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Abstract

The spatial structure of fast magnetosonic eigenoscillations of an axisymmetric magnetosphere is
investigated theoretically. It is shown that transparent regions of the eigenmodes where the bulk
of the fast magnetosonic oscillation energy is concentrated lie near the equatorial plane. The
transparent regions have a narrow channel from the magnetosphere to the solar wind near the
equatorial plane. This enables the magnetosonic waves to penetrate from the solar wind deep
into the magnetosphere, as well as some of the energy of intramagnetospheric magnetosonic
oscillations to escape to the solar wind. Some of the eigenmodes have an isolated portion of the
transparent region above the plasmapause that forms a well-known magnetospheric cavity for
fast magnetosonic waves.
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1. Introduction

The intention of this paper is to carry out a the-
oretical investigation into the spatial structure of
magnetosonic eigenoscillations of an axisymmetric
magnetosphere. The axial symmetry assumes that
the geomagnetic field and plasma are inhomogeneous
both along magnetic field lines and across magnetic
shells. Geomagnetic field lines are curved and tra-
verse the ionosphere in the Northern and Southern
Hemispheres (the dipole magnetic field being a typi-
cal example). It is further assumed that the magne-
topause is a sufficiently sharp transition layer, inside
of which plasma parameters vary from values charac-
teristic for the magnetosphere to those typical of the
solar wind. Magnetosonic oscillations can overcome
such a boundary and, with a certain effectiveness,
penetrate from the solar wind deep into the magne-
tosphere and back. For the magnetospheric plasma a
sufficiently realistic model is used in this paper, which
assumes an abrupt change in plasma density at the
plasmapause.

Three branches of MHD oscillations (Alfven waves,
and fast and slow magnetosound) exist in the plasma
embedded in a magnetic field. Oscillations of the
three types are well understood theoretically in a
homogeneous plasma. This paper is based on us-
ing a ”cold” plasma approximation (β = 0). This
means that slow magnetosonic oscillations are not as-
sumed by the magnetospheric model under consider-
ation. The only mode of magnetosonic oscillations
in such a system is fast magnetosound. Therefore
it is fast (compressional Alfven) waves that will be
meant by the term magnetosonic oscillations in the
discussion to follow. The term Alfven waves will be
used to designate transverse (shear) Alfven waves. In
an inhomogeneous plasma, only Alfven waves may be
thought of as being known in sufficient detail. In an
axisymmetric system any monochromatic oscillations
can be expanded into eigenharmonics of the form
exp(imφ − iωt), where φ is the azimuthal angle, m
is the azimuthal wave number, and ω is the wave fre-
quency. For Alfven waves with small azimuthal wave
numbers (m ∼ 1) the theory of field line resonance
has been developed to date to describe the structure
of the waves that are excited at resonance magnetic
shells by fast magnetosound that enters the magneto-
sphere from outside.

Originally, this theory was developed for a one-
dimensionally inhomogeneous model of the magne-
tosphere assuming the plasma to be inhomogeneous

across straight geomagnetic field lines [Radoski, 1974;
Southwood, 1974; Chen and Hasegawa, 1974]. Sub-
sequently, the theory was generalized for magneto-
spheric models that assume the plasma to be inho-
mogeneous both in one of the transverse coordinates
and in longitudinal coordinate. In papers of Kivelson
and Southwood [1986] and Southwood and Kivelson
[1986], a box model with straight field lines was used,
while in papers of Leonovich and Mazur [1989], Chen
and Cowley [1989], and Wright [1992], an axisym-
metric model was employed with curved geomagnetic
(dipole-type) field lines.

For oscillations with large azimuthal wave numbers
(m À 1), there also is a theory describing their spatial
structure in an axisymmetric model of the magneto-
sphere. Unlike the oscillations with small m, mag-
netosonic oscillations with m À 1 cannot effectively
penetrate the magnetosphere from outside. In this
connection, Alfven oscillations with m À 1 require
that their source be located on the same field lines
where they are generated. In the outer magneto-
sphere, which is filled with warm plasma, the possi-
bility exists of slow magnetosound propagating along
geomagnetic field lines. This provides a possibility for
the resonance interaction of slow magnetosonic and
Alfven oscillations [Southwood and Saunders, 1985;
Walker, 1987]. Leonovich and Mazur [1993, 1997]
used, as the source of such Alfven oscillations, ex-
ternal currents in the conducting ionospheric layer.

