magnetosphere model, the metric ten-

sor components [Brunelli, Namgaladze, 1988; Leo-

novich, Mazur, 2016] are expressed through the mag-

netic latitude θ: 
6

1 2

cos
,

1 3sin
g




 

2 6

2 cos .g L   The 

field line length element can be found as follows 

3 2

3 cos 1 3sin .dl g dx L d       

 

Figure 1. Coordinate system related to the geomagnetic 

field [Mager, Klimushkin, 2013] 
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In an axisymmetric magnetic field, all perturbed 

quantities can be represented as 
2

2 ,
i t ik x

e
  

 where k2 is 

the azimuthal wave vector component. Since the x
2
 

coordinate is directed along the azimuth, the azimuth 

angle φ can be used as this coordinate. Then, k2=m, 

where m is the azimuthal wave number. 

Let us consider an ULF wave with a frequency ω 

propagating in cold plasma consisting of electrons, 

protons, and heavy ions. Perturbations of the wave 

electric field E  can be found from Maxwell equa-

tions: 

2

2
ˆ ,E E

c


    (1) 

where c is the speed of light; ̂  is the permittivity ten-

sor. Its components are defined as follows [Glassmeier 

et al., 2003]: 

2 2

pp ph

2 2 2 2

cp ch

2 2 2

pe cp pp phch

2 2 2 2

ce cp ch

,

,

.



  

 
  

   

   
   

     

 (2) 

Here, Ωp and Ωc are plasma and cyclotron frequencies. The 

second index denotes the corresponding particle: proton 

(p); heavy ion (h); electron (e). 

In ideal MHD, the wave electric field is a two-

dimensional vector (E1, E2, 0); the parallel component 

of the field is zero due to the condition .    As-

sume that across magnetic shells the wave field decreas-

es with distance away from the region under study, giv-

ing a boundary condition in x
1
 

   1 1 0;E x E x     (3) 

in this case, the wave is reflected from the ionosphere 

due to its high conductivity, which corresponds to the 

boundary condition in x
3
 

   3 3 0,E x E x    (4) 

where 3x  are the coordinates of the points of intersec-

tion of magnetic field lines and the upper boundary of 

the ionosphere. 

In the small-scale approximation, the Wentzel–

Kramers–Brillouin (WKB) approximation can be used 

to study the oscillations, when all perturbed quantities 

are proportional to  exp .i k dr  Then, system (1, 2) 

reduces to the well-known dispersion equation for ULF 

waves [Swanson, 2003]: 

2 2 4
2 2 2 2

2 2 4
,k k k

c c c
  

    
        

  
 (5) 

where 2k  and 
2k  are the wave vector components 

along and across the magnetic field line. 

2. QUASI-PARALLEL 

APPROXIMATION 2 2/ 0k k   

2.1. Parallel resonator 

The quasi-parallel approximation for ion-cyclotron 

waves in plasma with an admixture of heavy ions has 

been examined in [Guglielmi et al., 2000, 2001; Gug-

lielmi, Potapov, 2012 , 2019]. These papers show the 

presence of a resonator for ion-cyclotron waves in the 

equatorial part of the field line. It turned out that in con-

trast to the bouncing wave packet model the reflection 

points for a traveling wave packet are located in the 

vicinity of the geomagnetic equator, not in the iono-

sphere. It is shown that the wave packet oscillation peri-

od in the resonator is approximately equal to the repeti-

tion period of elements of Pc1 pulsation series. 

Consider a small-scale wave along a magnetic field 

line. In the quasi-parallel approximation 2 2 0k / k  , 

dispersion relation (5) takes the form 

2
2 4

2 4

2 4
.k

c c


  
    

 
 (6) 

This equation has two solutions: 

 
2

2

2
.k

c
 


      

They refer to left-hand (LH, "+" sign) and right-hand 

(RH, "–" sign) polarized modes. For a left-hand polar-

ized wave, the function  2 3k x  in the close vicinity of 

the equator can be represented in the parabolic approx-

imation. We can apply this representation if there are 

protons and heavy ions in the plasma. The dependence 

of 2k  on the parallel coordinate along the field line is 

shown in Figure 2. The value of 2k  is seen to become 

zero at the reflection points 0l , followed by two 

opaque regions ( 2 0k  ). The concentration of oxygen 

ions at the equator is much lower than in the near-

ionosphere regions. Turning points occur where there 

are a large number of oxygen ions. The wave is trapped 

near the equator along the parallel coordinate. 

In the vicinity of the equator, the magnetic field B 

varies slightly and can be represented as 

2

eq

E

9
1 ,

2

l
B B

R L

  
    
   

 (7) 

where Beq is the geomagnetic field at the equator; 
3

3l g x  

is the physical length along the field line; REL is the distance 

from the center of Earth to the top of the field line expressed 

in Earth radii. The wave structure in the vicinity of the equa-

tor can be found from Equation (1). In the quasi-parallel 

approximation, system of equations (1), along with bounda-

ry conditions (4), is an eigenvalue problem for the parameter 

k  and determines the wave structure along the field line.  
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Figure 2. 
2

k  as a function of the parallel coordinate l. The 

solid line indicates the behavior of the function
2

k  for a left-

hand polarized wave; the dashed line, for a right-hand polar-

ized wave [Guglielmi et al., 2001] 

 

The parallel wave field structure is described by the parabol-

ic cylinder functions DN(ξ): 

  22 ( )exp / 2 ,N ND He        (8) 

Here, ( )NHe   are the Hermitian polynomials; N is the 

parallel wave number. The argument ξ is related to the 

parallel coordinate by the expression 

 
3/2

2
h pch cp2

cp ch h ph E

1 /3
,

/2

l

A R L

  
 

   
 (9) 

where p,h p,h/ 4A B   is the Alfvén velocity; p,h  is 

the density of protons or heavy ions, depending on the 

index. 

