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Nonlinear dynamo effects for an inhomogeneously turbulent rotating fluid
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The mean electromotive force and the turbulent stress tensor are derived for an inhomogeneously turbulent conducting fluid under global rotation.
The influence of the mean magnetic field on microscale turbulence is taken into account. As a result, the coefficients of magnetic field generation
and sources of differential rotation are now functions of the magnetic field ; i.e. nonlinear effects are involved. Only nonlinear corrections quadratic
in the magnetic field are included (weak nonlinearity). These corrections reduce the a-effect of the «Q2-dynamo for both slow and rapid rotation.
Some astrophysical implications are discussed. It is suggested that observed torsional oscillations of the Sun may be brought about by cyclic varia-
tions of the magnetic corrections to the A-effect of differential rotation over the solar activity cycle.

Im Rahmen der Magnetohydrodynamik der mittleren Felder werden die turbulenzbedingte elektromotorische Kraft und der turbulenzbedingte
Spannungstensor fiir eine leitende Fliissigkeit mit inhomogener Turbulenz auf einem rotierenden Korper berechnet. Dabei wird der EinfluB des
Magnetfeldes auf der Turbulenz beriicksichtigt. So erscheinen nichtlineare Effekte bei den Vorgingen, die fiir das Vorhandensein von Magnetfeld
und differentieller Rotation verantwortlich sind ; die dafiir maBgebenden Koeffizienten sind Funktionen des Magnetfeldes. Die Nichtlinearititen
werden bis zur zweiten Ordnung im mittleren Magnetfeld (d. h. als schwache Nichtlinearititen) erfaBt. Der a-Effekt beim a©-Dynamo erleidet
sowohl bei langsamer als auch bei rascher Rotation eine Schwiachung durch das Magnetfeld. Es werden einige astrophysikalische Anwendungen der
Ergebnisse erdrtert. Insbesondere wird auf die Mdglichkeit hingewiesen, daB die bei der Sonne beobachteten Torsionsschwingungen als Folge des
im Aktivititszyklus schwankenden magnetischen Einflusses auf den fiir die differentielle Rotation maBgebenden A-Effekt erscheinen.
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1. Introduction

The theory of the hydromagnetic dynamo is being developed mainly in the linear approximation. In other words, the hydro-
magnetic motions are supposed given and independent of the magnetic field. Such a-kinematic approach is quite justifiable
in the case where the magnetic field is small enough, and Lorentz forces do not substantially affect the flow of the conducting
fluid. However, if dynamo amplification of the magnetic field occurs, the field grows exponentially and a nonlinear regime
is rapidly reached. Hence, nonlinear effects must play a role in natural conditions, in particular on the Sun.

The kinematic theory, though with some substantial problems unsolved, is regarded now as being understood in its prin-
cipal features, which was indicated by the appearance of a series of monographs (MOFFATT 1978 ; PARKER 1979 ; KRAUSE
and RADLER 1980; VAINSHTEIN et al. 1980) cataloging its achievements. The natural next step is to attack nonlinear problems.
Some progress was also made in this field (c.f. ROBERTS and SOWARD 1975; POUQUET et al. 1976 ; KLEEORIN and RUZMAIKIN
1982).

The most substantial ingradient of the theory of turbulent dynamo is the so-called a-effect (STEENBECK et al. 1966) —
generation of a mean electromotive force proportional to the mean magnetic field. That is probably why nonlinear treatments
were concentrated on the derivation of magnetic corrections to the a-effect. ROBERTS and SOWARD (1975) considered the
nonlinear a-effect for inhomogeneously turbulent slowly rotating fluid. It is believed that it is the rotational influence on tur-
bulence which brings about the a-effect under natural conditions. The nonlinear a-effect for arbitrary rotational velocities
will be derived in the present paper.

Apart from the a-effect, there is still another nondissipative (i.e. not proportional to the spatial derivatives of the mean
magnetic field) contribution to the mean electromotive force for the case of inhomogeneous turbulence. This is the diamag-
netic pumping (ZELDOVICH 1956; RADLER 1968). The velocity of diamagnetic transport of mean field will be derived below
by taking into account global rotation and nonlinearity.

The nonlinear effects to be considered here are brought about by the feedback of the magnetic field on motion. Hence it
seems natural to supplement the analysis of the mean induction equation by deriving the equation for the mean velocity
field. It is necessary to derive the turbulent stress tensor to close this latter equation. Within the framework of a nonlinear
approach, this tensor is contributed by both Reynolds stresses and Maxwellian stresses of the fluctuating magnetic fields.
The equation of motion will be averaged below with allowance for the magnetic corrections. Thus, an attempt is made to
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obtain the complete, weakly nonlinear system of mean-field MHD equations. Such an approach permits, in particular, a
unified treatment of the differential rotation and magnetic field generation which are usually considered separately.

Of course, the general solution of the full nonlinear problem is impossible to get. A number of assumptions and simplifying
approximations will be accepted below. All calculations will be made for the case of large viscosity and low conductivity
that seems to impose severe restrictions on the range of validity of the results obtained. It may be hoped, however, that
these results can be applied to astrophysical bodies characterized by the opposite situation of small viscosity and high con-
ductivity. Indeed, the most interesting effects of generation of magnetic field («-effect) and differential rotation (A-effect)
are induced by the rotational influence on turbulence. This influence is most pronounced for the largest long-lived eddies.
Eddies of smaller scales may be included formally through effective viscosity and magnetic diffusivity. Hence, it may be
anticipated that the results of the present paper will hold qualitatively in the case of large Reynolds numbers if the coeffi-
cients v and 5 (viscosity and magnetic diffusivity, respectively) are considered to be of turbulent origin. In addition, we assume,
when deriving the turbulent stress tensor, that the main contribution to the mean magnetic field is made by its toroidal com-
ponent and the dominant component of the mean flow is (differential) rotation. Such a situation is typical of the rather
popular aQ2-dynamo. The nonlinear corrections will be taken into account only when calculating the nondissipative effects,
i.e. a-effect, pumping and A-effect of differential rotation. The eddy diffusivities and viscosities vill be derived in the linear
approximation. '

The approximations and assumptions made are discussed in more detail in Section 2. In this section we also write down the
starting equations and explain the scheme of calculations adopted. The mean EMF and properties of different contributions
to it are considered in Section 3. The turbulent stress tensor is derived and discussed in Section 4. In Section 5 we write down
the weakly nonlinear system of equations of the «a2-dynamo and discuss the astrophysical implications of the results obtained.