Magnetosonic oscillations in inhomogeneous plas-
mas are significantly more poorly understood when
compared to Alfven oscillations, which is due to their
more complicated dispersion. Noteworthy are papers
of Gul’elmi [1970, 1972], who considered the pos-
sibility for magnetosonic oscillations to be trapped
within the magnetospheric resonator formed by a non-
monotonic plasma density gradient near the plasma-
pause. Kivelson and Southwood [1986] and Southwood
and Kivelson [1986] investigated analytically, in terms
of the one-dimensionally inhomogeneous magneto-
spheric model (box model), the structure of magne-
tosonic eigenoscillations of the magnetosphere. When
passing to more realistic two-dimensionally inhomoge-
neous models of the magnetosphere with curved ge-
omagnetic field lines, an analytical investigation of
magnetosonic oscillations was not practicable because
of emerging mathematical difficulties. In this connec-
tion, numerical simulation methods had to be used
to investigate magnetosonic oscillations in terms of
such models of the magnetosphere. In papers of Lee
and Lysak [1989, 1991] and Lee [1996] on the basis
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of using a numerical simulation it was shown that
the structure of magnetosonic oscillations in a dipole
model of the magnetosphere differs essentially from
that obtained in the box model with straight field
lines. Specifically, it was shown that most of the
energy of these oscillations is concentrated near the
equatorial plane and decreases rapidly with distance
from it. This inference is also confirmed by observa-
tional evidence [Yumoto et al., 1985; Cheng and Lin,
1987; Engebretson et al., 1988].

Yet a numerical simulation fails to answer all ques-
tions arising in the study of magnetosonic oscillations.
This method makes it possible to construct a total
field of MHD oscillations inside the magnetosphere
from given initial and boundary conditions. Unfortu-
nately, while it answers the question ”What?”, it does
not answer the question ”Why?”. In other words, it
gives no way of investigating the inner structure of
separate magnetosonic eigenmodes that comprise a
total field of magnetosonic oscillations of the mag-
netosphere. In this context, a numerical simulation
should be regarded as a numerical experiment. How-
ever, research into the structure of separate modes
of magnetosonic oscillations is of fundamental im-
portance in gaining a more penetrating insight into
the distribution properties of these oscillations in the
magnetosphere and their interaction with other oscil-
lation modes.

This paper is based on using a combined method
(analytical + numerical investigation), enabling us to
study the structure of individual oscillation modes.
This enables us to appreciate results from previous
work where numerical simulation methods were used.
In addition, since we are using a sufficiently realis-
tic axisymmetric model of the magnetosphere, we are
able to carry out this investigation not only inside the
magnetosphere but extend it to the solar wind region.

This paper is organized as follows. Section 2
presents the coordinate system, and equations are ob-
tained, which describe monochromatic MHD oscilla-
tions of a three-dimensionally inhomogeneous mag-
netosphere. In section 3, we obtain the solutions for
the equation describing magnetosonic oscillations of
an axisymmetric magnetosphere within the WKB ap-
proximation. Sections 4 and 5 give an outline of the
model of the medium and present a numerical inves-
tigation of the magnetosonic mode structure in longi-
tudinal coordinate. The oscillation structure in radial
coordinate is described in the WKB approximation in
this case. Main results of this study are summarized
in the conclusions.

2. The Coordinate System and
Equations
of MHD Oscillations

We use a curvilinear orthogonal coordinate system
(x1, x2, x3) tied to geomagnetic field lines (see Figure
1). In this coordinate system the surface x1 = const
coincides with the magnetic shell, the coordinate x2

specifies a field line on a given magnetic shell, and x3

varies along the field line. In an axisymmetric magne-
tosphere the azimuthal angle φ and the radius of the
magnetic shell are conveniently used as the coordinate
x2 and x1, respectively. After that, the coordinate x3

is fixed by requiring the orthogonality of the coordi-
nate system. The square of a length element in this
coordinate system has the form

