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Abstract. A theoretical model of field line resonance in
the magnetosphere with a dipole magnetic field and moving
plasma was constructed. Motion of medium was simulated
by its azimuthal rotation. Analytical and numerical solu-
tions were found for MHD equations describing the struc-
ture of field line resonances. It was shown that a monochro-
matic, fast magnetosonic wave can excite several harmonics
of standing Alfv́en waves on different resonant surfaces at
once. The resonant surface density is maximum in the transi-
tion layer at the magnetopause. The resonant oscillation am-
plitude profile becomes asymmetric in our model in regions
with a maximum gradient of the background plasma veloc-
ity (plasmapause and magnetopause), in contrast to models
with immobile plasma. In the same regions, the phase of res-
onant oscillations varies non-monotonically across the reso-
nant surface which may serve as a detector of such regions in
geomagnetic pulsation observations.

Keywords. Magnetospheric physics (MHD waves and in-
stabilities; Planetary magnetospheres) – Radio science (Mag-
netospheric physics)

1 Introduction

Resonant Alfv́en waves are a successful concept for inves-
tigating magnetospheric MHD oscillations (Dungey, 1954),
known as field line resonance (FLR).Tamao(1965) pointed
out the possibility of resonant excitation of Alfvén oscilla-
tions by a monochromatic fast magnetosonic (FMS) wave.
This idea was further developed byRadoski(1974); Chen
and Hasegawa(1974); Southwood(1974) and others.

There is a close connection between resonant Alfvén os-
cillations and different types of aurora (Samson et al., 1996;
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Lysak and Song, 2003). Kinetic Alfvén waves possess a lon-
gitudinal (about the magnetic field) component of the electric
field capable of accelerating charged magnetospheric parti-
cles precipitating in the ionosphere and induce optical auro-
rae (Hasegawa, 1976; Goertz, 1984).

A theory of magnetospheric MHD oscillations was first
developed for simple models of the magnetosphere.Kivel-
son and Southwood(1986); Southwood and Kivelson(1986)
employed a box model with straight magnetic field lines that
were bounded by two opposite planes which simulated the
high-conductivity ionosphere. This model enables us to ex-
plore the FLR phenomenon, taking into account plasma inho-
mogeneity, both along and across the magnetic field.Allan
et al. (1986, 1987) used a hemicylindrical magnetospheric
model in which magnetic field lines were semicircles. This
model provided an opportunity for investigating the curva-
ture effect of magnetic field lines in FLR.

The next step was to use a dipole magnetic field (Lifshitz
and Fedorov, 1986; Leonovich and Mazur, 1989; Chen and
Cowley, 1989; Lee and Lysak, 1989). These studies explored
the curvature effects of magnetic field lines and plasma in-
homogeneities along magnetic field lines and across mag-
netic shells. They were generalized to the case of three-
dimensional plasma in which the plasma inhomogeneity in
the azimuthal direction is also taken into account (Lee et al.,
1989). One of the distinctive features in dipole-like magne-
tospheric models is the multiplicity of resonances that can be
excited by the monochromatic magnetosonic wave within the
magnetosphere (Leonovich, 2001). In this case, the highest
concentration of resonant shells is in the layer adjoining the
magnetopause.

All the studies mentioned above concerned magneto-
spheric models with immobile plasma. It is well known
that regions of high gradients of the plasma velocity, which
can be a source of resonant Alfvén waves, create condi-
tions where the Kelvin-Helmholtz instability may develop
(McKenzie, 1970; Leonovich and Mishin, 2005). In the
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Fig. 1. A magnetospheric model with dipole magnetic field and az-
imuthally rotating plasma (v=(0, vφ,0)). Coordinate systems tied
to magnetic field lines are shown: a curvilinear orthogonal system
(x1, x2, x3) and a non-orthogonal system of coordinates (a, φ, θ ),
used in numerical calculations.

Earth’s magnetosphere, such conditions can be realized on
the magnetopause and plasmapause. Hence the plasma mo-
tion may be an important factor influencing FLR. A recent
study byWalker (2005) considers the possibility of excit-
ing FLR by a magnetosonic wave that passes from the so-
lar wind to the magnetosphere through a magnetopause with
shear flow. In this study an elementary, inhomogeneous,
one-dimensional slab model of the magnetosphere at rest in
the homogenous moving plasma of the solar wind was em-
ployed.

