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THE STRUCTURE OF A CHIRP SIGNAL
IN THE RANDOMLY INHOMOGENEOUS EARTH–IONOSPHERE CHANNEL

N. T. Afanas’yev,1 V. P. Grozov,2 V.E. Nosov,2

and M.V. Tinin1 UDC 621.371; 550.388.2

We analyze theoretically the structure of a chirp-ionosonde signal for the cases of one- and two-
hop propagation in the randomly inhomogeneous ionosphere. For the case of two-hop propagation,
wave scattering by the rough ground is taken into account. Our numerical simulation showed that
random ionospheric irregularities and ground roughnesses play a significant role in the formation
of a signal structure. We compare numerical results with experimental data obtained at oblique
ionospheric sounding.

1. INTRODUCTION

At present, chirp ionosondes having good noise immunity, small power consumption, and high reso-
lution are used for the ionospheric studies [1–6].

Although chirp ionosondes are widespread, the structure of chirp signals propagating in the iono-
spheric channel with allowance for the parameters of recording devices has not yet been studied in sufficient
detail. Basically, the signal structure was analyzed in the absence of dispersion in the ionosphere or with
allowance only for the phase dispersion in the case of propagation in a regular medium. This is explained
by the absence of a detailed analysis of the chirp-signal structure in randomly inhomogeneous media taking
background refraction into account [7–11].

It is well known that in the case of oblique ionospheric sounding, the signal at the reception point
is formed, first of all, due to wave propagation in the ionosphere without intermediate reflections from the
ground. On the other hand, the signal can propagate by means of subsequent reflections from the walls
of the Earth–ionosphere waveguide. Below we will consider these two possibilities of the formation of a
continuous chirp signal. However, in the second case, for simplicity, we restrict ourselves to the analysis of
signal behavior for two-hop propagation.

2. THE STRUCTURE OF A ONE-HOP SIGNAL

A chirp ionosonde emits the continuous frequency-modulated signal

V (t) = a0(t) exp
[−i (ωat+ ω̇t2/2

)]
, (1)

where ωa is the initial frequency of the signal, ω̇ is its frequency-deviation rate, and a0(t) is a quantity equal
to unity in the entire existence interval of the signal V (t) and to zero outside that interval.

After the signal passes the ionospheric channel, we have, at the receiver output,
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U(t) =

+∞∫
−∞

Us(ω, t) exp(−iωt) dω =

+∞∫
−∞

R(ω, t)Vs(ω) exp(−iωt) dω, (2)

where Us(ω, t) is the received-signal spectrum, Vs(ω) is the emitted-signal spectrum, and R(ω, t) is the
reflection coefficient of the quasistationary ionosphere.

Taking into account the signal-processing technique in a chirp ionosonde, it is easy to show that the
output signal of the ionosonde is determined by the following expression [7–9, 12]:

S(Ω) =
1
2π

+∞∫
−∞

V (t)U∗(t)W (t) exp(iΩt) dt =
1
2π

+∞∫∫
−∞

V ∗
s (ω)R∗(ω, t)V (t)W (t) exp[it (ω + Ω)] dtdω, (3)

where W (t) is the weighting function describing the spectrum-analyzer time window. For simplicity, it is
further approximated by the expression

W (t) = exp
[−(t− t0)2/2T 2

]
,

where T is the time-window duration. Squaring Eq. (3) and averaging the result over the ensemble of
realizations of a randomly inhomogeneous medium, we can obtain the following formula for the mean power
spectrum 〈|S(Ω)|2〉:

〈|S(Ω)|2〉 =
1

(2π)2

+∞∫∫∫∫
−∞

V ∗
s (ω1)V ∗

s (ω2)W ∗(t1)W ∗(t2)V ∗(t1)V (t2)

× exp[−it1 (ω1 + Ω) + it2 (ω2 + Ω)] Γ(ω1, ω2, t1, t2) dt1 dt2 dω1 dω2, (4)

where Γ(ω1, ω2, t1, t2) = 〈R∗(ω1, t1)R(ω2, t2)〉 is the frequency-coherence function of the wave-field fluctua-
tions in the quasistationary ionosphere.