The frequency spectrum of harmonics excited in the 

ion-cyclotron resonator is equidistant and quantized 

h h h
ch

p p E

1
1 3 2 ,

2
N

A
N

LR

    
             

 (10) 

The frequency spectrum is assumed to be sufficiently 

dense, i.e. 1 0.N N N       Guglielmi et al. 

[2001] supposed that the Pc1 pulsations observed are 

wave packets composed of high N harmonics (N>>1) 

and running between reflection points of the resonator. 

The width of the parallel equatorial resonator is de-

termined by 

1/4 1/2

h h E

p ch

1
2 ,

2

A R L
l N

     
            

 (11) 

here 
3

02 .l x   For the fundamental harmonic, the size of 

the resonator is the smallest. For typical parameters of the 

magnetosphere in the plasmapause region (ρh/ρp=1.6, 

Ah=500 km/s, L=5 [Dmitrienko, Mazur, 1992; Yang et 

al., 2010]), the resonator width is ~1 RE, the frequency of 

the fundamental harmonic in the resonator corresponding 

to the frequency of Pc1 pulsations is ~2.35 Hz.  

2.2. Perpendicular resonator 

Magnetospheric plasma is inhomogeneous both 

along field lines and in the radial direction [Leonovich, 

Mazur, 1993]. The existence of such a region as the 

plasmapause in the magnetosphere, where a jump oc-

curs in almost all magnetospheric parameters, suggests 

the existence of a perpendicular resonator for ULF 

waves in this region, especially since the radial profile 

of the Alfvén velocity has a local minimum near the 

plasmapause (Figure 3). The structure of Pc1 oscilla-

tions in the resonator formed by a local minimum of the 

Alfvén velocity has been examined in [Dmitrienko, Ma-

zur, 1985, 1992]; and in the presence of heavy ions in 

magnetospheric plasma, in [Mikhailova, 2013; Mikhai-

lova, 2014].  

Consider an axially symmetric ULF wave (k2=0). In 

cold plasma, system of equations (1) can be written as 

ˆ 0.ij jL E   (12) 

Here, components of the operator L̂  look like 

2

2
11 3 3 2

1

,
gg

L
gx x cg



  
  
 

 (13) 

2

12 3 21 122
ˆ ˆ ˆ, ,L i g L L

c


     (14) 

2
3 2

22 1 1 3 3 2

2

ˆ ,
gg g

L
gx x x x cg g



    
   
   

 (15) 

the asterisk here denotes complex conjugation. The 

Hermitian operator is L̂ . 

System (12) will be solved in the WKB approximation 

as follows 

   3 3
31 3, ,

i k x dx

E H x x e 

  

where α is a coordinate; Hα is a function. Equation (12) 

together with boundary conditions (3) in x
1
 represents 

an eigenvalue problem  3

3 3 .k k x  This system con-

tains a derivative only in x
1
, hence the function Hα de-

termines the perpendicular structure of the mode. 

We deal with the frequency range of the order of the 

gyrofrequency of heavy ions (much lower than the  

 

Figure 3. Schematic representation of the radial coordinate 

dependence of the Alfvén velocity that has a minimum near 

the plasmapause (blue line) [Mikhailova, 2014] 
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gyrofrequency of protons). In this case, the diagonal 

element of the permittivity tensor 
  can be represented as 

22
p

2 2
p 2

h 2

ch

1 .

1

Aс

A
A



 
 
   
  
  

   

 (16) 

Following [Dmitrienko, Mazur, 1992], we examine the 

region adjacent to the inner edge of the plasmapause, 

where the radial profile of the Alfvén velocity has a 

local minimum (see Figure 3). In this case, the function 

  has a maximum at the plasmapause 1 1( )x x  at a 

fixed value of x
3
. When moving away from the plasma-

pause,   will decrease. In a small neighborhood of the 

plasmapause, we can use the representation 

   
 

 
2

2
1 1

11 3 1 3

1 3
, , 1 ,

x x g
x x x x

l x
 

 
    
 
  

 (17) 

where  1 3l x  is the scale of the inhomogeneity in x
1
. 

Notice that    1 3 3

1/ ,l x l x g  where  3l x  is the 

scale of the inhomogeneity across magnetic shells. We 

may ignore variations in the metric tensor coefficients 

since the region of localization of the wave considered is 

smaller than the scale of magnetospheric inhomogeneities. 

Turn to physical components of the vectors. The 

wave equation for the perpendicular wave structure 

takes the form 

2 (0) 2 2
2 2 2 (0)2

22 2 2 2

ˆ
ˆ 0,

H
k H

k

  
     

    

 (18) 

here, 

2 2
4 1

2
,

g l c




 

 (19) 

2
2 2

2
,k k

c



     (20) 

1 1ˆˆ ,x x    (21) 

 2 2/ .c     (22) 

The turning (reflection) points can be found from 
2

1 0.k   The transparent region  2

1 0k   lies between 

the turning points whose radial coordinates are deter-

mined from  

 
1/2

2 2 2
1 1 2 21
0 2 2

ˆˆ 1 1 .
g l c

x x k
c






  
       

    
 (23) 

The resonator is bounded by magnetic shells located 

at an equal distance from the plasmapause [Dmitrienko, 

Mazur, 1992]. This fact allows us to consider such a 

resonator in the same way as potential wells are studied 

in quantum mechanics. There are two types of potential 

wells: deep and shallow. The former has a set of dis-

crete energy levels; the latter has one energy level, but 

has no obvious potential barriers [Landau, Lifshitz, 

2004]. 

Let us take a look at two extreme cases. Given 

k    and a new variable 2 ,  , Equation (18) 

reduces to the equation for parabolic cylinder functions: 

 2 4 22 (0) 2
(0)2
22 2

ˆ
ˆ 0,

4 2

kH
H

k

   
   

  
 

 (24) 

This equation describes a deep potential well. The solu-

tion to this equation is a set of eigenfunctions 

 
2(0) (0) /2

2
ˆ ˆ 2 ,n nH H e He    (25) 

with a discrete set of eigenvalues 

2

( ) 2

1 1
.