In this paper, our concern is with the effect of plasma mo-
tion on the FLR structure in the dipole magnetosphere. We
used a model in which plasma motion is simulated by its az-
imuthal rotation. In this model, the plasma is assumed to
be moving both within (at convective velocity) and outside
the magnetosphere (at solar wind velocity). Of particular im-
portance is the transition zone between the magnetosphere
and the solar wind near the plasmapause, where the plasma
motion gradient, and hence its effect on the FLR, are maxi-
mum. Here we take no notice of magnetosonic oscillations
which are the source of resonant Alfvén waves. We sim-
ulated their behaviour by a specially selected driver in the
equation for Alfv́en waves. In the following, we are going
to replace this model driver with an equation solution that
describes the FMS wave structure obtained in this study.

The structure of this paper is as follows. Section 2 de-
scribes a model of medium and basic equations derived there,
which show FLR in the dipole magnetosphere with rotating
plasma. The structure of standing Alfvén waves along ge-
omagnetic field lines is examined in Sect. 3. In Sect. 4, an
analytical solution was derived for an equation that describes
the structure of resonant Alfvén oscillations across magnetic
shells. In Sect. 5, we investigate numerically the field of res-
onant oscillations excited by a monochromatic source in the

magnetosphere. This source simulates an FMS wave that
penetrates into the magnetosphere from the magnetopause.
The principal results obtained here are listed in the Conclu-
sion.

2 Model of medium and major equations

In order to solve the problem posed, let us employ a magne-
tospheric model with a dipole magnetic field and azimuthally
rotating plasma (Fig. 1). A self-consistent analytical model
of such a magnetosphere was presented inLeonovich et al.
(2004). The rotating plasma simulates both its convective
motion inside the magnetosphere and in the solar wind flow-
ing round the magnetosphere. Whereas plasma in the pro-
cess is affected by centrifugal forces, the equilibrium of the
plasma configuration is sustained by a gas-kinetic pressure
gradient. This rather simple model allows for a realistic de-
scription of the distribution of plasma parameters in the day-
side magnetosphere.

To examine Alfv́en oscillations in this model, we will use
the system of ideal MHD equations:

ρ
dv

dt
= −∇P +

1

4π
[curlB × B], (1)

∂B

∂t
= curl[v × B], (2)

∂ρ

∂t
+ (∇1 − (ln ω̄)′) = 0, (3)

d

dt

P

ργ
= 0, (4)

whereB and v are the magnetic field vectors and plasma
motion velocities,P and ρ are the plasma pressure and
density, γ is the adiabatic index. In Eqs. (1) and (4),
d/dt=∂/∂t+(v∇) represents the Lagrangian derivative in
moving plasma. In steady state (∂/∂t=0), the set of Eqs. (1–
4) describes the distribution of the plasma equilibrium pa-
rametersB0, v0, P0 andρ0.

Let us introduce a curvilinear orthogonal coordinate sys-
tem (x1, x2, x3) tied to magnetic field lines. Thex3 coor-
dinate is directed along the field line,x1 across magnetic
shells, whereasx2 is directed azimuthally, resulting in a
right-handed coordinate system. In this system of coordi-
natesB0=(0,0, B03), v0=(0, v02,0), while the length ele-
ment has the form

ds2
= g1(dx

1)2 + g2(dx
2)2 + g3(dx

3)2,

wheregi (i=1,2,3) are metrical tensor elements. Using
the azimuthal angleφ as the azimuthal coordinate yields
v02≡vφ=

√
g2�, where� is the angular velocity of rotat-

ing plasma. Plasma rotation on each magnetic shell has a
constant angular velocity�≡�(x1). The magnetospheric
portion corresponding to the plasmasphere is immobile. In
the outer magnetosphere, the velocity of plasma rotation
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reachesv02∼30−50 km/s; this value is characteristic for con-
vective plasma motion in the outer magnetosphere. Passing
through the magnetopause, the plasma velocity increases to
v02≈400 km/s, typical of the solar wind.