In practice, T is of the order of 1 s and the frequency-deviation rate is 50–100 kHz/s. Therefore, we
can assume that signal (1) is narrow-band in the interval T and that its spectrum is defined as

Vs(ω) =
1√
2πω̇

exp
[
i (ω − ωa)2

2ω̇
− i

π sgn(ω̇)
4

] {
1, ωa < ω < ωb;
0, ω < ωa, ω > ωb,

(5)

where ωb = ωa + ω̇T . Introducing the summation and difference variables

ω1,2 = ω ±∆ω/2, t1,2 = t±∆t/2

and allowing for the weak dependence of Γ on t1 and t2, we make calculations in Eq. (4) to yield

〈|S(Ω)|2〉 =
T
√
π

(2π)2 ω̇

+∞∫
−∞

ϕr(ω0 − ω − Ω, (ω − ω0)/ω̇, ω) dω, (6)

where ω0 = (ωa + ωb)/2 and

ϕr =
1
π

+∞∫∫
−∞

Γ(ω,∆ω,∆t) exp
[
−(∆t)2 ω̇2T 2

4

(
1 +

1
ω̇2T 4

)
− T 2 (∆ω)2

4
+
T 2 ω̇∆t∆ω

2

]

× exp
[
i∆t (ω0 − ω − Ω) +

i∆ω (ω − ω0)
ω̇

]
d(∆ω) d(∆t). (7)
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For the frequency-coherence function of the field, we take the expression obtained using the geometrical-
optics approximation [13]:

Γ(∆ω,∆t) ≈ |A|2 exp
[
i (∆ω τ + ∆t ωg)− (∆ω)2 σ2

τ/2
]
, (8)

where τ (ω0) and ωg are, respectively, the propagation time and the Doppler frequency shift of the geometric-
optical wave in the nonstationary ionosphere, A is the wave amplitude, and σ2

τ is the variance of the
propagation time.

Note that the method of smooth perturbations was used in [14, 15] to describe the frequency-coherence
function of the field with allowance for diffraction phenomena. In our paper, Eq. (8) is obtained under the
condition of a strong dispersion of the wave phase, when diffraction phenomena contribute insignificantly to
the field fluctuations and the main characteristics of the field are determined by effects arising from large-
scale irregularities with characteristic dimensions l� RF (RF is the radius of the first Fresnel zone) [16].

Substituting Eq. (8) into Eq. (7) and performing the integration in Eq. (6), we get

〈|S(Ω)|2〉 =
|A|2 T
2πF

exp
[
−(Ω− ωg − τ ω̇)2

F 2

]
, (9)

where
F =

√
T−2 + 2ω̇2σ2

τ + (τ ′ω̇2T )2

is the line width observed by the spectrum analyzer at the frequency Ω = τ (ω0)ω̇+ωg and τ ′ = ∂τ (ω0)/∂ω0.
As seen from Eq. (9), the chirp-ionosonde resolution is determined by three factors: the frequency

band 1/T of the spectrum-analyzer window, the variance σ2
τ of the random propagation time, and the

dispersion distortions in the ionosphere (the third term of the radicand in the expression for the function F ).
It is easily seen that the contribution of the first term can be decreased by increasing the analysis-time T .
In this case, however, the contribution of the second term remains the same, whereas the contribution of
the dispersion distortions increases. Usually, however, the role of the dispersion distortions is insignificant,
since τ ′ is small.

Using Eq.(9), we performed a numerical simulation of the spectrum 〈|S(Ω)|2〉 of a chirp signal for
one-hop propagation along a path of length D = 3000 km. The statistical moments of the propagation path
were calculated using the method presented in [17]. As a model of the regular ionosphere, we chose the
exponential dependence of the dielectric permittivity on the height:

ε = 1− f2
k

f2
exp

[
−

(
z − zm
ym

)2
]
. (10)

For our calculations, we chose parameters typical of the F2 layer: zm = 270 km, ym = 80 km, and fk = 7 MHz.
Figure 1 shows the results of calculations of the chirp-signal spectrum (hereafter, the window duration of the
spectrum analyzer is T = 1 s) for one-hop propagation with allowance for the dispersion distortions (Fig. 1a)
as well as for the distortions due to both the medium dispersion and the influence of random ionospheric
irregularities (Fig. 1b). Calculations were performed for the frequency f = 16 MHz (the ratio of the operat-
ing frequency and the maximum usable frequency fMUF was equal to 0.6) at the frequency-deviation rate of
the chirp signal 100 kHz/s. Inhomogeneity of electron density was characterized by the Gaussian dielectric-
permittivity correlation function ψε(r1, r2) = ν exp