ds2 = g1(dx1)2 + g2(dx2)2 + g3(dx3)2,

where gi(i = 1, 2, 3) are diagonal components of the
metric tensor. When constructing the theory of MHD
oscillations in the magnetosphere with curved geo-
magnetic field lines, including calculations within the
WKB approximation, we take advantage of general-
ized curvilinear coordinates (x1, x2, x3) without con-
cretizing their selection. On the other hand, numeri-
cal calculations, performed in sections 4 and 5, use a
dipole model of the geomagnetic field, and particular
components are specified for the metric tensor com-
ponents. In the perfect MHD approximation a closed
system of equations describing MHD oscillations is of
the form

%0∇tv = [[∇×B]×B0]/4π, (1a)

∇tB = [∇× [v ×B0]], (1b)

where ∇t = ∂/∂t and %0 and B0 are, respectively,
the unperturbed plasma density and the undisturbed
magnetic field. It is also assumed that the unper-
turbed plasma velocity v0 = 0. The perturbed elec-
tric field is related to the perturbed velocity by the
relation

E = −[v ×B0]/c. (2)

For subsequent calculations it is convenient to use
the covariant vector components vi, Bi and Ei (i =
1, 2, 3), which are related to the usual physical com-
ponents of the vectors v̄i, B̄i, and Ēi by the relations
vi =

√
giv̄i, Bi =

√
giB̄i, and Ei =

√
giĒi. From

(1a) and (2) it follows that v3 = 0 and E3 = 0. For
the other two components of the perturbed velocity
vector, from (2) we obtain

v1 =
cE2

B0p
, v2 = −cE1p

B0
, (3)
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where p =
√

g2/g1. In all subsequent calculations we
will be concerned with monochromatic oscillations of
the form exp(−iωt), where ω is the oscillation fre-
quency. Then, substitution of (3) into (1a) gives

B1 = i
c

ω

p−1

√
g3
∇3E2, B2 = −i

c

ω

p√
g3
∇3E1,

B3 = −i
c

ω

g3√
g

[∇1E2 −∇2E1] , (4)

where ∇i ≡ ∂/∂xi (i = 1, 2, 3), g = g1g2g3. Sub-
stituting the relations (3) and (4) into (1a) gives a
system of two coupled equations:

L̂P E2 = − 1√
g3
∇1

g3√
g
(∇1E2 −∇2E1),

(5)

L̂T E1 =
1√
g3
∇2

g3√
g
(∇1E2 −∇2E1),

where

L̂P =
1√
g3
∇3

p−1

√
g3
∇3 +

ω2

pA2
,

L̂T =
1√
g3
∇3

p√
g3
∇3 +

pω2

A2
,

are the poloidal and toroidal operators [see Leonovich
and Mazur, 1993], with A being the Alfven veloc-
ity. Let the two-dimensional vector E⊥ = (E1, E2)
be expanded in terms of the orthogonal vectors ∇⊥ϕ
and [∇⊥×ψ] (in this case the vector ψ has only one
nonzero longitudinal component ψ =(0, 0, ψ))

E⊥ = −∇⊥ϕ + [∇⊥ ×ψ].

Such an expansion in respect of MHD oscillations in
the magnetosphere was used in papers of Klimushkin
[1994] and Fedorov et al. [1998]. It is evident from
this that ϕ represents a usual electric potential of the
MHD oscillation field, and ψ is a vector potential of
this field. They showed that the potential compo-
nent ϕ describes the Alfven oscillation field, and the
vortical component ψ describes the field of magne-
tosonic oscillations of the magnetosphere. Substitu-
tion of these relations into (5) gives the following sys-
tem of coupled equations for ϕ and ψ:

√
g3L̂P (∇2ϕ +

g2√
g
∇1ψ) =

−∇1
g3√
g
(∇1

g2√
g
∇1ψ +∇2

g1√
g
∇2ψ), (6a)

√
g3L̂T (∇1ϕ− g1√

g
∇2ψ) =

∇2
g3√
g
(∇1

g2√
g
∇1ψ +∇2

g1√
g
∇2ψ). (6b)

Upon differentiating (6a) with respect to x2 and (6b)
with respect to x1 and combining the resulting equa-
tions, we obtain

∇1
√

g3L̂T∇1ϕ +∇2
√

g3L̂P∇2ϕ =

∇1
√

g3L̂T
g1√
g
∇2ψ −∇2

√
g3L̂P

g2√
g
∇1ψ. (7)

Equations (6b) and (7) form a closed (with respect to
ϕ and ψ ) system of equations describing monochro-
matic MHD oscillations of a three-dimensionally in-
homogeneous magnetosphere.