Next, we linearise the system of Eqs. (1–4) relative
to small disturbances due to the plasma MHD oscilla-
tions. Consider the monochromatic oscillations of the form
exp(−iωt+ik2x

2), whereω is the oscillation frequency,k2
is the azimuthal wave vector (ifx2

=φ is the azimuthal angle,
thenk2≡m=0,±1,±2, . . . is the azimuthal wave number).
The first two Eqs. (1) yield

−ρ0(iω̄v1 + v2�∇1 ln g2)−
ρ̃�2

2
∇1g2 =

−∇1P̃ −
B0

4π

1
√
g3
(∇3B1 − ∇1B3), (5)

ρ0(−iω̄v2 + v1
∇1(g2�)

g1
+
v3�

g3
∇3g2) =

−ik2P̃ −
B0

4π

1
√
g3
(ik2B3 − ∇3B2), (6)

where∇i≡∂/∂x
i (i=1,2,3), while vi andBi are the dis-

turbed velocity and disturbed magnetic field vector compo-
nents, P̃ and ρ̃ are the disturbed pressure and density of
plasma. The added notation̄ω=ω−m� here refers to the
Doppler-shifted oscillation frequency in the rotating plasma.

To describe MHD oscillations, it is convenient to switch
from the components of the electromagnetic field and
disturbed velocity field to potentials. According to the
Helmholtz expansion theorem (Korn and Korn, 1968), an
arbitrary vector field can be represented as the sum of the
vortex-free and solenoidal fields.

Let us represent the disturbed electric field of the oscilla-
tions as

E = −∇ϕ + curl9,

whereϕ is the scalar potential, and9=(ψ1, ψ2, ψ3) is the
vector potential. This obviously implies thatE is invari-
ant to an arbitrary constant added to the scalar potential
ϕ→ϕ+const and to an arbitrary gradient added to the vec-
tor potential9→9+∇χ . Without losing generality one can
choose const=0, while selecting∇χ such thatψ1+∇1χ=0,
i.e.9=(0, ξ, ψ), whereξ=ψ2+∇2χ , ψ=ψ3+∇3χ .

The electric,E, magnetic,B, and velocity,v, fields of os-
cilaltions are discribed by Eq. (2) and

E = −
1

c
(v × B0 + v0 × B), (7)

which allows the components ofB andv to be expressed in
terms of the potentialsϕ, ξ andψ . Based on Eqs. (3) and (4),
one can also express the disturbed densityρ̃ and pressurẽP
in terms of the potentials.

Substituting these expressions into Eqs. (5), (6), we de-
duce the following system of equations:

∇1L̂T (∇1 − (ln ω̄)′)ϕ − k2
2L̂Pϕ = ik2L̂F0ψ + iL̂F1ψ, (8)

S2

C2
s

[
g3
√
g

∇1
g2
√
g

∇1ψ −
k2

2

g2
ψ −

k2�

ω̄

∇
2
3ψ

g3

]
+

√
g3L̂T (ω̄)

g1
√
g[

ψ+
�g2

k2ω̄

(
ω

ω̄
(ln�)′

∇1ψ

g1
+

∇
2
1ψ

g1
+

∇
2
3ψ

g3

)]
= (9)

−i
i

k2

ω

ω̄

√
g3L̂T (∇1−(ln ω̄)

′)ϕ,

whereg=g1g2g3,

L̂T =
1

√
g3

∇3
p

√
g3

∇3 + p
ω̄2

A2
,

L̂P =
1

√
g3

∇3
p−1

√
g3

∇3 + p−1 ω̄
2

A2
,

are the toroidal and poloidal longitudinal operators,
p=

√
g2/g1,

L̂F0 = ∇1
ω̄

ω
L̂T

g1
√
g

− L̂P
g2
√
g

∇1,

L̂F1 = ∇1L̂T

√
g

g3

(
�

ω

(
∇

2
19

g1
+

∇
2
39

g3

)
+
�′

ω̄

∇19

g1

)