[−(r1 − r2)2/l2
]

describing the mutual dependence of
the electron-density fluctuations at the points with coordinates r1 and r2, where ν and l are , respectively,
the intensity and scale of irregularities. As expected (see Eq. (9)), radio-wave scattering results in addi-
tional (with respect to the influence of the ionospheric dispersion [8, 9]) broadening of the signal spectrum.
Here the irregularity parameters were chosen as follows: ν = 10−6 and l = 1 km. Analysis of calculations
of spectra 〈|S(Ω)|2〉 for other ratios f/fMUF showed that the distortions of the chirp-signal spectrum are
determined mainly by the behavior of the frequency-coherence radii of the fields of both propagation modes.
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Fig. 1. Results of numerical simulation of the chirp-signal spectrum for the case of one-hop propagation with
allowance (a) for only the dispersion distortions and (b) for the distortions due to both the medium dispersion
and the influence of random ionospheric irregularities.

The radii, in turn, decrease as the sounding frequency tends to the maximum usable frequency under the
condition of a strong phase dispersion (high-intensity irregularities) [18]. Thus it follows from the theoretical
calculations that the spectrum of the chirp signal for both modes tends to increase as the operating frequency
approaches the maximum usable frequency.

3. THE STRUCTURE OF A TWO-HOP SIGNAL

For two-hop propagation, the signal power spectrum at the chirp-ionosonde output can be determined
using Eq. (9) as well. In this case, we will assume that the waves undergo specular reflection from the ground
and that the fluctuations of the path characteristics are the sums of the fluctuations of these characteristics
at each hop.

Figure 2 presents the envelopes of the chirp-signal spectra for two-hop propagation along the chosen
path with the same parameters of irregularities as for Fig. 1. Here, the influence of random irregularities
(see Fig. 2b) on the signal-structure distortions is also particularly pronounced. In this case, the signal-
spectrum width is larger than that for one-hop propagation. This is related to the increase in the length
of the scattering region in the ionosphere for two-hop propagation. At the same time, a significant (greater
than 100 µs) broadening of the chirp-signal spectrum for two-hop propagation, observed in oblique-sounding
experimental ionograms in some cases [19], does not appear here. Such a discrepancy between the theoretical
calculations and the measurement data requires the analysis of other factors leading to such significant
distortions of the chirp signal.

First of all, the signal structure on a two-hop path was simulated under the assumption of the
specular reflection of waves from the boundary of the Earth–ionosphere waveguide, which seems inadequate.
Allowing for the actual profile of the ground, one should take into account the possibility of the additional
scattering of ionospheric radio waves [18, 20] and, hence, one can expect changes in the correlation properties
of the short-wave field. Therefore, for a more accurate description of the chirp signal in the case of two-hop
propagation, one needs, strictly speaking, the knowledge of the frequency-coherence function Γ(ω1, ω2, t1, t2)
of the field with allowance for scattering by the Earth’s rough surface.

Usually [16, 21], when solving the problem on wave scattering by a rough surface, the incidence of
a regular plane or spherical wave on this surface is considered. The problem of scattering of short radio
waves, reflected from the ionosphere, by the ground is more complicated, since the structure of the in-
cident ionospheric radio wave comprises distortions due to regular refraction and wave scattering in the
inhomogeneous ionosphere. Allowing for the fact that, for multiple-hop propagation of short radio waves,
the forward scattering by ground roughnesses is the most significant, we will mainly take the large-scale
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Fig. 2. Results of numerical simulation of the spectra of the upper and lower rays of a chirp signal for two-hop
propagation with allowance (a) for only the dispersion distortions and (b) for the distortions due to both the
medium dispersion and the influence of random ionospheric irregularities.

roughnesses into account. Within the framework of this assumption, scattering of ionospheric radio waves
by the ground can be calculated using the Kirchhoff method [16].