/

2. Starting equations and the approximations used

We start from the MHD equations for magnetic field H and velocity v,
OH /ot = curl (vx H) + n AH : ' o)

2

ov 1 1 H ' :
—+(v~V)v——(H-V)H+—V<P+—>—vAv+Vzp=0, )
ot ue 0 2u ’

where 1 is the gravitational potential and u is the magnetic permeability. The incompreésibility condition, div v = 0, will
be used. If turbulence takes place, the fields v and H have random fluctuations u and h with a relatively small scale / against
a background of mean components ¥ and B of spatial scale L, / < L,

v=V+u, oy =V,
H=B+h, (Hy=B. A

The problem is to derive equations for mean fields, ¥ and B. On averaging Egs. (1) and (2) we find
0B/0t — curl (W xB) — n AB = curl {(u x h)) ,

2

1 1 B :
Vo +V, VY — BV B+ Y, <<P> + )+ Vi —v A = —V(Cuy + 5?2 = hhd/ue) . (3)

2u
Repetition of subscripts signifies summation. It is necessary to express the mean EMF,
e ={(uxh)), - )
and the turbulent stress tensor, ’
1 /1 , :
Tij = Q<u‘,-uj) + ; 5 5ijh — h,-hj s ‘ (5)

in terms of relatively simple parameters of the turbulence (such as {#?)) and mean fields for taking advantages of Egs. (3).

Next, we assume that the main mean flow is rotation which may be inhomogeneous (differential). There may also be mean
motions different from rotation but their velocities are relatively small. It is convenient to calculate the correlations (4) and
(5) for a point whose angular velocity of global rotation is in the corotating coordinate system ; the origin of the system is
placed in this point. With relativistic effects neglected, the induction equation (1) remains unaltered, whilst the equation of
motion now reads

1 L
/ot + (v -V)v-—u—(H “V)H + 2(Qxv) + —V(P + H*2p) + VW' = v Av, )
Q N 2
where ' is the sum of the gravitational and centrifugal potentials.

The method of perturbation in mean-field inhomogeneity (i.e. the decomposition in powers of the parameter //L) will be
applied below. So, the field B is writen as B = B, + 8B, where B, is the magnetic field in the origin of the coordinates, and
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3B appears because of the inhomogeneity. On averaging eqgs. (1) and (2") and subtracting the result from these very equations,
we obtain the equations for the fluctuations:

Ohy/dt — V{uh; — uh; — Cwh)y + Cuhd} — n Ah; — (B V) u, = V.(u.éBj — u;0B; + Vh; = V;h),

1 1
- oufot + 'V, {uiuj — Cuujy — —g (h;h (h,h}))} ~— (By-V) h + 2811,‘9 U + 2 VP — v Au; — f; (6)
u ,
= Vil + )+ V(héB t hoBy,

where P is the fluctuating pressure that includes the magnetic term ; f is the random force driving the turbulence. The widely
used second order correlation approximation will be applied. In other words, the nonlinear terms singled out by curly brackets
in (6) will be omitted. This approximation is believed to be valid for two cases: (a) short-correlated random process when
T, < lfu(z,is the correlation time) and (b) small Reynolds numbers, R = lu/v < 1 and R, = lu/n < 1. For simplicity, we
restrict our consideration to the case of small Reynolds numbers and assume the typical frequences w of the fluctuations
to be small, i.e. @ ~ u/l, o < n/I*> and w < v/I>. In this case, the time derivatives can also be neglected in (6) as compared
with the dissipative terms.

It will be convenient for the sequel to Fourier-transform egs. (6) in spatlal variables; in the approximation just made we
obtain

vk k) + 2(k Qe R a(k)— —'Q(Bo-k) hk) — m, (k) f,(k) = —ik . (K)x

imp" 'm”p J im

xf [4,(k — q) V@) + u(k — q) V, (@) — h,(k — q) 3B,@)/pe — hk — q) 6B,(9)/ncl dq, M
nk*h(k) — i(By - k) u(k) = ik; { [a(k —q) 8B,(q) — #(k — q) 5B,(q) +
+ hik — q) Vi(q) — h(k — 9) V (q)] dg '
where a circumflex indicates Fourier transforms, e.g.
ii(k) = § exp (—ik - r) u(r) dr/(2n)? ,

K = k/k is a unit vector in the direction of wave vector k; «, (k) = J,, — kk, is the projection operator onto the plane
normal to vector k.

In the first approximation we neglect the right-hand sides of eqgs. (7). These means ignoring the mean-field inhomogeneity
and yields:

h(k) = i(B, - k) i(k)/(nk>) , @2

vkl[.i—.i°]+2(12-Q)(12xﬁ)—i(80-k)}2=o, : | 8b)

where 2(k) = =, (k) fm(k)/(vkz) is the Fourier-transform of a fluctuating velocity generated by force f when there is neither
rotation nor magnetic field. Such a turbulence in the absence of a magnetic field and rotation will be referred to as “original”
turbulence”. Using egs. (8), a formula can be found that expresses velocity fluctuations in terms of relevant fluctuations
for the original turbulence:

a,(k) = D, (k) i)(k), ©)
D(k) = [(1 + 74k - b)) 6, + y(k - &) &, K 11 + v3(k - BY) + y*(k - )], (10
where e = /2 and b = B,/B, are unit vectors which have the same sence of direction as angular velocity, £2, and magnetic

field, B, respectively; y and y, are the square root of the local (k-dependent) Taylor number and local Hartmann number,
respectively:

y = 2Q/vk?, Ve = BJk)/ uevr . ' (11)
To shorten notations, the dependence of y'and y, on wave number k is not shown explicitly in (11) and subsequently. The
dimensionless parameters y and y, can be considered to be the measures of perturbations of turbulent fluctuations by rota-
tion and magnetic field, respectively.
Egs. (9) and (10) describe the influence of the Coriolis and Lorentz forces on the turbulence. The linear relation (9) will
be used repeatedly in the derivations to follow. However, the use of eq. (10) for arbitrary magnetic fields meets some principal
difficulties and below we shall apply the approximate expression,

511 + Y(k e) g”p P '}’2(’2 . b)z (1 - ,yl(k : e)) 61‘] + 2y(k : e) 81'1'171;11

D; (k
)= 1+ yX(k - e)? * (1 + y%(k - €)?)?

ty

(12)

5
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which is correct for the case where the local Hartmann number is small foé the main portion of the power spectrum of the
fluctuations (weak magnetic field).