2
nk n

 
    

 
 (26) 

Here, the functions Hen are Hermitian polynomials 

[Abramowitz, Stegun, 1964], n is the perpendicular 

wave number. Oscillations in such a perpendicular reso-

nator have left-hand circular polarization. 

In the opposite case when 1  and 2 2

( ) 1,nk    

Equation (18) takes the form 

2 (0)
2 (0)2

22

ˆ
ˆ 0.

H
H


 


 (27) 

This is another equation for the parabolic cylinder func-

tions — an equation for a shallow well, which has a single 

eigenfunction 

 (0)

2 1/2
ˆ 2 ,H CD   (28) 

where C is the constant; Dn(ξ) is the Whittaker function 

[Abramowitz, Stegun, 1964]. The only eigenvalue of the 

shallow well problem has the form [Landau, Lifshitz, 

2004] 

 

 

22
2 4 6

2

1/ 4
.

8 3 / 4
k


  


 (29) 

The shallow well contains only one harmonic, which is 

a surface wave whose tails extend beyond the resonator. 

The frequency spectrum of oscillations in the reso-

nator of the deep potential well type can be obtained 

using the Bohr-Sommerfeld condition of quantization 

 
0

0

( ) 1
,

2

l

n

l

k l dl N


 
     

 
  (30) 

where n and N are the perpendicular and parallel quan-

tum numbers respectively. We can use the Bohr-

Sommerfeld condition of quantization for large values 

of N, but, as practice shows, this condition yields the 

correct result even for values of the parallel wave num-

ber of the order of unity. Since  , nNk l   depends on 

the frequency ω=ωnN as a parameter, we can get the 

wave frequency. From Equation (26) we derive the par-

allel component of the wave vector 

2 2
( )2

2 2

1

1
.

2

nk n
c c cl g







    
     

 
 (31) 
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Using quantization condition (30), we can obtain an 

expression for the frequency 

h h
ch

p p E

3/4
2

h h

p p ch E

1
1 3 2

2

1 1
3 2 ,

2 2 2

nN

A
N

R L

A
N n

l R L





    
              

     
              

 (32) 

where  p h/ 4A B     is the Alfvén velocity. 

Here, magnetic field inhomogeneity along field line (7) 

is taken into account. 

Make numerical estimates for the main harmonic 

(N=0, n=0). For this purpose, as above, we use the pa-

rameter values typical for the magnetosphere in the 

plasmapause region: ρh /ρp=1.6, A=500 km/s, L=5, 

Ωch≈1 s
−1

, l⊥∼10
4
 km [Dmitrienko, Mazur, 1992; Yang 

et al., 2010]. The frequency of the main harmonic is 

ω0=2.64 s
−1

, the turning points along and across the 

field line are at a distance of ∼1 RE from the equator and 

the center of the plasmapause. The opaque regions are 

assumed to be sufficiently wide, so we can neglect the 

wave energy leakage to the ionosphere. 

Spectrum (32) partially coincides with spectrum (10) 

obtained in [Guglielmi et al., 2000]. The fundamental 

difference is in the last term of Expression (32). This 

term takes into account the perpendicular wave struc-

ture; the wave frequency depends on parallel N and per-

pendicular n wave numbers, while Expression (10) in-

cludes the dependence only on the parallel structure. 

 

3. QUASI-PERPENDICULAR 

APPROXIMATION / 0k k   

3.1. Two modes of ion-ion hybrid waves 

Examine the ULF-wave structure in the quasi-

perpendicular approximation. To study waves in plasma, 

it is convenient to use the method proposed in [Tamao, 

1984; Klimushkin, 1994]. Since the parallel wave electric 

field is considered to be negligible, the electric field vec-

tor can be expressed as the sum of potential and vortex 

components, each is expressed through a scalar function 

— potential (note that this term is used here in a slightly 

different sense than in standard textbooks on electrody-

namics) 

.E e       (33) 

Here, / ,e B B   is the two-dimensional nabla op-

erator in a plane (x
1
, x

2
). In a homogeneous plasma in 

the c/ 0    approximation, the potentials Φ and Ψ 

are the Alfvén wave and the fast magnetic sound re-

spectively [Tamao, 1984; Klimushkin, 1994]. In the 

general case, the wave determined by the potential Φ is 

called the guided mode, i.e. propagating along the 

equilibrium magnetic field (directed by it); and that 

defined by Ψ, the isotropic mode. Linearly polarized 

quasi-perpendicular waves can be interpreted as ion-

ion hybrid (IIH) waves. In terms of the Φ potential, 

they are guided modes in multi-ion plasma. 

System of equations (1) after some algebraic trans-

formations turns into a system of equations for Φ and Ψ 

1 T 1 2 P 2

2

1 3 2 2 3 12

2

2 1
1 1 2 22

1 2

1 2
1 T 2 2 P 1

ˆ ˆ

ˆ ˆ ,

L L

i g g
c

g g
i

g gc

g g
L L

g g

       
 


        
 

 
        

  

 
       
  

 (34) 

3

2 2 1 1
1 T 1 2 P 2

2

1 2 2 12

3 3

2

2 1
1 1 2 22

1 2

1 2
2 T 1 1 P 2

ˆ ˆ

ˆ ˆ .

g

g

g g g g
L L

g g g g

i
c g g

g g
i

g gc

g g
L L

g g

    

 
        
  

   
        

  

 
         

  

 
       
  

 (35) 

The operators introduced here 

 
2

2
T 3 3 2

1

ˆ ,
gg

L
g cg




       (36) 

 
2

1
P 3 3 2

2

ˆ gg
L

g cg



       (37) 

are called toroidal and poloidal operators, and 

   1 2 1 2 1 2/ /g g g g        is a perpendicular 

Laplace operator. If instead of x
3
 we enter the parallel 

coordinate  3

3 ,dl g dx  the operators will take the 

form 

 
2

2 2
T 3 2

1 1

ˆ ,
g g

L g
l g l g c



   
       

 (38) 

 
2

1 1
P 3 2

2 2

ˆ .
g g

L g
l g l g c



   
       

 (39) 

Deriving Δ⊥Ψ from (35) and substituting it in (34), 

we can reduce the system to a single equation 

   1 T 1 2 P 2

2
2

2

ˆ ˆ

0.