In this paper we shall restrict our consideration to
the oscillations of an axisymmetric magnetosphere,
where they can be resolved into azimuthal compo-
nents of the form exp(ik2x

2) (if x2 = φ is the az-
imuthal angle, then k2 = m is the azimuthal wave
number). In this case the system of equation for a
separate azimuthal harmonic may be represented as

(∇1
√

g3L̂T∇1 − k2
2

√
g3L̂P )ϕ =

ik2(∇1
√

g3L̂T
g1√
g
ψ −√g3L̂P

g2√
g
∇1ψ), (8a)

∇1
g2√
g
∇1ψ − k2

2

g1√
g
ψ +

√
g

g3
L̂T

g1√
g
ψ =

− i
k2

√
g

g3
L̂T∇1ϕ. (8b)

The left-hand sides of (8a) and (8b) involve operators
which in the case of a homogeneous plasma give, re-
spectively, dispersion relations for Alfven (ω = k‖A)
and fast magnetosonic (ω = kA) waves. For Alfven
waves we have (ψ = 0, ϕ 6= 0), and hence they rep-
resent purely potential-field oscillations. For magne-
tosonic waves, on the contrary, (ψ 6= 0, ϕ = 0), and
they are purely vortical. In the case of an inhomoge-
neous plasma the Alfvenic and magnetosonic oscilla-
tions can be described, as before, in terms of the scalar
potential ϕ and the vector potential ψ, respectively.
The interaction of these waves in a inhomogeneous
plasma is described by the right-hand sides of these
equations.
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3.Structure of Magnetosonic
Eigenmodes in the WKB
Approximation

From the solution of the problem of Alfven oscilla-
tions of the magnetosphere it is known that their in-
teraction with magnetosonic waves occurs in a narrow
vicinity of resonance magnetic shells where the mag-
netosonic wave frequency coincides with the eigenfre-
quency of the Alfven oscillations of the magnetic shell.
Far from these resonance shells, the mode interac-
tion may be neglected, and the homogeneous equation
(8b) can be used to investigate the structure of mag-
netosonic oscillations. This can be done if the Alfven
oscillations are strongly damped ones. Furthermore,
it will be assumed that the wavelength of the mag-
netosonic oscillations under consideration in the di-
rection across the magnetic shells is much shorter
than the characteristic inhomogeneity scale of mag-
netospheric plasma. Such a treatment is also qualita-
tively applicable for investigating oscillations whose
wavelength is of the order of the magnetospheric in-
homogeneity. Alternatively, oscillations with the op-
posite ratio of the wavelength to the inhomogeneity
scale inside the magnetosphere are nonexistent. Such
an approach makes it possible to seek the solution of
(8b) in the form

ψ = H(x1, x3) exp[i(Φ̃(x1) + k2x
2 − ωt)], (9)

where Φ̃ is a large quasi-classical phase and H(x1, x3)
is a function describing the oscillation structure in the
direction along geomagnetic field lines.

Substitution of this equation into the homogeneous
equation (8b) in the zero order of perturbation theory
gives an equation for the function H(x1, x3):

∇3
p√
g3
∇3

g1√
g
H +

(
ω2

A2
− k2

⊥

)
H = 0, (10)

where k2
⊥ = (k2

1/g1+k2
2/g2) is the square of the trans-

verse wave vector, with k1 = ∇1Φ̃. Equation (10)
should be complemented by boundary conditions on
the ionosphere. As will be shown below, the iono-
sphere lies deep inside the opaque region for the mag-
netosonic waves under consideration. In this con-
nection the ideal ionospheric conductivity assump-
tion can be considered a sufficiently good approxima-
tion. Hence it will be assumed that on the ionosphere
E1 = E2 = 0 , which yields

H|x3=x3
±

= 0, (11)

where x3
± represents points at which a field line in-

tersects the ionosphere, respectively, in the Northern
and Southern Hemispheres. The problem in (10), (11)
is an eigenvalue problem for the square of the wave
number k2

1. The solution of this problem is a set
of eigenfunctions Hn (where n = 0, 1, 2, 3, ..., is the
eigenmode number) and a corresponding set of eigen-
values k2

1n. Any perturbation of the magnetosound
field in the magnetosphere can be expended with re-
spect to a full set of eigenfunctions.