+i
k2

2

ω

S2

C2
s

�′

√
g3

(
∇

2
19

g1
−
k2

2

g2
9 −

k2�

ω̄

∇
2
39

g3

)
,

A=B0/
√

4πρ0 is the Alfvén velocity,S=
√
γP0/ρ0 is the

sound velocity in plasmas,Cs=AS/
√
A2 + S2 is the veloc-

ity of slow magnetosonic waves.
We assume that the plasma motion exerts a special influ-

ence on the resonant Alfvén wave structure in the regions
with a high velocity gradient∇1�(x

1)≡�′. In this case, in
terms proportional to�, the derivatives of the medium pa-
rameters are ignored, except for�′(x1). In a similar man-
ner, no account is taken of the terms with the derivatives
of medium parameters proportional to the sound velocityS

(whereS�A). Besides, we employ the following equation
relating the potentialsϕ,ψ andξ

g3
√
g

∇1ξ = ∇3

(
ω

ω̄
ϕ − i

�

ω̄

g2
√
g

∇19

)
,

obtained from the third Eq. (7). If plasma is cold (P0=0) and
stationary (�=0), Eqs. (8), (9) transform into correspond-
ing equations describing the structure of resonant Alfvén and
FMS oscillations in cold plasma (Leonovich, 2001).

It is easy to verify that the right sides of Eqs. (8) and (9) be-
come zero in homogenous motionless plasma. The left side
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of Eq. (8) yields a dispersion equation for Alfvén waves:
ω2

−k2
‖
A2

=0; while the left side of Eq. (9) gives such an

equation for fast magnetic sound:ω2
−k2(A2

+S2)=0. Here
k2

=k2
‖
+k2

⊥
is the square of the total wave vector,k‖ andk⊥

are its parallel and perpendicular components about theB0.
In inhomogeneous plasma, these oscillations are interrelated
near resonant surfaces, where the magnetosonic wave fre-
quency is equal to the local frequency of Alfvén oscillations.
Further calculations will prove that the oscillation field re-
lated to the scalar potentialϕ dominates near the resonant
surface. Its polarization corresponds to Alfvén waves. If reg-
ularizing factors (such as dissipation or finite viscosity) are
ignored, theϕ field has a singularity on the resonant surface.
Hence the oscillations associated with the potentialϕ can be
interpreted as Alfv́en oscillations. The amplitude of these os-
cillations tends to decrease with distance from the resonant
surface. The scale of this decrease is determined by a regu-
larizing factor. Oscillations associated with the potentialψ

prevail far from this surface. The dispersion and polarization
of these oscillations correspond to the fast magnetic sound.

In Eq. (8), the right side describing FMS oscillations acts
as a source of resonant Alfvén waves. The right side of
Eq. (9) can be interpreted as a feedback from the Alfvén wave
on the field of FMS oscillations. As was demonstrated in
Leonovich(2001), this influence is insignificant and can be
ignored in a zeroth-order approximation. Thus, the field of
monochromatic FMS wave can be described by Eq. (9) with
a zero right side. Studying this equation in moving plasma is
a complicated problem that is beyond the scope of our task.
From here on we will suppose that the FMS wave field is
specified by a solution of the homogeneous Eq. (9).

Let us note an important peculiarity of this equation. It
is well known that, in immobile ideal plasma, the field line
resonance may only occur for oscillations withk2 6=0. This
agrees with the presence of the factork2, preceding the oper-
ator L̂F0 in the right side of Eq. (8). At first sight, it seems
that moving plasma provides an opportunity for resonant os-
cillations with k2=0, since thêLF1 operator does not be-
come zero whenk2→0. However, ifk2→0 in Eq. (9), and
the expression obtained there is taken into account, Eq. (8)
becomes zero, identically. Thus, excitation of Alfvén oscilla-
tions on the resonant surface is only possible for oscillations
with k2 6=0 in both the immovable and moving plasma cases.

We will focus on the Alfv́en oscillations in the vicinity
of resonant surfaces. Further calculations will show that the
potentialϕ has a singularity on these surfaces. The field of
resonant Alfv́en oscillations can be expressed through it. Let
us use the potentialϕ to write down expressions for the com-
ponents of the velocity and electromagnetic field associated
with the Alfvén oscillations:

E1 = −∇1ϕ, E2 = −ik2ϕ, E3 =
k2�

ω̄
∇3ϕ,

B1 =
k2c

ω̄

g1
√
g

∇3ϕ,

B2 = i
c

ω̄

g2
√
g

∇3

(
∇1 − k2

�′

ω̄

)
ϕ, B3 = 0, (10)

v1 = −i
k2

p

c

B0
ϕ, v2 =

cp

B0
∇1ϕ,

v3 ≈ i
cp

B0

�

ω̄
(∇3 ln g2)∇1ϕ.