The original turbulence will be considered as given. The inhomogeneity of the turbulence will be taken into account, which is
essential for the a-effect. We also assume that the original turbulence does not show any preferred directions except for the
gradient of the turbulence intensity. The simplest turbulence having these properties was called “quasi-isotropic” by VAIN-
SHTEIN (1968) and has the following spectral tensor (cf. KicHATINOV 1987):

(B@BE) = Fyk = @ — )2 ;

(13)
E(k %)

8nk>

x=1z+72)= B, — (1 + 2/403) Kk, + (e, — 2 Je)/2k + wpe J4R7],

where E(k, x) is the Fourler transform of the local power spectrum, i.e. E(k, ¥) = | E(k, %) exp (ix - r) dx is the local power
spectrum:  (u?) = j E(k, r) dk. -The typical value of % is 2n/L. Only the terms up to second order in the parameter
x/k ~ I[L are retamed in (13). The tensor (13) satisfies (again up to order /?/L?) the incompressibility conditions
zF;=(k; + %/2) F; = 0,

Inthe marginal limit of homogeneous turbulence, we have E(k, x) = E, (k) 5(x), and (13) turns into the well-known spec-
tral tensor for homogeneous, isotropic and mirror-invariant solenoidal field:

F ke, %) = 869 0()

z Oy =k kk) . 14

- The spectral tensor (13) differs from that usually used for the derivation of the a-effect (KRAUSE and RADLER 1980). How-
ever, the a-effect to be derived in what follows agrees with the results by KRAUSE and RADLER (1980).

The quasi-isotropic turbulence (13) being perturbed by rotation yields the nondissipative fluxes of the angular momentum
(A-effect), the sources of differential rotation (KicHATINOV 1986b, 1987). The A-effect is usually believed to be the result of
the turbulence anisotropy. The quasi-isotropic turbulence possesses some anisotropy. Indeed, on integrating (13) over k
and performing a reciprocal Fourier transform over x» we get

uy 1 1 '
< i _’>___ LJ—§<ViVj—_3‘5ij A><u2>° 12’ - “5)
where
= [ Etk,r) k2 dk/me(k, r) dk
0 0

is the typical spatial scale of the fluctuations. The anisotropy brought about by inhomogeneity is present in (15). However,
this anisotropy cannot be the sole source of the A-effect derived below. This is indicated in particular by the fact that in the
limit of rapid rotation the A-effect, found in Section 3 of this paper, tends to constant value, whereas the A-effect, caused
by the anisotropy, should decrease in this limit as 22 (RUDIGER, 1983). In addition, the *“compensating anisotropy” can be
introduced in (13) by multiplying the spectrum E(k, %) by the factor 1 + 15((k - x)* — %2/3)/8k%. This procedure results in
local isotropy; i.e. we now have <u{u?) = 3,(u’*>°/3 rather then (15). Nevertheless, the new spectral tensor thus obtained
yields the same results, in particular the same A-effect, as the tensor (13).

Using (8a), (9), and (12), the desired correlations (4) and (5) can be derived from the given spectral tensor (13) for the
original turbulence. The corresponding spectral tensors are firstly constructed and then integrated over wave vectors, which
is equivalent to the reciprocal Fourier transformation for the origin of coordinates. This yields the general result because
of the origin of the rotating coordinate system used is an arbitrary point.

We neglect above in the first approximation the right-hand sides of egs. (7). In the same approximation, the original tur-
bulence should be considered homogeneous; i.e. eq. (14) should be used. It may be shown that this leads to the a-effect and
the sources of differential rotation fall to zero. It is necessary to carry out all derivations in the next approximation by taking
inhomogeneity into account. On ‘using the spectral tensor (13) and eqgs. (8a), (9) and (12), the nondissipative contributions
to the mean EMF and turbulent stress tensor (x-effect, pumping and A-effect) with regard for the nonlinear corrections can

~ be derived. It is also necessary to take into account the perturbations u’ and h’ of the fluctuations u and h by the inhomo-

geneity of mean fields, i.e. to allow for the right-hand sides of egs. (7). The fluctuations u and h, calculated for a homogeneous
case, can be placed in the right-hand sides of (7) when deriving these perturbations because the large-scale inhomogeneity
of the mean fields is always present in these terms. The allowance for the perturbations u’ and k'’ in correlations (4) and (5)
yields effective viscosity and magnetic diffusivity. The back reaction of the magnetic field on the turbulence will be neglected
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in derivations of the dissipative effects and the following expressions will be used,

ik; .
k) =~ 25 D30 7o) f [tk — 9) V(@) + ik — q) V(@] dg »

-, . ik;
hi(k) = ﬁ’; f [a(k — q) 6B,(q) — ik — q) 6B{q)] dq,

where
Dl}l}'*—o - [511 + V(k e) 8up p]/[l + yz(k e)Z]

Certainly, the neglect of nonlinearities in calculatlons of dissipative effects makes the analysis incomplete and rules out the
possibility of analysing the whole family of nonlinearities. However, this restriction seems reasonable in two respects. First,
the nonlinear derivations of the eddy viscosities and magnetic diffusivities are too involved and seem to be the subject of a
separate paper. Second, the main consequences of the nonlinearity, that probably are nonlinear stabilization of the genera-
tion of magnetic fields and magnetically induced variations of differential rotation, should manifest themselves through
the magnetic corrections to the nondissipative effects even if these corrections are neglected in the eddy transport coefficients.

Let us drop rather cumbersome intermediate calculations, that are made according to the perturbation scheme presented
above, and proceed to the consideration of the final results.

3. The mean EMF

The derivations, whose sequence was explained in the preceding section, yield the expression for the nean EMF (4). Three
groups of terms are convenient to distinguish in this expression that differ in both structure and physical sense :
{ux b)), = o;B; + (U, + &,,U,ee) B, — (De,,; + Dg, ee,) V,B;. (16)

imj " m imn " m nj //Zinj " n

«,; is the symmetric pseudotensor, odd with respect to the change of the sense of rotation (2 - —2). It represents the
o-effect of magnetic field generation in the rotating turbulent conducting fluid.

The next two terms between round brackets correspond to the effect of magnetic field transport by inhomogeneous tur-
bulence. The velocities u and u’ are even functions of the angular velocity.

The last two terms in (16) describe the turbulend diffusion of the mean magnetic fields.

Naturally, there is no RADLER’s (1969) £2 xj effect under the approximations adopted.

Let us consider each of the above-mentioned effects separately.

3.1. The a-effect

The structure of the tensor a; is

a; = a6, + oy(ge; + gje) + ayee; + abb; + as(eb; + eb) + abg; + byg,),

g = (VNG .