L L

g
c

         

 
    

 

 (40) 

We deal with small-scale inhomogeneous oscillations 

across field lines and in the azimuthal direction; there-

fore, in the quasi-perpendicular approximation the third 

term on the left side of (40) is much smaller than the 

others. Then the wave equation for IIH modes takes the 
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form [Klimushkin et al., 2010] 

   1 T 1 2 P 2
ˆ ˆ 0.L L           (41) 

Let us take a look at two extreme cases. In the first, 

the radial wavelength r  is much smaller than the azi-

muthal one a .  This means that the radial component 

of the electric field is much larger than the azimuthal 

component Er>>Ea in one case, and Ea>>Er  in the other. 

In the first case when the first term of Equation (41) 

dominates over the second, the wave function Φ is pro-

portional to the eigenfunction of the toroidal operator TN 

   3

T
ˆ 0;NL T x   (42) 

the boundary conditions of the problem are given in the 

form  3 0,NT x   which follows from boundary condi-

tion (4); the points 3x  are the coordinates of intersection 

of the field line and the ionosphere. The number N de-

notes the parallel wave number. The eigenvalue ΩTN is 

called the toroidal eigenfrequency. Thus, if the wave 

frequency ω coincides with the toroidal natural frequen-

cy ΩTN, its structure along the field line is described by 

the toroidal eigenfunction TN(x
3
); such a wave has toroi-

dal polarization: Er>>Ea or Ba>>Br . The IIH wave with 

this polarization is known as the toroidal IIH mode. 

In the other extreme case when r a ,  the wave 

has poloidal polarization: Ea >>Er. In this case, in Equa-

tion (41) the second term is dominant and the function 

Φ should be proportional to the poloidal eigenfunction 

PN: 

   3

P N
ˆ 0;L P x   (43) 

boundary functions are chosen similarly to the previous 

case  3 0.NP x   If the wave frequency ω coincides 

with the eigenvalue of the problem (poloidal frequency 

ΩPN), the parallel structure of the wave is described by 

the poloidal eigenfunction PN(x
3
), and such an IIH wave 

is referred to as poloidal IIH mode, or IIH wave with 

poloidal polarization (Br>>Ba). 

The magnetic field of a wave can be found from the 

Faraday law .
i

E B
c


   In terms of potentials, the Φ 

and Ψ magnetic field components are written as fol-

lows: 

1,2 2,1

1,2 2,1 3 3 1,2 ,
g gic

B
g g

 
        

   

 (44) 

3
3 .

gic
B

g
 


 (45) 

3.2. Parallel resonator 

While the operators TL̂  and PL̂  are different and Equa-

tions (42), (43) have different eigenfunctions, the squared 

parallel wave vector component 2 2

3 3/k k g  in the paral-

lel WKB approximation is the same for both modes: 

2 2
2

22
22
h 2p 2

chcp

.

11

k

AA

 
 

   
   

     

 (46) 

Here, Ap,h are the Alfvén velocities defined for protons 

and heavy ions 0
p,h

p,h p,h

,
4

B
A

n m



 where np,h and mp,h 

are concentrations and masses of protons and heavy 

ions. 

We examine modes with a frequency below the pro-

ton gyrofrequency Ωcp. The magnetic field strength is 

low at the equator and much higher near the ionosphere. 

We can find a point on the field line, where the wave 

frequency coincides with the gyrofrequency of heavy 

ions ω=Ωch (Figure 4). Call this point the singular point 

ls. At this point 
2

,k   and on the equatorial side of 

this point 2 0.k   At the equator, the value of Ωch is 

small, and it is possible here that 2 0.k   Therefore, 

somewhere between the equator and the singular point 

there should be a point where 2 0,k   — let us call it 

the turning point l0. Position of the turning point can be 

found from  0 ,l    where Ω0 is the reflection fre-

quency, 

2 2 h
0 ch

p

1 ,
 

    
  

 (47) 

recall that h,p h,p h,pn m   are densities of heavy ions and 

protons [Klimushkin et al., 2006]. 

In the quasi-perpendicular approximation, as well as 

in the quasi-parallel one, in the vicinity of the equator 

there is a resonator where oscillations are generated. It 

is bounded on both sides by turning points ±l0 (north–

south symmetry). Outside the equatorial resonator there 

are two opaque regions ending in singular points. Far-

ther, there are transparent regions bordering on the ion-

osphere of the Northern and Southern hemispheres. 

 

Figure 4. Behavior of the functions Ωch(l) (green line) and 

 2k l  (blue line) along a field line. The equatorial resonator 

is highlighted in yellow [Mikhailova et al., 2020a] 
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The equatorial resonator works as a reservoir of en-

ergy for waves. The eigenfrequencies of the resonator 

determine frequencies of the harmonics excited in it. 

Near the equator,  2k l  has a maximum and can be 

represented as expansion 

 
 2 2

2 2 2

eq 2

eq

1
, ,

2

k
k l k l

l


  


 (48) 

the value is taken at the equator. The turning point is 

determined from    2 2

0 eq eq2 / .Nl k k


    The eigen-

frequency ωN, where N is the parallel wave number, can 

be derived from the Bohr-Sommerfeld condition of 

quantization 

 2 2 h chh h
ch

p p eq

1 2 1 ,N

A
N

r

   
      

   

 (49) 

where req is the equatorial radius of field line curvature. 

All variables depending on l are taken in their equatorial 

values  ch h,p h,p, ,A  . The prime means differentia-

tion along the parallel coordinate    ... ... .l     It is 

assumed here that the resonator is well separated from 

the transparent regions that are located near the iono-

sphere. In this case, the near-ionospheric transparent 

regions introduce exponentially small corrections to the 

resonator’s eigenfrequencies [Klimushkin et al., 2010]. 