To imagine qualitative the form of solutions for
eigenmodes, we use the WKB approximation in lon-
gitudinal coordinate x3; i.e., we let the solution to be
represented as

H = exp[iΘ(x1, x3)],

where Θ(x1, x3) is a quasi-classical phase. Substitut-
ing this solution into (10) gives the equation for the
phase Θ(x1, x3):

−(Θ′)2 + iΘ′′ + iΘ′
(

2∇3 ln
g1√
g

+∇3 ln
g2√
g

)

+g3∇3
g2√
g
∇3

g1√
g

+ k2
3 = 0, (12)

with k2
3 = g3

(
ω2/A2 − k2

⊥
)
. In the zero order of per-

turbation theory we have Θ′0 = ±k3; hence

Θ0 = ±
∫ x3

x3
−

k3dx3.

In the first order we obtain

Θ1 =
i
2

ln
( |k3|g1

g3
√

g

)
.

Thus a general WKB solution of (10) may be repre-
sented as

H = f [A exp(iΘ0) + B exp(−iΘ0)], (13)

where f ≡ √
g3
√

g/|k3|g1. It make sense to carry out
a further investigation of the resulting equation by
specifying a particular model of the medium.

4.Model of the Medium and Eigenmode
Structure as a WKB Approximation

As is apparent from the general form of (13), its
behavior is governed by the k3 = ±

√
g3(Φ− k2

1n)/g1,
where

Φ = g1

(
ω2

A2
− m2

g2

)
.
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In those magnetospheric regions where Φ > k2
1n the

solution is a periodic function, and where Φ < k2
1n

it consists of the sum of the decreasing and increas-
ing exponentials. Hence the form of the solution is
determined by the behavior of the function Φ. To
investigate this function, we specify a model of the
medium as follows. In this and subsequent sections
we are using a dipole model of the geomagnetic field.
We put x1 = a, where a is the equatorial radius of a
field line, x2 = φ is the azimuthal angle, and as an
longitudinal coordinate x3 we use the angle θ between
a point on a given field line and the equatorial plane
(see Figure 1). Of course, they are not orthogonal
ones. The length element along the field line is given
by

dl =
√

g3dx3 = aβ(θ) cos θdθ,

where β(θ) =
√

1 + 3 sin2 θ and a is the equatorial ra-
dius of the field line under consideration. Transverse
components of the metric tensor in this coordinate
system have the form

g1 = cos6 θ/β(θ), g2 = a2 cos6 θ.

It is also assumed that k2 = m. The latitude where
the field line intersects the ionosphere is defined as

θ∗ = arccos
√

ri/a,

where ri is the radius of the ionosphere.
Another important element of the model of the

medium is the Alfven velocity A. For this we use
the following analytical model:

A =
Am + Asw

2
− Am −Asw

2
tanh

a cos2 θ − am

∆m
,

where Asw is the value of the Alfven velocity in the
solar wind and ∆m is the thickness of the magne-
topause. It will be assumed throughout this paper
that the magnetopause represents a sphere of radius
am, although the model presented allows for speci-
fying the magnetopause in any axisymmetric form.
The function Am(a, θ) describes a two-dimensional
distribution of the Alfven velocity inside the magneto-
sphere. For this we use the following representation:

Am =
(

β(θ)
cos6 θ

)ν [
1
2

(
A1

(a1

a

)µ1

+ A2

(a2

a

)µ2
)