Within the framework of the Kirchhoff method, one can obtain the following expression for the wave
field scattered by the Earth:

U =
∫
VE(r′)

∂

∂N
[U0(r′)G(r′, r)] dL, (11)

where U0(r′) is incident-wave field, G(r′, r) is the Green’s function, N is the normal to the rough surface L,
and VE(r′) is the coefficient of reflection from the Earth.

We will use the geometric-optical approximation for the incident-wave field and the Green’s function
and, for simplicity, consider the problem of scattering by the Earth’s surface in a two-dimensional case
(neglecting the scattering in the azimuthal plane). Now the coordinate x corresponds to the distance along
an unperturbed (smooth) Earth’s surface, and the coordinate z, to the height measured from this surface.
In this case,

U = −
∫
VEqzA0(x′)AG(x′, x) exp[iΦ0(x′) + iΦG(x′, x)− iqzξ(x′)] dx′, (12)

where A0 and Φ0 are, respectively, the amplitude and phase of the incident wave,AG and ΦG are, respectively,
the amplitude and phase of the Green’s function, q is the wave vector of the scattered radiation at the ground,
and ξ(x′) is the function characterizing the ground roughness.

Assuming that ionospheric irregularities affect mainly the phase of the wave rather than its amplitude
(this is quite permissible in the framework of the ray approximation), we can neglect the amplitude fluctua-
tions. Then, using Eq. (12), we can obtain an expression for the frequency-coherence function Γ(ω1, ω2, t1, t2)
of the field. Assuming that the ray path in the ionosphere crosses a large number of irregularities, i.e., the
Gaussian distribution law holds for the phase fluctuations, we have

851



Γ(ω1, ω2, t1, t2) =
∫∫

V 2
Eq

2
z |A1(x1)A2(x1, x)|2 exp

[
iΦ1(x1, ω1t1) + iΦ2(x1, ω1t1, x)

− iΦ1(x2, ω2t2)− iΦ2(x2, ω2t2)− i

2

〈
[Φ̃1(x1, ω1t1) + Φ̃2(x1, ω1t1)− Φ̃1(x2, ω2t2) (13)

− Φ̃2(x2, ω2t2)− qz(ω1)ξ(x1) + qz(ω2)ξ(x2)]2
〉]

dx1 dx2,

where A1 and A2 are the field amplitudes at the first and second hops, respectively, and Φ1 and Φ2 are
the field phases at the first and second hops, respectively. Introducing the summation and difference vari-
ables x1 − x2 = ξ and x1 + x2 = 2η and setting ω2 = ω1 + ∆ω and t2 = t1 + ∆t, we perform the integration
and obtain

Γ(ω1, ω2, t1, t2) ≈
√

2π
∫
σ−1

p V 2
Eq

2
z |A1(η)A2(η)|2 exp

(
− q2x

2σ2
p

)
M(η) dη, (14)

where
M = exp[−iτ ′ ∆ω − iωg ∆t− (σ′τ ∆ω)2/2],

qz = −k
(√

1− S2
1 +

√
1− S2

2

)
, qx = −k (S1 − S2), τ ′ = τ +

qxψxτ

σ2
p

,

S1 = sinβr1, S2 = sinβr2, k is the wave number, βr1 and βr2 are, respectively, the incidence and reflection
angles at the scattering point on the ground,

σ′2τ = σ2
τ −

ψ2
xτ

σ2
p

, σ2
τ = σ2

τ1 + σ2
τ2 +

(
∂qz
∂ω

)2

σ2
E,

σ2
p = σ2

β1 + σ2
β2 + q2zσ

2
r , ψxτ = ψxτ1 + ψxτ2,

σ2
τ1 and σ2

τ2 are the variances of the ray propagation time at the first and second hops, respectively, σ2
β1

and σ2
β2 are the variances of the ray-arrival angles at the first and second hops, respectively, ψxτ1 and ψxτ2 are

the mutual-correlation functions of fluctuations of the distance and propagation time, respectively, of rays at
the hops, σ2

E = 〈ξ2〉 is the variance of the roughness amplitude of the Earth’s surface, and σ2
r =

〈
(∂ξ/∂η)2

〉
.