The ratio of the first term from (49) to the second 

ch h/ 1,a A   therefore the mode frequency is 

largely determined by the first term (here a is the field 

line length) and coincides with the equatorial value of 

the parallel reflection frequency obtained in (47). The 

frequency spectrum is very dense: 1 .N N N     

Simultaneously, all natural harmonics of the resonator 

are excited which leads to the formation of beats charac-

teristic of Pc1 pearls. 

The resonator half-width is written as 

 

 
h

0 eq

ch eqp h

2 1
,

1 /

N A
l r

r




 
 (50) 

and the singular point, 

 
1/2

1/2

s eq h p2 1 / 1 .l r     
  

 (51) 

Make some quantitative estimates. Assuming that the main 

admixture of heavy ions in magnetospheric plasma is oxy-

gen O
+
 and taking Ah=Ap=10

3
 km/s, L=6.6, for the funda-

mental harmonic (n=0) we get: ω 0≈0.875 rad/s, 

l0≈0.23req=0.5RE, and Ls=0.9req. The frequency derived is 

included in the Pc1 frequency range and coincides in order 

of magnitude with the results obtained in [Guglielmi et al., 

2000, 2001; Guglielmi and Kangas, 2007]. 

 

3.3. Equatorial modes 

Since the mode is trapped in the equatorial resona-

tor, we can consider all values in a small neighborhood 

of the equator. The angle θ (geomagnetic latitude) can 

be expanded near the equator 

     0 0 .l l      (52) 

At the equator, θ(0)=0. Denote the parallel wave vector 

component k  for convenience by the letter , and in 

the vicinity of the equator it takes the form 

eq

eqeq eq

eq eq

1
2 2

p2

2 2

hh ch

2
2 2 2

2 2 2

ch ch

1

9
1 ,

A

l

L





        
   

 

     
  

  

 (53) 

Equation (41) is transformed as follows: 

       2 2ˆ ˆ, , 0,T PL L l m L l
L L

 
     

 
L L  (54) 

where TL̂  and PL̂  are the toroidal and poloidal opera-

tors, which in the equatorial approximation take the 

form 

 
2

T 2 2

1 2
2 2 2 2 2

p

2 2 2 2 2

hh ch ch ch

3ˆ

9
1 1 ,

l

ll L

l

A L

 

 
   



        
        
        

L

 (55) 

 
2

P 2 2

1 2
2 2 2 2 2

p

2 2 2 2 2

hh ch ch ch

3ˆ

9
1 1 ,

l

ll L

l

A L

 

 
   



        
        
        

L

 (56) 

The difference between the operators is in the sign of 

the term with the first derivative. 

Equation for toroidal eigenfunctions (42) in the 

equatorial approximation is transformed as follows: 

2 2 2
2 2

2 2 2

3 1
0.

2

l
T T T l T

ll L l

  
   

 
 (57) 

This equation reduces to the Hermite equation, whose 

solution is the toroidal eigenfunction 

 
 2 21

1/21/4 /2 22 ! ,
l

N

N N

l
T C N e He

    
   

 
 (58) 

where C is the arbitrary constant, 

 
1/4

2 ,


  
2 2

2 2

3 1
, 0,

22L l


    


 is the 

characteristic wavelength in the resonator. The funda-

mental harmonic has a wave number N=0. 

The spectrum of toroidal eigenfrequencies is written 

by the equation 

   
2

p2 2 h
T ch 2

p

3
2 3 2 1 .N

A
N N

L


     


 (59) 

In a similar way, we seek the parallel structure of the 

poloidal mode. Write equation for the poloidal eigen-
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function (43) with poloidal operator (56) in explicit 

form 

2 2 2
2 2

2 2 2

3 1
0.

2

l
P P P l P

ll L l

  
   

 
 (60) 

The solution to Equation (60) is as follows: 

 
 2 21

1/21/4 /2 22 ! .
l

N

N N

l
P C N e He

   
   

 
 (61) 

The structure of the toroidal and poloidal eigenfunctions 

(fundamental harmonic) is shown in Figure 5. The pro-

file of the poloidal mode is seen to be wider than that of 

the toroidal mode. 

The spectrum of poloidal eigenfrequencies is written as 

 
2

p2 2 h
P ch 2

p

3
2 3 2 .N

NA
N

L


    


 (62) 

The obtained value is higher than the gyrofrequency of 

heavy ions, but lower than toroidal eigenfrequency (59). 

Thus, the spectrum of IIH waves in the magnetosphere 

features polarization splitting, similarly to the spectrum 

of Alfvén waves. However, unlike Alfvén waves, the 

field line oscillates only in the equatorial part (Figure 6). 

The parallel structure of the first three IIH-wave har-

monics is schematically shown in Figure 7. Eigenfre-

quencies are related by 

2 2 2 2

T P p2

3
.N N N A

L
      (63) 

 

Figure 5. Fundamental harmonics of toroidal and poloidal 

eigenfunctions (N=0) [Mikhailova et al., 2020a] 

 

Figure 6. Toroidal and poloidal IIH waves [Mikhailova et 

al., 2020a] 

 

Figure 7. Parallel structure of the first three IIH-wave 

harmonics in the equatorial resonator 

Relative difference 

22 2
p p

2 2 2 2

T0 P0 ch h

3
.

4

A

L

 
 

   
 (64) 

Given the values of the magnetospheric parameters 

ρp∼ρh and Ap∼10
3
 km/s, in the geostationary orbit 

(L=6.6 RE) we get 2 2 3

T0/ 10 .   

3.4. Perpendicular resonator 

The poloidal eigenfrequency of IIH wave ΩPN(L) 

changes slowly along the radial coordinate L if the 

density ratio ρh /ρp is constant. It can be seen from (62) 

that  2

PN L  can have a local minimum in two cases. 