− 1
2

(
A1

(a1

a

)µ1 −A2

(a2

a

)µ2
)

tanh
a− ap

∆p

]
,

where A1 and A2, respectively, are the characteris-
tic values of the Alfven velocity in the inner and

outer magnetosphere, and ap and ∆p are the equa-
torial radius and the characteristic thickness of the
plasmapause, respectively. The first cofactor in this
relation describes the variation of the Alfven velocity
along geomagnetic field lines. This model at the fol-
lowing values of the parameters: A1 = 250 km/s,
A2 = 500 km/s, Asw = 50 km/s, am = 10 RE

(RE= 6370 km - radius of the Earth), ∆m = 0.5 RE ,
ap = 4 RE , ∆p = 0.5 RE , a1 = 2.5 RE , a2 = 5 RE ,
µ1 = 1.5, µ2 = 1, ν = 0.25 describes sufficiently well
the Alfven velocity distribution in the dayside part
of the moderately disturbed magnetosphere [see Hor-
witz et al., 1986; Comfort, 1986]. Figure 2 presents
the equatorial distribution of A(a, 0) across the mag-
netic shells. Figure 2 also plots the main period of
Alfven eigenoscillations of the magnetosphere

tA = 2
∫ x3

+

x3
−

√
g3dx3

A(x1, x3)

as a function of the magnetic shell parameter L =
a/RE (McIlwain parameter).

Figure 3 presents the dependence of the function
Φ(a, θ) on the longitudinal coordinate x3 (angle θ)
for four different values of the parameter m on the
magnetic shell L = 6.6. As follows from boundary
conditions on the ionosphere (11), the solutions Hn

contain at least one interval on the field line where
Φ > k2

1n. Figure 3 portrays four possible variants of
the difference Φ−k2

1n (I, II, III, IV), corresponding to
four different types of solution for eigenmodes. The
simplest solution is of type I, for which Φ > k2

1n along
the entire field line. The solution in this case has the
form

Hn = Cf sin

(∫ x3

x3
−

k′3dx3′
)

, (14)

where C is an arbitrary constant, k′3 ≡ k3(x1, x3′),
and the eigenvalue condition is satisfied:

∫ x3
+

x3
−

k3dx3 = π(n + 1),

(n=0,1,2,...), which determines the magnitude of the
eigenvalue of k2

1n. Type II solutions in the WKB ap-
proximation have the form

Hn = Cf





sinh
(∫ x3

x3
−
|k′3|dx3′

)
, x3

− ≤ x3 < x3
1,

eψ̄ sin
(∫ x3

x3
1

k′3dx3′ + π
4

)
, x3

1 < x3 < x3
2,

∓ sinh
(∫ x3

x3
2
|k′3|dx3′ − ψ̄

)
, x3

2 < x3 ≤ x3
+,

(15)



7

where two different signs minus/plus correspond to
even and odd n in the eigenvalue condition

∫ x3
2

x3
1

k3dx3 = π(n +
1
2
).

The coordinates x3
1, x

3
2 are turning points, in which

k2
1n = Φ(x1, x3

1,2). Besides, the following designation
is introduced:

ψ̄ =
∫ x3

1

x3
−

|k3|dx3 =
∫ x3

+

x3
2

|k3|dx3.

The expressions for type III and IV WKB solutions
are more unwieldy and are not given here, although
their qualitative behavior is sufficiently evident from
the two examples given above.

5.Numerical Solution of the
Longitudinal Problem and Discussion
of Results

Consider results from a numerical integration of
(10) for the model of the medium described in the
section 4. Figure 4 presents four first eigenfunctions
Hn on the magnetic shell L = 6.6, normalized by the
condition

∮
H2

ndx3 ≡ 2
∫ x3

+

x3
−

H2
ndx3 = 1.

These calculations used the following values of the
wave parameters: m = 1, f = ω/2π = 0.025 Hz is the
frequency equal to the second harmonic frequency of
Alfven eigenoscillations on the magnetic shell L = 6.6.
In Figures 4-8 , the heavy line shows functions corre-
sponding to the eigenmode (n = 0,m = 1, f = f2 =
0.025Hz) which we shall choose as a reference mode
and with respect to which we shall consider all other
modes. The solutions H1, H2 represent solutions of
the form (15) (type II in Figure 3), i.e., are periodic
functions near the equatorial plane and decrease ex-
ponentially in amplitude as one approaches the iono-
sphere. The solutions H3, H4 are solutions in (14)
(type I in Figure 3), having the form of periodic func-
tions along the entire field line.