Substituting Eq. (14) into Eq. (7) and performing the integration in Eq. (6), we obtain the following
expression for the chirp-signal spectrum on the two-hop path:

|S(Ω)|2 =
T√
2π

∫
(σpΘ)−1V 2

Eq
2
z |A1(η)A2(η)|2 exp

[
− q2x

2σ2
p

− (Ω− ωg − τ ′ω̇)2

Θ2

]
dη, (15)

where Θ =
√
T−2 + 2ω̇2στ

′2 + (τ ′ω̇2T )2.

Equation (15) was used to simulate numerically the signal-spectrum distortions for various parameters
of ionospheric irregularities and ground roughnesses. The roughness of the Earth’s surface was described by
the Gaussian correlation function with the parameters µ and p, where

√
µ is the standard deviation of the

height and p is the spatial-correlation radius of ground roughnesses. As an example, Fig. 3 shows the results
of calculations of the mean power spectrum 〈S(Ω)|2〉, where the parameters of ionospheric irregularities
were chosen as above (ν = 10−6 and l = 1 km), µ = 10−2, and the scale p took the values 10.5 and 3 km.
It is easy to see that, due to scattering from the ground roughness, a wide temporal plateau appears in
the chirp-signal spectrum, which disappears upon smoothing the roughness. The feature of the plateau
dynamics in the chirp-signal spectrum is that it transforms to additional modes with an increase in the scale
of the ground roughness (see Figs. 3b and 3c). The trace analysis showed that such modes correspond to
combined ways of radio wave propagation. After reflection from the ionosphere, the bundle of lower rays
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of the first hop, scattering by the roughnesses of the Earth’s surface, further propagates in the upper way,
i.e., it transforms to the bundle of upper rays of the second hop (mode III in Fig. 3c). On the other hand,
the bundle of upper rays of the first hop transforms to the bundle of lower rays of the second hop upon
scattering by the Earth (mode IV in Fig. 3c). Since the energies transferred by the lower and upper rays are
different due to a large divergence of the upper rays, the energy contribution of mode III is more pronounced
in the chirp-signal spectrum and, in the sense of a temporal delay, this mode is adjacent to the fundamental
mode I corresponding to the two-hop lower-ray propagation. Combined mode IV has a temporal delay close
to that of the fundamental mode II corresponding to the two-hop upper-ray propagation. We note that due
to multiple wave scattering by the ionosphere and the roughnesses of the Earth’s surface, one should expect,
for multiple-hop paths, an increase in the number of additional combined modes not relating directly to
the regular structure of the ionosphere. This circumstance should apparently be taken into account when
solving the problem of forecasting the mode composition of the long-range radiocommunication signals.

Fig. 3. Results of numerical simulation of the chirp-signal spectrum in the case of two-hop propagation with
allowance for the distortions due to both the medium dispersion and the influence of random ionospheric
irregularities and ground roughnesses, for the spatial-correlation radii of ground roughnesses (a) p = 3 km,
(b) p = 5 km, and (c) p = 10 km.

853



4. RESULTS OF EXPERIMENTAL STUDIES

Fig. 4. Typical ionogram of oblique sounding
under the quiet ionospheric conditions for the
Irkutsk–Magadan path (11:41:00 UT, February
15, 1989).

To make a comparison with the above results
of theoretical calculations, we analyzed the experimental
chirp-ionosonde data for the Magadan–Irkutsk path. The
path length was D = 3000 km. The technical character-
istics of the used devices were given in [4], the frequency-
deviation rate was 100 kHz/s, and the sampling duration
(time-window duration) was T = 1 s. For processing, we
chose sessions with a typical structure of ionograms (see
Fig. 4). We have chosen 100 ionograms recorded in May
and October, 1989; February, 1994; and February, 1995.
The processing was made in three stages.

At the first stage, we made a preliminary process-
ing and identification of the propagation modes [22]. At
the second stage, using the interactive regime, we deter-
mined the maximum usable frequencies fMUF of the cor-
responding modes of a received signal. At the third stage,
we determined an equivalent duration τeq of the power
spectrum in the frequency band (0.85–1.00)f/fMUF with
frequency spacing 94 kHz (τeq = δΩ/ω̇, where δΩ is the

width of the power-spectrum envelope at the level 0.5 or 0.1). We note that in the absence of any distortion
in the ionospheric channel, τeq = 30 µs for the chosen processing parameters. We determined τeq in the
automatic regime for the one-hop signal and in the interactive regime for the two-hop signal.