Let us consider Eq. (8) describing the field of resonant
Alfv én wave.

3 The structure of resonant Alfvén waves along geo-
magnetic field lines

The assumption that the structure of the solution across mag-
netic shells is small-scale permits the method of different
scales (seeLeonovich and Mazur, 1989) to be used:

ϕ = V (x1)(T (x1, x3)+ τ(x1, x3))exp[ik2x
2
− iωt], (11)

where the functionV (x1) describes the small-scale solution
structure across magnetic shells,T (x1, x3) presents the so-
lution structure along magnetic field lines (the scale of this
function variation inx1 is identical to that of the medium’s
inhomogeneity, while being much larger than inV (x1)),
τ(x1, x3) is the higher order correction of the perturbation
theory. As the zero approximation, we derive an equation
retaining only the main terms proportional to∇2

1V (x
1) in

Eq. (8):

L̂T (ω̄)T ≡
∂

∂`
p
∂T

∂`
+ p

ω̄2

A2
T = 0, (12)

that determines the structure of the Alfvén oscillation field
along geomagnetic field lines. Here` is the field line length
measured from the equator (d`=

√
g3dx

3). For this approx-
imation, the ionosphere may be considered ideally conduc-
tive, yielding boundary conditionsT (x1, `±)=0 in which the
± signs refer to the ionospheres of the Northern and South-
ern Hemisphere, respectively. The eigenfunctionsTN (x

1, `)

and corresponding eigenvaluesω=�N , whereN=1,2,3...
is a wave number of the longitudinal harmonic of the oscil-
lations, provide a solution to Eq. (12) with such boundary
conditions. These solutions are Alfvén waves standing along
geomagnetic field lines and withN−1 nodes on the field line.
For sufficiently high wave numbers (N�1) the solution may
be presented in the WKB approximation. Let us choose nor-
malized conditions for the eigenfunctions as follows:

`+∫
`−

T 2
N p

A2
d` = 1. (13)

Then, the WKB-approximation solution may be shown as

TN =

√
2A

p tA
sin

�N `∫
`−

d`′

A(x1, `′)

 , �N =
πN

tA
, (14)
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Fig. 2. The structure of the first three harmonics of standing Alfvén
waves (bold lines) on the magnetic shellL=6 (dashed line).

where

tA(x
1) =

`+∫
`−

d`

A(x1, `)

is the travel time at the Alfv́en velocity along the field line be-
tween the magnetoconjugated ionospheres. Figure 2 demon-
strates the structure of the first three harmonics of standing
Alfv én waves on the magnetic shellL=6 (whereL=a/RE
is the McIlwain parameter,a is the equatorial radius of the
field line (see Fig. 1),RE is the Earth’s radius) for a model
magnetosphere with dipole magnetic field. Plasma distribu-
tion is specified according to the self-consistent model of the
magnetosphere with rotating plasma (Leonovich et al., 2004,
see Fig. 3).

4 The transverse structure of resonant Alfv́en waves

Now we will consider the structure of Alfv́en oscillations
across magnetic shells near the resonant surface. Substitute
the solution in the form Eq. (11) into Eq. (8) and consider
the solution for the functionT=TN (x

1, `) obtained from
Eq. (12). In the first order of the perturbation theory we de-
rive the following equation:

(∇2
1VN )

ω̄2
−�2

N

A2
p TN + (∇2

1VN )L̂T (�N ) τN

+(∇1VN )∇1
ω̄2

−�2
N

A2
p TN−

(∇1VN )(∇1 ln ω̄)
ω̄2

−�2
N

A2
p TN − k2

2VN L̂P (ω̄)TN

= ik2L̂F0ψ + iL̂F1ψ.