First, if ρh changes more slowly than ρp, the behavior 

of ΩPN(L) repeats the behavior of the Alfvén velocity 

function, which has a minimum at the plasmapause. 

Second, the poloidal frequency has a minimum when 

ρh has a local minimum. In both cases, near the local 

minimum of  2

PN L  a perpendicular resonator 

bounded by two reflection points can be formed (Fig-

ure 8) [Mikhailova et al., 2020b].  

Since the perpendicular resonator is bounded by po-

loidal reflection surfaces, the first term of Equation (54) 

is smaller than the second, which implies that the wave 

frequency in the resonator is closer to the poloidal fre-

quency ΩPN and its parallel structure is approximately 

described by the poloidal eigenfunction PN. In this case, 

the solution of Equation (54) can be sought as follows 

   , ,Nf L P l L     (65) 

where f(L) is an undetermined function, and δΦ is ad-

justment of the finite but small value of the first term 

from Equation (54), which we have ignored: |δΦ|<<|Φ|. 

Accordingly, the wave frequency can be represented as 

 2 2 2 2

P P ,N N      (66) 

it is assumed here that 2 2 2

P P .N N     In view 

of this, Equation (54) is transformed into 

 

 

2 2
p 2 2

P2 2 2
2

hh
P

2

ch

2 2 22
P P 2

2 2 3
2

h 2 P
ch 2

ch

1

6
1

3
0.

1

N

N

N N

N

f m
f

L A

m
Jf

L A

 
 
 

     
   

    

  
 

 
  

 

 (67) 

Here, ln ,J I





 where μ=α2
, 

 
2 11

2

1 1
, ; ; ,

2 1 2
1

N

N

I F N N N


  
    

  

  

and 2F1 is the hypergeometric function. 

In the vicinity of the local minimum of the function  
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Figure 8. 
2

TN  and 
2

PN  as a function of the radial coor-

dinate 𝐿 [Mikhailova et al., 2020b] 
 

 2

PN L , this function can be represented as 

   
2

2 2

P P 0 1 ,N N

x
L L

l

  
      
   

 (68) 

where l⊥ is the perpendicular scale of the inhomogeneity 

(l⊥∼1 RE), x=L–L0 is the distance from the minimum 

point of L0. Values of Ah, 
2

P

2

ch

,N



p

h




 and 




 should be 

taken at L0. Then, Equation (67) takes the form 

2
2 2

2 2

P2 2

h

1 0,
6

N

f m x
f

lL A 

   
       
      

 (69) 

where 

2 3
2 2 22

p P P P

2 2 2 2

h ch 0 ch ch

18
1 1 .N N NJ

L

 
      

       
      

  

Let us introduce a new variable ξ=ζx, where 

2 P

h

,
6

Nm

l A


   then Equation (69) can be reduced to 

the Hermite equation 

     2 0.f f       (70) 

Here, 

2 2

P

Ph

.
6

N

N

ml

A

  
 


  

The solution of Equation (70) is written as 

     
21/21/4 /2 /22 ! .n

n nf n He e
       (71) 

Spectrum of wave oscillations in a perpendicular poloi-

dal resonator 

 2 2 P
P

6
2 1 .h N

nN N

A
n

ml


      (72) 

Coordinates of the reflection surfaces bounding the res-

onator can be found from 

2 2

P

turn 0

P

,
N

N

L L l
 

 


 (73) 

The width of the perpendicular resonator ΔL depends on 

the azimuthal wave number m 

   h

P

6
2 2 1 .

N

A l
L m n

m

 


` (74) 

Ultimately, the expression for the wave field looks like: 

 

 
 2 2 2 21

2

/

.

Nn N

l x
im i t

n

const He l

He x e e
  

    

  

 

 (75) 

The wave running in the azimuth direction is localized 

in the radial direction and along the field line in the vi-

cinity of the geomagnetic equator. Write down the 

structure of the fundamental harmonic (N=0, n=0) 

 2 2 2 21

2
00 .

im i tl x e

const e
    

     (76) 

Let us present some estimates of the eigenfrequency 

and width of the resonator with the fundamental harmon-

ic. Use the values typical for the magnetosphere: 

Ap=1000 km/s, l⊥=1RE, L0=5RE, Ωch=0.67 s
−1

. We con-

sider oxygen ions as heavy ions, hence the ratio of densi-

ties ρh /ρp=1.6 [Yang et al., 2010]. For the azimuthal 

wave number m=10, the wave frequency ω≈1.7 rad/s (~ 

0.3 Hz). This value falls within the Pc1 wave frequency 

range. The width of the perpendicular resonator ΔL≈0 .3 

RE, its small dimensions agree with the results of observa-

tions of Pc1 waves in space [Mursula et al., 1994]. The 

structure of the fundamental harmonic calculated for 

these parameters is shown in Figure 9. Thus, we can as-

sume that some of the Pc1 pulsations observed can be 

interpreted as IIH waves trapped in the perpendicular 

resonator. 

The perpendicular resonator for IIH waves can be 

formed in the region of the local minimum of ΩPN(x
1
). 

This is possible near the plasmapause and in the region 

where there is a jump in plasma parameters and the 

function ρh has a local minimum. A wave in such a res-

onator will have predominantly poloidal polarization; 

such poloidal resonators are likely to be observed al-

ready [Yeoman et al., 2012; Mager et al., 2018; Polya-

kov, 2019].  