Fig. 5. The shape of the signal power spectrum at the chirp-ionosonde output as a function of the ratio f/fMUF

for the case shown in Fig. 4: (a) the shape of the power spectrum of a one-hop signal (on the left and right
are the power spectra of the lower and upper modes, respectively) and (b) the shape of the power spectrum
of a two-hop signal.
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Fig. 6. Experimental dependence of the mean
equivalent duration τ̄eq of the power spectrum
of a one-hop signal at the level 0.5 on the
ratio f/fMUF: (a) τ̄eq for the lower mode
and (b) τ̄eq for the upper mode. The dotted line
shows the linear approximation of the experimen-
tal dependence.

Fig. 7. Experimental dependence of the mean
equivalent duration of the power spectrum of a
two-hop signal on the ratio f/fMUF: (a) the du-
ration τ̄eq determined at the level 0.5 and (b) the
duration τ̄eq determined at the level 0.1. The dot-
ted line shows the linear approximation of the ex-
perimental dependence.

Fig. 8. Experimental dependence of the mean
equivalent duration τ̄eq of the power spectrum of
a two-hop signal on the ratio f/fMUF in a wide
frequency band (05:03 UT, February 15, 1995).

Figure 5 shows typical power spectra for the one- and two-hop signals (Figs. 5a and 5b, respectively).
The presence of a plateau (significant increase in the τeq determined at the level 0.1) is typical of the case
of a two-hop signal, which is in agreement with the above-presented numerical results (see Fig. 3). Upon
determining a few values of τeq,i for each ratio f/fMUF, we calculate the mean value τeq = n−1

∑
i τeq,i,

where n is the number of values of τeq obtained for the same ratio f/fMUF (nmax = 100 is determined by
the number of chosen ionograms). The results of processing are given in Figs. 6 and 7.
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Analysis of the data obtained shows that, for the lower 1F mode (see Fig. 6a), the mean value of τeq

varies from 32 to 39 µs as the operating frequency increases. For the upper 1F mode (see Fig. 6b), τ̄eq varies
from 38 to 50 µs with increasing operating frequency. The characteristic behavior of τ̄eq for both modes
corresponds to the variation of the frequency-coherence function with the frequency [13].

For a two-hop signal (see Fig. 7), a more signif-

Fig. 9. Example of the appearance of addi-
tional multipath propagation in a narrow fre-
quency band. On the left is the frequency f in
kHz.

icant increase in τ̄eq is observed and the value of τ̄eq
determined at the level 0.5 varies from 65 to 88 µs
with increasing frequency. Its increase rate is some-
what greater than that for a one-hop signal. In the
band (0.98–1)f/fMUF, τ̄eq decreases.

Variation in the value of the quantity τ̄eq deter-
mined at the level 0.1 exhibits more complicated be-
havior. This quantity varies from 213 to 150 µs in
the band (0.85–1)f/fMUF with increasing frequency
(see. Fig. 7b). If we consider the character of variation
of τ̄eq in a wider band, the plateau tends to increase
with the frequency. Then, starting from a certain fre-
quency, a decrease in τ̄eq is observed as the frequency
approaches fMUF (see Fig. 8).

In separate sessions for a two-hop signal, the ef-
fect of additional multipath propagation appears to oc-
cur in a narrow frequency band. An example of such a
case is shown in Fig. 9. This effect, pointed out in our
numerical simulation (see. Fig. 3), is possible in the case
of a path over the territory with a mountain accident,
which is typical of the Irkutsk–Magadan path.

5. CONCLUSIONS

The presented results of our numerical simulation and the experimental data show that the proposed
method for calculating the structure of output signals of chirp ionosondes provides a correct qualitative
presentation of a number of effects caused by the influence of the ionospheric irregularities and the ground
roughness which give the main contribution to the change in the signal structure. For two-hop signals, the
ground roughness plays a dominant role. The influence of the ionospheric irregularities and the ground
roughness decreases considerably the resolution of chirp ionosondes and must be taken into account when
calculating the pass properties of the ionospheric communication channel.

We thank the editor for his extensive work on improving the quality of the paper. The present work
was supported by the Russian Foundation for Basic Research (project Nos. 98–02–16023 and 00–02–17780).
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