The expressions for the coefficients «_ of (17) are:

a7

e

dk
= — f Bk ) vi(e - 0 L10) = 127,0) + 7ie - B S0 + 0 B) b € 2200 -
0 .
t = f Ek, 1) 3L1o0) — v2550) + 72e - B )] kz, (18)
2y = J E'(hy 1) pile - 9) s — v2u) + 92 - B S + (@ - B) (b - ©) 22750} kz,
0

o, = 2e-g) f E'(k, r) w*fl(v) |

as = JE(k r) i[9 - b) fu(y) + 2(g - e)(e - b) fs(?)]

0

k2’
3 dk

a6 = —2(e - b) J E'(k, 1) 92f20) —5 k2
0

© Akademie Verlag GmbH ¢ Provided by the NASA VAstrophysics Data System


http://adsabs.harvard.edu/abs/1988AN....309..197K

FT98BAN.~ T 23097 ZI97K

202 Astron. Nachr. 309 (1988) 3

where E'(k, r) = |[VE(k, r)|, i.e. it is assumed that the direction g of the turbulence intensity gradient does not depend on k;
otherwise g E’ should be replaced by VE; the k-dependent parameters y and y, are defined by (11); the functions f,(y) and
f (y) are written down in Appendix A where asymptotlc expressions for these functions for the cases y < 1 and y > 1 are
also given. .

In the slow rotation limit, when the major portion of the power spectrum of the fluctuations is locsliser in the range of
the wave numbers, for which y < 1, we can use egs. (Al) to find

o0

s | Elnli e 9 e b 062207 Sz

: wE k, 3 3 \
aZ 15 ( r) y[ -1 'Y*/7] k2>
a, =0, _ ’ ! . (19)

16 dk
ay = 105(8 y) E(k ) yi e

-

4 F | dk
as=—§§(y-b) E'(k, 1) vy =5
0

nk?’
26 dk
= - b) | E'(k, .
% 105 ) j (k. r) 7} el

The opposite limit of rapld rotation also somewhat simplifies eqgs. (18):

a1=——(e y)jE(k P {1— 21— ”)2]/2} kl’

oy = (e g)J E'(k,r) {1 — y2[1 - 3(e - b)z]/2} k2 , (20)

Il

Xy

x r o dk
‘8‘(8'9)0 E(k,")}’*'W,

- , , dk
a5=_§(g-e)(e~b) E(k,V)V*W, a=og=0.
) ‘

The asymptotic expressions (A2) have been used to obtain (20).

The linear part of egs. (19) agrees with known results obtained for the case of slow rotation (STEENBECK et al., 1966; see
also KRAUSE and RADLER, 1980). In the comparison, it is necessary to take into consideration that the approximation of
low conductivity and large viscosity is accepted in this paper. The nonlinear corrections in (19) are similar to that found by
ROoBERTS and SOWARD (1975) for the case of slow rotation. There is no complete agreement because of the distinction be-
tween the approximations adopted.

The case of rapid rotation in the linear approximation was considered by RUDIGER (1978). The linear part of egs. (20)
coincides with RUDIGER’s results if these latter are considered for the case of low frequences (0 < vk?, o < nk?). (Note

. 4 .
that RUDIGER used the spectrum ¢(k) that differs from E of this paper, and E'(k, r) = 3 nk*W4(k) in his notations.)

In the rapid rotation limit, the coefficients (20) of the tensor «,; do not-depend on the angular velocity and tend to constant
asymptotic values. For the linear a-effect, this has been demonstrated by RUDIGER (1978). As can be seen from (20), the
nonlinear corrections to the tensor o, ; also have this property.

It seems worthwhile to note that the nonlinear part of the tensor o falls to zero for the case of rapid rotation whenever
magnetic field is parallel to the rotation axis (b = e). This is easy to see if we put b = e in egs. (20) and (17). In addition,
the linear part of «;; is proportional in this case to the tensor of projection onto the plane, normal to the axis of rotation,
a; ~ 6, — ee;, in agreement with MOFFATT (1970) and RUDIGER (1978), and yields zero in convolution with vector B,
a;;B; = 0.In other words, there is no a-effect for the case of rapid rotation if B||£2. This can be probably explained as follows.

’
!
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When rotation is rapid (2Q/vk? > 1), the typical spatial scale of the fluctuations in the direction of the rotation axis is large
against the scale normal to it. This means that the turbulence tends to be two-dimensional, though the velocities in the direc-
tion of the rotation axis are present and are not small. The magnetic field does not affect this turbulence if it has the direc-
tion ¢ in which the velocities of the turbulent motions do,not vary (RUDIGER, 1974 ; see also RADLER, 1974). Hence, such a
field cannot yield any nonlinear corrections to the a-effect. In addition, this field behaves like a passive scalar field and obeys
the same equation, 0B/dt + div uB = y AB(B = eB). There is no effect of turbulent generation for scalar fields ; thus, the
linear a-effect also vanishes (ZELDOVICH, 1956).

Eq. (17) with coefficients (18) is difficult to analyse for a general case. The nonlinearity induces fundamentally new struc-
tures in the tensor «, . Hence, the usually anticipated nonlinear re_ducfion of a-effect is, at least, not obvious (through natural
on physical grounds). However, this reduction really occurs for the widely applied mechanism of «©Q-dynamo. The role of
the a-effect in this mechanism is to generate a poloidal field from a toroidal field (the axi-symmetric magnetic field is consider-
ed in the usually used spherical polar coordinates r, 6 and ¢ with the polar angle 6 measured from the axis of rotation).
Only the azimuthal component of the mean EMF is unportant for this process. Hence, only the component a,, of the tensor
o plays arole,

a,, = o — B ’ @1

where

E(k r)
& = —cos 0 mmkr | (22)

0

KR
Il

3cosé maE(k, r) 70) dk . . 23)
_ygnzvo or y”)kd'.

It was assumed when deriving (22) and (23) that the turbulence inhomogeneity is radial. It was also taken into account that
the dommant component of the magnetic field for the aQ-dynamo is a toroidal one, and we may consider b as an azimuthal
unit vector for which (b - g) = (b - €) = 0. Certainly, there must be both moments of time and positions when and where the
toroidal field is not large against the poloidal field. However, the net magnetic field is relatively small in these cases and
nonlinear corrections to the a-effect can be neglected. Growth of the magnetic field reduces the a,,,-coefficient (21).