An important difference between IIH waves and 

Alfvén waves is the presence of a large component of 

 

Figure 9. Amplitude distribution of the fundamental har-

monic in the coordinates {x1, x3} [Mikhailova et al., 2020b] 
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the parallel magnetic field B . In a homogeneous plas-

ma, Alfvén waves do not have a parallel (compression) 

component, but it can be significant in a hot plasma 

with a curved magnetic field [Southwood, Saunders, 

1985; Klimushkin and Mager, 2015]. IIH waves, in turn, 

have a large compression component of the magnetic 

field even in a homogeneous plasma. Recall the system 

of equations for the magnetic field in terms of the poten-

tials Φ and Ψ: 

1,2 2,1

1,2 2,1 3 3 1,2 ,
g gic

B
g g

 
      

   

 (77) 

3
3 .

gic
B

g
  


 (78) 

From Equation (78), in view of (35), we can obtain an 

expression for B  for IIH waves: 

.B
c


   (79) 

Deriving Φ from B  and using (77), we can get the 

ratio of the parallel component of the magnetic field to 

the perpendicular one. For example, for the poloidal 

mode this ratio has the form 

2 2

ch

2

h

1
.

r

B L

B m A


  (80) 

This ratio depends on the azimuthal number m , but it is 

obvious that the parallel component of the field B  may 

be much larger than the perpendicular one. This effect 

has already been observed for IIH waves of the planet 

Mercury [Glassmeier et al., 2003]. 

 

4. REGION OF RESONATOR 

LOCALIZATION  

AT AN ARBITRARY 

PERPENDICULAR  

WAVE VECTOR 

It follows from the above that both ion-cyclotron 

and IIH waves feature the parallel resonator near the 

equator, although dimensions of the resonator, i.e. posi-

tion of the reflection points, are different. Mathematical-

ly, these waves differ in that they have different rela-

tionships between perpendicular and parallel wave vec-

tor components: in the former case ,k k  in the 

latter .k k  In fact, these are two special cases of 

the same wave. It is likely that in one spatial region the 

wave exhibits signs of an ion-cyclotron quasi-parallel 

wave, while in another region the wave is quasi-

perpendicular and has linear polarization. When excited 

by a monochromatic source, the wave can be trans-

formed from the ion cyclotron mode to the IIH one. Let 

us take a look at how the width of the wave localization 

region changes along the field line in this case [Mikhai-

lova, 2011]. 

Return to dispersion relation (5). If we consider it as 

a biquadratic equation with respect to ,k  the solution is 

written as 

1, 2

2 4
2 2 4 2

2 4

1
2 4 .

2
k k k

c c
  

  
      
 
 

 (81) 

Resting on the condition 0,k   we can find the reflec-

tion points bounding the resonator. We have 

2 22
2

2
.k

c






 



 (82) 

In the quasi-parallel approximation at 0k  , we 

obtain the parallel ion-cyclotron resonator whose prop-

erties are described in [Guglielmi et al., 2000, 2001; 

Guglielmi and Kangas, 2007]. In the opposite case, 

when ,k   we get the resonator for IIH waves 

[Klimushkin et al., 2010; Mikhailova et al., 2020a, b]. 

Since we deal with the range that is higher but of 

the same order of magnitude as the gyrofrequency of 

heavy ions and much lower than the gyrofrequency of 

protons ( ch cp    ), the elements of the permit-

tivity tensor can be written as 

22
p

2 2
p 2

h 2

ch

1 ,

1

Ac

A
A



 
 
   
  
  

   

 (83) 

2
cpce ch

2 2 2
e p 2

h 2

ch

,

1

c

A A
A

 
 

     
   
  

   

 (84) 

Then, function (82) will behave as shown in Figure 10. 

Function (82) is singular at ω0. With a wave frequency 

close to ω0, the wave is quasi-perpendicular. The frequency 

ω0 corresponds to the frequency of the IIH mode 

2 2 h
0 ch

p

1 .
 

    
  

  

This expression is the wave frequency at the reflection 

point for quasi-perpendicular IIH waves (47).  The fre-

quencies ω1 and ω2 can be found from 
2 2 .    These 

frequencies correspond to the frequencies of quasi-parallel  

 

Figure 10. Frequency dependence of the squared perpen-

dicular wave vector component 
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waves and determine reflection points for the ion-cyclotron 

resonator. 

Accordingly, dimensions of the resonator are also 

different. The coordinate of the reflection (turning) 

point changes depending on the wave vector. On differ-

ent magnetic shells, both the parallel width of the reso-

nator and its dimensions across the magnetic shells 

change. The half-width of the resonator along the field 

line is shown in Figure 11. Quasi-parallel ion-cyclotron 

waves are localized in the region of the resonator 

bounded by the points l1 and −l1 (not shown in the Fig-

ure), and the region of the equatorial resonator for qua-

si-perpendicular IIH waves is limited by the points l0 

and −l0 (omitted). Along the field line, the wave can be 

both quasi-parallel and quasi-perpendicular. The waves 

differ in frequency, so it would be more correct to speak 

of the mode conversion from ion-cyclotron to ion-ion 

hybrid mode. Wave polarization will also change from 

left-hand circular to linear. 

 
5. DISCUSSION 

AND CONCLUSION 

We have discussed the main theoretical models de-

scribing the structure of Pc1 magnetospheric waves. Each 

subsequent model supplemented and expanded the previ-

ous ones. Undoubtedly, a very important step in the study 

of Pc1 waves was the consideration of the presence of 

heavy ions in magnetospheric plasma because it turned 

out that the wave packet in this case is limited in space. 

The presence of heavy ions leads to localization of both 

ion cyclotron waves and IIH waves near the equator. Ion-

cyclotron waves have left-hand circular polarization, 

which means that the wave should have both radial Er and 

azimuthal Ea components of the electric field. According-

ly, the magnetic field also has both radial and azimuthal 

components [Guglielmi et al., 2000, 2001; Guglielmi, 

Potapov, 2012; Mikhailova, 2014]. This distinguishes 

ion-cyclotron waves from IIH waves. IIH waves are line-

arly polarized, their electric field oscillates either only in 

the radial direction (toroidal mode: Er >>Ea, Br <<Ba), or 

only in the azimuthal direction (poloidal mode: Er <<Ea, 

Br >>Ba) [Klimushkin et al., 2010; Mikhailova et al., 

2020a].  

On the other hand, the poloidal and toroidal IIH-

wave modes have properties similar to long-period Alf-

vén waves, which can also be poloidal and toroidal. 