Figure 5 presents the dependencies of eigenvalues
of k2

1n on parameters of the magnetic shell L for
the five first eigenmodes (n=0,1,2,3,4). Figure 5b
presents the dependence k2

1n(L) over the entire range
of the shells under consideration 1.5 ≤ L ≤ 15, and
Figure 5a shows the dependence k2

1n(L) inside the

magnetosphere 1.5 ≤ L ≤ 10. It is evident that
for the reference harmonic (n = 0,m = 1, f = f2),
k2
10 > 0 when L >2.2 , and when L <2.2, - k2

10 < 0.
For the second harmonic the inequality k2

11 > 0 holds
in the outer magnetosphere when L >6.1 and under
the plasmapause when 3.1< L <3.6. For harmonics
n > 1, k2

1n > 0 in the outer magnetosphere only.
Let us determine the transparent region for the

magnetosound modes under consideration by requir-
ing that the three inequalities k2

1n > 0, k2
2 > 0, and

k2
3n > 0 hold at a time. This means that in the re-

gion under consideration, the magnetosound wave can
propagate freely in any direction. Figure 6 presents
the boundaries of transparent regions for the five
eigenmodes considered above. The reference mode
boundary is nearest the ionosphere. At the same time,
this mode is most localized near the equatorial plane.
For the second eigenmode (n = 1,m = 1, f = f2)
the inner boundary of the transparent region lies far-
ther away from the ionosphere, and this region itself
consists of two unassociated regions: the outer region
when L >6.1 and inner when 3.1< L <3.6. This sec-
ond transparent region represents a cavity for magne-
tosonic oscillations that was originally described by
Gul’elmi [1970, 1972] and investigated in later work
[Zhu and Kivelson, 1989; Lee, 1996; Fedorov et al.,
1998].

For n=2,3,4 harmonics the inner boundaries of
transparent regions recede farther away from the iono-
sphere while the lateral boundaries move away from
the equator. It is evident that all oscillation modes
have a narrow channel for the escape from the magne-
tosphere to the solar wind. This permits the magne-
tosonic oscillations to penetrate from the solar wind
region deep into the magnetosphere. The source for
such oscillations can be provided by, for example, an
instability of solar wind protons reflected from the
bow shock wave front [Potapov, 1974; Gul’elmi, 1974].
Note that the form of transparent regions outside
the magnetosphere can differ from that obtained in
this paper because of the presence of the solar wind
plasma in motion. It may be anticipated, however,
that this difference at a not very large distance from
the magnetosphere is not too large, because it is near
the equator where the stagnation point lies, where the
solar wind velocity vsw = 0. The size of transparent
regions in the magnetosphere decrease with increasing
n. Hence it can be said with confidence that only a
few fundamental eigenmodes of magnetosonic oscilla-
tions can penetrate the magnetosphere at fixed values
of m and ω.
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Figure 7 presents the boundaries of transparent re-
gions of the mode (n = 0,m = 1) for different values
of their frequency f = f1 = f2/2; f = f2; f = f3 =
3f2/2. Figure 8 shows the boundaries of transparent
regions for the eigenmode (n = 0, f = f2) at three
different azimuthal wave numbers m=1,2,3. The dis-
tance of these boundaries from the equator in the
three cases is virtually the same, and the inner bound-
ary approaches the magnetopause with increasing m.
For the m = 2 harmonic the transparent region con-
sists of two parts: the inner part forming the cavity
under the plasmapause, and the outer part that is
open to the solar wind. Such a configuration of the
transparent regions agrees nicely with results of a nu-
merical simulation reported by Lee and Lysak [1994].
Figures 4 and 5 from the cited reference present the
mean amplitude distribution of monochromatic mag-
netosonic oscillations in the dipole magnetosphere. It
is evident from Figures 4 and 5 that the shape of
the regions corresponding to a maximum oscillation
amplitude almost faithfully patterns after the trans-
parent regions calculated in this paper. Furthermore,
there is ample observational evidence [Yumoto et al.,
1985; Engebretson et al., 1987, 1988] acquired by
geostationary satellites, suggesting that the magne-
tosonic oscillations are localized in the magnetosphere
near the geomagnetic equator. This is also consistent
with the conclusions of the theory outlined in this
paper that the transparent regions of magnetosonic
oscillations lie near the equatorial surface.