3.2 Pumping

It is customary to refer to the effects of the mean field transport in inhomogeneously turbulent fluids, that is not the result
of the mean flow as pumpings (DROBYSHEVSKI and YUFEREV, 1974 ; KRAUSE and RADLER, 1980). The expressions for the velo-
cities of mean field transport appearing in the mean EMF (16) are

(24)

c dk
~g [ Etn Lo - 2000 + e b7 2]

0
=g fE’(k r) [coz(v) 72020 + (e - b)? </33(?)] el ‘ . (25)
0

The functions ¢,(y) and ¢ ,(y) are written down in Appendix A. Vector U’ is the additional velocity of transport of the mean
field component parallel to the rotation axis.

In the slow rotation limit, when the parameter y = 2Q/vk? is small for the main portion of the power spectrum, we find
the velocity of diamagnetic field transport not perturbed by rotation,

0

dk
U=—ngwnum—ﬁﬁgp, (26)

0

U=0. :
Eqgs: (A1) have been used to obtain (26). The linear part of (26) represents the usual diamagnetism : the mean field is expelled
into the regions with relatively low intensity of the turbulence (ZeLpovicw, 1956 ; RADLER, 1968). The velocity (26) decreases
with an increase of the magnetic field.
In the opposite limit of rapid rotation, the asymptotic expressions (A2) can be used to yield

©

. i , dk
U=-U=—yg 8JE(k,r){l—3[l—(e-b)z]/4}W. : (27)

0
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The absolute value of the velocity (27) is also the decreasing function of the magnetic field. The general expressions (24) and
(25) are rather complicated ; however, as with the a-effect, the nonlinear reduction of the diamagnetic pumping can be found
from these expressions for the particular case of a predominantly toroidal magnetic field.

It may also be noted that the nonlinear corrections to the velocities (27) go to zero when the magnetxc field is parallel to
the axis-of rotation (b =_e). Moreover, the linear part of the total velocity of transport of the field B||€2 is zero as well for
this case of rapid rotation, because the velocities U and U’ (27) have equal absolute values but opposite directions. The reason
for this has been discussed in the proceeding section, it probably is the tendency for the turbulence to become two-dimen-
sional under rapid global rotation.

3.3. Eddy diffusivities of the magnetic field

As mentioned in section 2, we neglect the back reactlon of the magnetic field on the turbulence when deriving the dissipative

. effects.

The calculations, whose sequence has been explained in Section 2, yield the following eddy diffusivities’D and D), involved
in (16), v

_ fE(k ) dk
- s I (P3(y)_';k—23\
0

® (28)
dk
D= J E(k, r) ¢,(y) W .
0

The functions ¢ (y) are given in Appendix A. The quantity D is the isotropic part of the eddy diffusivity of the magnetic
field. The rotation induces some anisotropy in the turbulence. This results in the additional diffusivity, D, parallel to the
axis of rotation. Using eqgs. (A1) and (A2), we find the coefficients D and D), for two cases: with no rotation present,

~ Bk,
D=J ( :)dk, D=0,
3nk

0

and with rapid rotation,

Ek n
p=p =2 [BED g T
8 ) ke &7 Tea
0

In the latter case, the effective diffusivity parallel to the ax1s of rotation (the sum of D and D,)) is twice the diffusivity normal
to this axis.

4. Turbulent stress tensor

The dissipative and nondissipative parts can be distiriguished.in the turbulent stress tensor (5),
T,=1,+4,;—N,; V.V . (29

ijpf f'p -

The last term on the right describes the turbulent damping of the large scale motions. The first two terms do not depend on
the spatial derivatives of the mean velocities and represent the nondissipative part of T;;. These two terms stand for the even
(1;;) and odd (4;)) contributions relative to the inversion of the sense of rotation.,

The derivation of the nondissipative part of the tensor T;; with allowance for global rotation is of interest to the investiga-
tions of the differential rotation of turbulent shells. Only the off-diagonal components, T,,and T, (in spherical coordinates),
are relevant to the differential rotation problem; these components are the radial and mer1d10na1 Fluxes of Angular Momen-
tum (FAM), respectively. The presence of nondissipative parts, 4,, and 4,,, in the FAMs was named A-effect (RUDIGER,

- 1980). These nondissipative off-diagonal elements are odd functions of the angular velocity. We shall avoid cluttering up

the paper with calculation of the turbulent pressure, IT,;, and shell confine our attention only to the derivation of the A-
effect and eddy viscosities.

4.1. A-effect

To simplify matters we shall assume the direction b of the magnetic field to be normal to both the rotation axis and the
direction g of inhomogeneity of the original turbulence. If the inhomogeneity is radial, as is usually adopted, our assumption
means that the toroidal component of the mean magnetic field is dominant. This situation is typical of the a2-dynamo.
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Though the assumption made above simplify the derivations considerably, the final result for the tensor 4;; of eq. (29)
is somewhat cumbersome:

1

Aij = 0 Q j[('//l(?) —f)’i‘/;1()’)) (Eimp Vi+ €imp V) en Vp — Way) — )’il;z()’)) (ejﬁ.'mp + €;&jmp) X
0

X (€ - V) Vo + 92050) (€ 8imp + € jmp) bulb - VIV, + V2030) (Bimp + b1 jmp) €mlb - V)V, —

- dk
- yi¢4(’)}) (bjsimp + bisjmp) bm(e. : V) Vp] E(k’ l‘) b F s (30?

where the operators V act upon the local spectrum E(k, r); the*functions ¥, (y) and !2;"(‘)’) of the parameter y = 2Q/vk? are

~ written down in Appendix B together with the asymptotic expressions for these functions. Eq. (30) involves both Reynolds

and Maxwellian stresses. These contributions are easy to distinguish. The point here is that the functions ‘/7,.(?) listed in
Appendix B involve the magnetic Prandtl number, P, = v/n. This number appears through the contribution of the fluctuat-
ing magnetic fields. Therefore, we find the contribution of the Maxwellian stresses to eq. (30) if ¥ (y) is put equal to zero
and ¥ (y) retains only the terms containing P,,.

Let us consider the most popular particular case of the rotating spherical turbulent layer with purely radial inhomogeneity
of the original turbulence in the usual spherical coordinates , § and ¢. There are only two nonzero and mutually independent
components, 4, and 4,,, of the tensor 4. Other components of the nondissipative part of the stress tensor T,; are even
functions of the angular velocity.