However, while in the case of Alfvén waves the entire 

 

Figure 11. Half-width of the resonator as a function of the 

squared perpendicular wave vector component [Mikhailova, 

2011] 

field line oscillates, in the case of IIH waves only the 

equatorial part of the field line oscillates (see Figure 6). 

Like toroidal and poloidal Alfvén waves, IIH modes 

have different parallel structures and frequencies (polar-

ization splitting of the spectrum). The eigenfrequency of 

the poloidal IIH mode is lower than that of the toroidal 

one. The difference between the frequencies is small 

compared to their values. Due to the similarity between 

Alfvén waves and IIH modes, we can reasonably expect 

that the theory developed for Alfvén waves [Leonovich, 

Mazur, 1993, 1995 , 1997; Klimushkin, 1998; Klimush-

kin et al., 2004; Mager, Klimushkin, 2013] can be quali-

tatively applied to IIH waves. 

On two different magnetic shells (toroidal 1

TNx  and 

poloidal 1

PNx ), the wave frequency is determined by the 

expressions 

 1

T ,N x  (85) 

 1

P .N x   (86) 

Both coordinates 1

TNx  and 1

PNx  depend on the wave fre-

quency ω. Since P T ,N N    the poloidal surface is 

closer to Earth than the toroidal one:    1 1

P T .N Nx x    

In the main part of the magnetosphere, the toroidal 

and poloidal eigenfrequencies of Alfvén waves decrease 

with distance x
1
 from Earth and may have local minima 

and maxima. Such extrema exist in the regions of the 

plasmapause, ring current, and also if there are local 

plasma inhomogeneities (inhomogeneities in proton and 

heavy ion densities). Then the wave can be trapped in 

the region of the local minimum of the poloidal eigen-

frequency (IIH waves) and in the region of the local 

maximum of the poloidal eigenfrequency (Alfvén 

waves). Moreover, the wave can change its polarization 

from poloidal to toroidal when moving from the poloi-

dal surface to the toroidal one. There are already exper-

imental observations of such a polarization change for 

Alfvén waves [Leonovich et al., 2015]. 

The IIH waves have been observed in the magneto-

sphere of Earth and other planets [Kim et al., 2009, 

2015a, b, 2019]. These papers suggest the following 

mechanism for generating IIH waves: a fast magnetic 

sound propagates through magnetic shells until it reach-

es a resonance point due to the presence of ions of two 

types in the plasma. At the resonance point, due to the 

mode conversion, the IIH mode is generated. This pro-

cess is similar to the Alfvén resonance of magnetic field 

lines. In this case, a toroidal IIH wave is assumed to be 

generated, but Mikhailova et al. [2020a] have shown 

that the IIH wave may also be poloidal. In this regard, 

the question as to how poloidal IIH modes are generated 

remains open. Their generation is likely to be associated 

with the resonant interaction of the wave with high-energy 

charged particles of the ring current, as it occurs for poloi-

dal Alfvén waves. This issue is yet to be explored. 

In addition to the reflection points and the IIH reso-

nance points, so-called crossovers also appear. A cross-

over is a point at which frequencies of left-hand polar-

ized and right-hand polarized ion-cyclotron waves coin-
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cide [Rauch, Roux, 1982]. This frequency is determined 

from Expression (6) at η=0: 

p2 2 2h
cr ch cp

e e

.
n n

n n
      (87) 

The question about the role of the crossover in the 

generation of linearly polarized waves is widely dis-

cussed in the literature. For example, Kazakov and 

Fülöp [2013], having calculated the value ,k  at which 

the mode conversion becomes significant, argue that it 

always occurs near the crossover frequency ωcr. They 

suggest that it is possible to estimate the concentration 

of heavy ions in plasma, using the value of the crosso-

ver frequency at the IIH resonance point. However, the 

IIH resonance can be effective over a wide range of 

frequencies relative to the crossover frequency. For 

example, Mercury’s magnetosphere features the fre-

quencies cr cr0.5 0.9     [Kim et al., 2011]. Kim 

and Johnson stated that the crossover frequency cannot 

be used to determine the concentration of heavy ions in 

the magnetosphere [Kim, Johnson, 2014]. In more re-

cent works, using computer simulations, Kim et al. 

agreed that for waves with a wave vector directed along 

the magnetic field, mode conversion occurs exactly in 

the crossover region. Nonetheless, with the deviation of 

the wave vector from parallel (up to normal) when 

crossing the crossover, no change in the wave polariza-

tion occurs [Kim et al., 2015b; Kim and Johnson, 2016]. 

Therefore, the question about the role of the crossover 

in mode conversion and hence about its role in the wave 

energy transfer to Earth’s surface is still open. 

The resonator features a discrete set of eigenfre-

quencies. For Pc1 waves there are no observations that 

clearly demonstrate such a picture, just as there are no 

observations indicating the existence of the equatorial 

resonator. There are however observations of long-

period Pc4 waves trapped in the resonator and having a 

quasi-discrete spectrum [Mager et al., 2018]. Pc4 

waves are poloidal Alfvén waves, and we have pointed 

out more than once that their nature is similar to IIH 

modes. Therefore, the observation of the resonator for 

Pc4 waves inspires hope that the resonator for IIH 

waves will be discovered sooner or later. 

Finally, Figure 4 shows that in addition to the 

transparent region there are two more transparent re-

gions at the equator, which are located near the iono-

sphere of the Southern and Northern hemispheres [Mi-

khailova, 2011]. These regions are separated from the 

equatorial resonator by sufficiently wide opaque re-

gions, where 2 0,k   and do not have a significant 

effect on modes in the resonator. Should the opaque 

regions be narrow, part of the wave energy may leak 

out of the resonator due to the tunnel effect. In this 

case, eigenfrequencies in the equatorial resonator will 

differ from those we calculated and a slight correction 

will be required. 

The work was financially supported by the Ministry of 
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