6. Conclusions

In this paper we have solved the problem of the
spatial structure of magnetosonic eigenoscillations of
the axisymmetric magnetosphere. The eigenmode
structure in the direction along geomagnetic field lines
and the value of the radial component of the wave vec-
tor k1n to the WKB approximation have been deter-
mined. Main results of this study may be summarized
as follows.

1. The system of equations (6b) and (7) were ob-
tained to describe MHD oscillations of a three-dimen-
sionally inhomogeneous magnetosphere in the perfect
MHD approximation.

2. The spatial structure of magnetosonic eigen-
modes of an axisymmetric magnetosphere was quali-
tatively investigated in the WKB approximation.

3. The problem of the longitudinal structure of
magnetosonic oscillations was solved numerically in
terms of a sufficiently realistic axisymmetric model

of the magnetosphere with a dipole geomagnetic field
and Alfven velocity distribution, taking into account
abrupt changes of its value on the plasmapause and
magnetopause.

4. We have investigated the boundary configura-
tion of transparent regions of eigenmodes depending
on the frequency of the wave ω, the longitudinal har-
monic number n, and azimuthal wave number m. It
has been shown that these transparent regions are
open into the solar wind near the geomagnetic equa-
tor. This makes it possible for the penetration of mag-
netosound waves from the solar wind into the mag-
netosphere and, conversely, for the escape of some of
the energy of intramagnetospheric magnetosonic os-
cillations to the solar wind.

5. Under certain conditions the transparent re-
gion for magnetosonic eigenmodes produces under
the plasmapause a closed surface bounding the well-
known (from previous works) cavity for magnetosound
waves.
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Figure 1. Curvilinear orthogonal coordinate system (x1, x2, x3) and dipole-type coordinate system (a, φ, θ).
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Figure 2. Equatorial dependence of the Alfven velocity model A(L, 0) used in this paper, on the parameter
of the magnetic shell L, and the corresponding dependence of the main period of Alfven eigenoscillations of the
magnetosphere tA(L).
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Figure 3. Dependence of the function Φ(L, θ) on geomagnetic latitude and azimuthal wave number m on the
magnetic shell L = 6.6. Curve 1 corresponds to m=1; curve 2, - m=5; curve 3, - m=7; and curve 4, - m=10.
Also shown are four possible differences Φ(a, θ) − k2

1n corresponding to four different variants of the longitudinal
structure of the magnetosound eigenmode.
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Figure 4. Longitudinal structure of the first four magnetosound eigenmodes of the axisymmetric magnetosphere
on the magnetic shell L = 6.6.
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Figure 5. Dependence of the square of the quasi-classical wave vector k2
1n for the first five magnetosound eigen-

modes (n=0,1,2,3,4), on the parameter of the magnetic shell L: (a) k2
1n(L) distribution inside the magnetosphere,

and (b) k2
1n(L) distribution in the range of magnetic shells 1.5< L <15, including the solar wind region.
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Figure 6. Boundaries of transparent regions in the meridional plane of the axisymmetric magnetosphere for the
first five magnetosound eigenmodes (n=0,1,2,3,4) at a fixed frequency ω = 2πf2 and azimuthal wave number m=1.
Dashed lines show arbitrary boundaries of the plasmapause and magnetopause.
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Figure 7. Boundaries of transparent regons in the meridional plane of the axisymmetric magnetosphere for the
magnetosound eigenmode (n = 0,m = 1) at different values of the frequency (1) f = f1, (2) f = f2, and (3) f = f3.
Dashed lines show arbitrary boundaries of the plasmapause and magnetopause.

0 4 8 12 16
L

1
2

3

Figure 8. Boundaries of transparent regions in the meridional plane of the axisymmetric magnetosphere for the
magnetosound eigenmode (n = 0, f = f2) at different values of the azimuthal wave number (1) m=1, (2) m=2,
and (3) m=3. Dashed lines show arbitrary boundaries of the plasmapause and magnetopause.