We shall distinguish in the radial, 4, » and meridional, 4, - nondissipative FAMs the linear parts, A_and A4,, and magnetic
corrections, A7 and Ay, respectively,

A, = A, — B*A™, Agy = Ay — B247, (€1))

e

where A4, and A7 are independent of the magnetic field. The explicit expressions for the coefficients of egs. (31) are:

F/ 8 1 BEk,
__stn9j< r)> [l//l(')’)—COS 0y, '}’)])’
(0]

or r

N

. o1 aE(kr o dk
ggsm”)cosf)J( )>l//2(7))’?,
0

ing [/ o 1 OE(k, i
o sin J( ( r)> [1) — cos? 9'//2(y)]v sm0 j(l OE(k, r) [V 5( )’)+l//4(7)]}’

Buvn 3 or r 8,uv11 ror
(32)
n  sin 20 cos 6 1 O0E(k, r) cosO 1 aE(k r)
Ag = )'//2(')’) j l//3( )Y
8;1w1 6r r 6r . 8yv;1
0 0
. cos 0 azE ) dk
8/4w1 7z k*

The nondissipative FAM:s for the case of slow rotation may be found by using egs. (B1). Up to linear terms in angular velo-
city (in the parameter y) we find,

) /@ 1 3E(, dk
A, = —QSIHHJ( ( r)>y_
0

o r or k*’

. siné ® K} 1 OE(k, r) —d£ - 1 dE(k, 1) dk
4= e [—(1/3+PM/S)J< > o >v T (1+P,,,/)j< » )ﬁc{' 33)

2
=5 [(3/10 +2P,/15) J (1 aE(kr r)> v I (/6 + P10) j ik f’i] .

Kt or? k*
15 Astron. Nachr. 309 (1988) 3
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" It is known that in the linear approximation in the angular velocity, the turbulence has to possess an anisotropy in the hori-
zontal plane for meridional nondissipative FAM to arise (RUDIGER, 1980). There is no such anisotropy for the radially in-
homogeneous original turbulence with the spectral tensor (13). This is why A4, is zero in (33). However, the magnetic correc-
tion A} differs from zero. This may be explained by the horizontal anisotropy brought about by the influence of the horizontal
magnetic field on the turbulent motions, which gives rise to the meridional nondissipative FAM, Ay, = —B2 A7, even for
slow rotation.

In the opposite case of rapid rotation (y > 1) eq. (B2) may be used to yleld

/810
A=-n—sm(900s OJ 1 Etk, r))dk

" 32 orr or k2’
Ay = —tgba ,
in 6 F /1 0Kk, T/ 0 10E
ar =20 by 2J< ( )>——c0329 <—_ k. mydk 1, (34)
64puvn g \T or k* orr Or k*
. 0

qm_meosb [ o’k ) dk o 1 BE(k, r)\ dk
6_64;1w1(+""/)%6f or? k4+sm9J’(rarr or )k“'
Egs. (34) show that both linear and magnetic nondissipative FAMs tend to constant values independent of the angular velo-
city in the rapid rotation limit. Such behaviour is typical of the A-effect caused by the inhomogeneity of the original tur-
bulence (KicHATINOV, 1986b, 1987) and, consequently, this inhomogeneity is important for the nondissipative FAMs
derived. If these FAMs were caused solely by the anisotropy present in the spectral tensor (13), the A-effect would decrease
as the reciprocal of the angular velocity squared and approach zero in the limit of rapid rotation, as has been shown by
RUDIGER (1983).

The obtained A-effect (30)—(32) is of second order in the scales ratio, //L, of fluctuating and mean fields. The adopted -
procedure of calculations can be reliably justified only when this ratio is small, and the A-effect is small, too. However,
in natural conditions, in particular in the solar convection zone, //L < 1. If the derivations made remain qualitatively valid
for this case, which is usually anticipated, the A-effect of egs. (30)—(32) is no longer small.

4.2. Eddy viscosities

As in the derivation of the eddy diffusivities of the magnetic fields, we neglect the nonlinear (magnetic) contributions to the
effective viscouos tensor N,; jps Present in (29). The derivations, whose sequence was explained in Section 2, yield :

0 Nijpr = vi0iy0;5 + 8i50;) + v20iseie, + digeje, + Ojpeiey + Sipeier) — vidyese, + vaeiejees +
+ vs(sipmemejef‘_}_ s]pm me ef + elmfe}emep + 81mfete e ) + v6(elpm m” jf + sjpmeméif)_
1 1
— Vi | &ipse; + Ejpre; + ) Eimpemdjp + = 5 €jmsem Sip | > (35)
where : ,
]
dk ’
= J E(k, r) {,(7) WER (36)
N 0

the functions { (y) are written down in Appendix B where the values of these functions for y = 0 and y > 1 are also given.
The terms containing 6, are omitted in (35) because when convoluted with V .V they yield zero as a result of the incompressi--
bility condition and do not contribute to the stress tensor (29). I

The presence of the preferred direction e in the tensor of effective viscosities (35) results from allowance for global rota-

tion when deriving this tensor. If rotation is absent, egs. (Bl) can be used to find the known result (KRAUSE and RUDIGER
1974):

40 B
Nijprla=o = 5y J E(k, r) k=2 dk(5, péjf + 6,f5jp) .
0

As may be seen from (B2) and (36), all coefficients v except for the pseudoscalars v, v, and v, differ from zero in the rapid
rotation limit in the first order in the parameter y~!.

I.I,et us consider the components N, .V .V, and N, .V ¥ of the dissipative part of the turbulent stress tensor, that are
important for the differential rotation problem, for a partlcula.r case of purely azimuthal mean flow,

V = eq,Q(r, @)rsin 6,
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where e is tl1e azimuthal unit vector; r, 6 and ¢ are spherical polar coordinates. Using (35), we find :

oQ oQ oQ
N,yps ViV, = @vyr sin 8 — + gv, sin 6 cos 6 (r cos @ — — sin 6 —)
or - or 06

20 (37)

Nogps Vs V, = @v, sin 0 %

+ §in? 6 ( sin 6 o0 60 o
v n 1n _— COS -] .
ev2 o or

The dissipative FAMs (37) compensate for the nondissipative ones (31) in the stationary case. Egs. (37) coincide in their
structure with the dissipative FAMs found (KICHATINOV 1986a) for the case of large Reynolds numbers in the mixing
length approximation.

5. Discussion

The derivations made of the mean EMF and the turbulent stress tensor allow one to infer the weakly nonlinear system of
aQ2-dynamo equations,

0B 1 9(Q, Ar sin 0) 1o 1
e A v UB+——(D+;1)—rB+

a r o(r, 6) r or

1 0 D+n 0O 0 sinf 0 0 sinf 0O

+ 5 — —sinOB +|cos — ————| D 6 — — — | B,

200 sin0 06 (OS o r ao) ' <°°S o aa)
0A4 B B UaA (A + 0 AJr 0 OlaA> (D+n)az y
3 = (« o) 5 Jr + sin? sin 6 cos . 0 )

D+n 0 1 @ ) 1 3\2

0 A+ D, — —si ——
7w smeag nlATt <Cosear\ sin 02 ae)A’ : 38)
. 0Q 1 O(Br sin 0, Ar sin 6)

orsin  — = ———

ot wr’sin®6 . o(r, 6)

1
3

r3 | o, +v)rsin 6 a + "0 sin 0 0 in 0 g A, + B*A"
o o(vy n " @v, cos 0 sin 0 ( r cos 3 sin 0 . ,

r

1 9 20 . o 50 R
t =3, rsm2 0 %Sln 6 [Q(Vl + V) sSin 9—66 + ov, Sll’l2 G(Sm 0 @—\r_COS 0 a—r)_AO + BZAG:I ,

where B is the toroidal magnetic field; 4 is the tor01dal vector potential for the poloidal magnetic field B?, B® = curl (e, A4);
and symbol (X, Y)/o(r, 8) = (0X/0r) (0Y/06) — (0Y/0r) (0X/06) means Jacobian. A number of the parameters calculated

above are used in (38); these are: the coefficient a (22) of magnetic field generation and magnetic correction & (23) to it,
the velocities U (24) and U’ (25) of diamagnetic pumping, the eddy diffusivities D and D), (28) of the magnetic field, the

-nondissipative FAMs A4, and 4, and magnetic corrections to them Ar and Ay (32) and the eddy viscosities v, and v, (36).

The mean meridional flow i is neglected in (38).

Although the system of equations (38) involves a variety of effects of i the aQ-dynamo including nonlinearities, it is hardly.
applicable to describe the real mean fields and flows of the solar convection zone. The point here is not that the approxima-
tion of low conductivity and high viscosity has been used. As pointed out in the introduction, it is reasonable to hope that
our findings will hold qualitatively in the case of large Reynolds numbers if the coefficients v and 7 are considered to be of
turbulent origin; i.e: if the estimate v ~  ~ luis used. (Note that other approximations used in mean field magnetohydro-
dynamics can also guarantee only an order-of-magnitude accuracy under natural astrophysical conditions.) More substantial
restrictions seem to be imposed by the neglect of the compressibility. The density stratification of the solar convection zone
is of vital importance for a-effect (PARKER, 1955), for turbulent transport of magnetic fields (DROBYSHEVsKI, 1977) as well
as for generation of differential rotation (KicHATINOV, 1986b, 1987). However, the allowance for compressxblhty greatly
complicates the problem and is neglected for simplicity in this paper.

In spite of the restrictions mentioned, the system (38) contains new nonlinear effects that deserve some discussion. These
effects should also appear in more general theory taking the compressibility into account.

Let us consider first the magnetic corrections to-the nondissipative FAMs (31) and (32). These corrections, B>A™ and
B2A7, must yield the dependence of differential rotation on the magnetic field (a similar effect results from the mean fields
Lorentz force discussed below). Only the nonlinear corrections to the a-effect are usually considered in nonlinear models of

15+
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the aQ2-dynamo (see e.g. KLEEORIN and RUzZMAIKIN, 1984). However, the Q-effect (differential rotation) is not less essential - -

for the magnetic field generation by the af2-dynamo mechanism than a-effect. In addition, the relative values of magnetic
corrections to the a- and A-effects coincide in order of magnitude. Hence, the complete nonlinear model of the a€2-dynamo
should incorporate the magnetically perturbed A-effect together with the nonlinear a-effect.

The relative values of the magnetic corrections to the effects considered is yi (11). The estimates of the measures of the
convection perturbation by rotation (y) and magnetic field (y,) for the case of large Reynolds numbers may be found.if
we put in (11)n ~ v ~ lu and k ~ 1/I; this yields,

y~1Qpu, y, ~ B/ neu. : (39)

As one would expect, y is the re01procal of the Rossby number and y is the ratio of magnetic energy to the energy of con-
vective motions in this case. The toroidal magnetic field in the solar convection zone is believed to reach values ~10°G.
The value of y 4 (39) can be estimated from the models of the solar convection zone (BAKER and TEMESVARY, 1966) as y,
~0.1—1. In other words, the perturbation of the convection by magnetic field and resulting nonlinear corrections to the o-
and A-effects should be essential. Proceeding in the inverse order, we may state that, if aQ-dynamo is indeed stabilized
by nonlinear effects, the magnetic corrections to the «- and A-effects shduld not be too small and, consequently, the magnetic
fields must be of the order ~10° G.

When magnetic fields change periodically over the solar cycles, the magnetic corrections to. the nondissipative FAMs
will also undergo cyclic variations. This will lead to cyclic changes of the angular velocity profile because the FAMs are the
sources of differential rotation. Such periodic variations of.solar rotation are indeed observed in the form of so-called tor-
sional oscillations (HOWARD and LABONTE 1980; LABONTE and HOWARD, 1982) The torsional oscillations are usually

interpreted as being a result of the actlon of the mean field Lorentz force, F; = — (curl B) x B (SCHUSSLER, 1981 ; YOSHIMURA,
,u

1981). This force is represented in egs. (38) by the first term on the right-hand side of the last equation of the system. The
estimate of the Lorentz force reads,

F, ~ BB?[uL.

Explaining the torsional oscillations in terms of the force F, is complicated by the relatively small values of the poloidal
magnetic field, B, which is two to-three orders of magnitude smaller than the toroidal field. This makes the force F; be
small as well and, probably, was the reason why the torsional oscillations driven by the Lorentz force were attributed to the
surface layer with the thickness L ~ 10* km and relatively low density. However, deeper and denser layers of the Sun seem
also to take part in the torsional oscillations (HOwWARD, 1984). The nonlinear corrections in (30)—(32) may be expressed in

.terms of the equivalent force, F), to yield the estimate,

' N2 .
Fy~ (Z) W (y) B*/uL ,

where'zfl symbolises the functions l/7n(y) present in (30); and y stands for the reciprocal of the Rossby number (39). The force
F), results from a perturbation of the convection by a magnetic field and thus induced changes of the Reynolds stresses. The
scale / of the solar convection coincides in order of magnitude with the depth of the convection zone, and the reciprocal of
the Rossby number is of order unity; hence

F,/F, ~ 0.1B/B? ~ 10.
In other words, perturbation of the sources of differential rotation by magnetic fields seem to be a more likely cause of the

torsional oscillations as compared with the Lorentz force of mean fields. Surely, the order-of-magnitude estimates can not
play any decisive role. Nevertheless, if the dynamo-amplification of the magnetic field is indeed stabilized by nonlinearities,

" the nonlinear corrections to the sources of differential rotation (that have the same relative values as the corrections to

the a-effect) should be of some importance.
Another way the nonlinearities are involved in the system (38) is through the velocities U (24) and U’ (25) of the diamag-
netic pumping, that greatly inifluences the distribution of magnetic fields in the solar convection zone (KrRivopUBsKL, 1984).
We finally note that all derivations of this paper were made for arbitrary velocities of global rotation. This adds to the
system (38) another strong nonlinearity, namely, the coefficients of this system are the nonlinear functions of the angular

~ velocity. This, in principle, allows the af2-dynamo to be analysed for arbitrary rotational velocities. Note that in the solar:

convection zone the case of moderate rotation (neither slow nor rapid rotation) occurs.
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Appendix A

The functions f(y), f;(y), ¢,(y) and ¢ (7) of the parameter y = 2Q/vk? used in Section 3 in the expressions for various con-
tributions to the mean EMF are:

—9_'_4,))2__,))4

1
fiy) = v [vz +9 tan™! (v)J,
) YL

3 [y +3
fz(7)=—4[y: tan‘l(y)—3:|,

dy* 45+ 12)12—11‘*t

an™! (v)] ,

1
= | =32 4+ 45
130) 47 l: YT+ 40+ T+ 927 "
. [y +1 ’
¢4 =53 [ tan™' (y) — 1] 0.0 = 7 £-(0/3
Y Y \ .

1 [y =1
@3(y) = —;[y ; tan~!(y) + 1],

X 1 - P =29 + 992+ 20
H =<5 [vz - 7y*/3 =20 + tan~'(y) | |

8y Y
i 1 p* — 392 - 10
S0 = e [10 -y?3+————tan”! (?)J ,
. 1 8y° 140 + 45y — 6y* + y°

=— | 5y%/3 — Ty* — 140 + + tan~!

£ & [ v/ Y T 4 . n~ (|,
L I 54 32
fa) = 7 [4v2/3 +35 - ; tan 1(v)] ,

N 1 6y* 3p* — 159* — 70
=— 1|70 — 25y%/3 + + tan ! ,
fs@) 470 [ e/ T2 . 6]

N 3 40y°  y® —10y* + 105y> + 420 _, } 2
= — | —420 + 35y* — 39" + + tan -,
J6() 87 [ Y Y 115 y ) 1+ p??
N 1 2y* 15y% 4+ 35 }
= — |35+ 10y%/3 + — tan~! , _ .
0= 3 [ R S . ) |
y 34292 —9*
i) = 13 [3, oy’ - tan ‘(y)} ,
3 15 + 6y2 — 94
(1) =—=|15+92— —" " tan~!
Pav) = 7 6v“[ +y tan (v)],
1 8y* 105 + 309% — 3y*
p3(y) = — | 105 — 592 + - tan™? .
In the limit y — 0, these functions tend to the following values,
fi=2/15, f, =315, o, =1/6, o, =13, fi=0,=0,
| ) | (A1)
fi=8/105, £, =13/105, f, =435, ¢, =1/5, .
h=h=k=h=0,=8,=0.
In the opposfte limit (y > 1), by retaining the terms of the order 0(y~!), we find
h=fi=0,=0,=0,=1/8, f,=0,
¢, =¢,=¢,=3n32y, fi=f=n/l6y, f =3n/l6y, _‘ (A2)

h=l=FK=rh=0.
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Appendix B

The functions ¥, (), tﬁn(y) and {, (y) used in Section 4 in the expressions for the turbulent stress tensor are:

1 1 6+
llll(Y)=—4[5+1+y2— . tanl(v)],

' 1 6y* 60 + 159> — »* ]
= — 60— 5%+ - tan™ (y) |,
Vi) = 73 [ YT - )
~ 1 2y* 15 —y* ] P, 54 3? 1
= — |52 15— + nTtO) |+ | S+ 8 - tan™" () |,
A0 2)’6 [ Y 1+ ’}’2 . ) Y v/ y
" 1 [, , 12t 210475 -6yt 90 ]
=—|9* =210 - 592 — + tan~
¥2(7) pe [w L . »
P, 140 + 13592 + 18p* —9*
Sy [140 + 2659%/3 + p* — U 777 tan! (y)],
8y° Y
. 1 15 + 92 P 546y + -
Viy) = — [15 + 4y - 2T tant (v)] + Z [————y U Y -5 133’2/3],
7 Y ¥ Y ‘
1 30 + 1592 — 29* + 9% _
V) = — [v“ —-30— 5% + tan”’ (v)] +
2y® Y
P 20427 2 L6yt —y°
+ = [20 + 6192/3 4+ v* Y " =7 tan (y)],
4)’6 y
1 5 8y 21 + 1497 +9* | }
= — 21— + tan™" (y) |,
L0 =55 [? i ; (
32p* 2% Syt —429 4105, ]
= 105 + 77y* + - + tan™" (y) |,
§))] 327% |: Y a+ y2)2 1 +92 y
1 1209% 3296 3p* +90y* + 735 |
= —735 + 35y% + - + tan™" (7) |,
C4(‘Y) 32_))4 [ 1 + )’2 (1 + ,))2)2 y
1 [ 29° 392 4+ 15 }
- — 154+ ~2— " tan"' (p) |,

2 2 _
L) = -1—[3 LY : 3 tan-! (v)}, LO) = 3002 L) = A3

where @,(y) and £, (y) are given in Appendix A, and P, = v/ is the magnetic Prandtl number The functlons given above are
equal to the following marginal values when y equals Zero:

Yy =215, ¥, =0, Y, =20, =421+4P,35, Y,=0, «
¥, = 12/35 + 16P, /105,  ( = 4/15, (B1)
L=0G=0L=0(=0=(=0. ,
In the opposite case of large 7, by retaining the terms of the order 0(y 1), we find
¥, =mfdy, ¢, =0, ¥, =2y,=nl+P,/2)4,
Y=Y =0, {,=( =364y, { =n/6dy, (B2
{3 = Sm/64y, =0=§=0. |
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