In the same approximation, the boundary condition on the
ionosphere regarding its finite Pedersen conductivity is of the
form (Leonovich and Mazur, 1996):

τN |`± = ∓
v±

�N

∂TN

∂`

∣∣∣∣
`±

, (15)

2 4 6 8 10 12 14 X(R  )
0

2

4

Y(R  )E

E

Fig. 3. The Alfvén velocity (103 km/s) isolines in the magnetic
meridian plane in the magnetospheric model under study. The
dashed lines indicate the plasmapause (L=4) and magnetopause
(L=10).

where

v± =
c2 cosχ±

4π6±
p

.

The signs± refer to the Northern and Southern Hemispheres,
χ is the angle between the vertical and the field line at its in-
tersection point with the ionosphere (see Fig. 1),6p is the in-
tegrated Pedersen conductivity in the ionosphere. Multiply-
ing this equation byTN on the left and integrating it along the
field line between the magnetoconjugated ionospheres yields

∇1[(ω̄ + iγN )
2
−�2

N ]∇1VN − (ω̄2
−�2

N )(∇1 ln ω̄)∇1VN

−k2
2[αN + ᾱN ((ω̄ + iγN )

2
−�2

N )] = iµN , (16)

where

αN =

`+∫
`−

TN L̂P (�N ) TNd` = −

`+∫
`−

T 2
N

∂2p−1

∂`2
d`,

ᾱN =

`+∫
`−

p−1T 2
N

A2
d`,

µN =

`+∫
`−

TN

(
k2L̂F0ψ + L̂F1ψ

)
d`.

An imaginary addition to the frequencyiγN (oscilla-
tion decrement) that emerges from the boundary conditions
(Eq.15), when we integrate the term withτN by parts, is:

γN =
1

ω̄2

[
p+v+

(
∂TN

∂`

)2

`+

+ p−v−

(
∂TN

∂`

)2

`−

]
.

For the function�N (x1) near the resonant surfacex1
=x1

TN

(�N (x1
TN )=ω̄), we employ the linear decomposition

�2
N ≈ ω̄2

(
1 −

x1
− x1

TN

2ā

)
,
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Fig. 4. The distribution of eigenfrequencies of the first harmonics of
standing Alfv́en waves (N=1,2, ...,7) across magnetic shells and
the valueω̄=ω−m�(x1) for f = ω/2π=10−2 Hz andm=±2,5.
The intersection points of these functions specify the location of
resonant surfaces.

where ā=[(ln�N (x1))′]−1 is the typical scale of plasma
inhomogeneity. Introducing a dimensionless coordinate
ξ=(x1

−x1
TN )/ā, we bring Eq. (16) into the form

∂

∂ξ
(ξ+iε)

∂VN

∂ξ
+dN (ξ+iε)

∂VN

∂ξ

−κ2
N [1+βN (ξ+iε)]=ifN , (17)

whereε=γN/ω̄, fN=ā2µN/ω̄
2,

dN =
�′

�N
k2ā, κ2

N =
αN

�2
N

k2
2ā

2, βN =
ᾱN

αN
�2
N .

We will solve this equation with the Fourier–transformation
method representingVN (ξ) as

VN (ξ) =
1

√
2π

∞∫
−∞

ṼN (k)exp(ikξ)dk.

Substituting this into Eq. (17), we derive an easy-to-solve,
first-order differential equation for̃VN . Returning to the so-
lution VN (ξ), we deduce the following:

VN (ξ) = −
fN

κN
√
βN

∞∫
0

exp[ik(ξ + iε)+ i9(k)]√
k2 − idNk + κ2

NβN

dk, (18)

where

9(k) =
κ2
N + dN/2√

κ2
NβN + d2

N/4
arctan

k

√
κ2
NβN + d2

N/4

κ2
NβN − ikdN/2

.

Let us discuss the behaviour of the solution obtained here
near the resonant shellξ=0 and in the asymptotic region
|ξ |→∞. Near the resonant surface, the bulk of the integral
(18) is composed withk→∞. Making k→∞ in the inte-
grand denominator yields

∂VN

∂ξ
≈

fN

κN
√
βN

exp[i9(∞)]

ξ + iε
,

VN ≈
fN

κN
√
βN

exp[i9(∞)] ln(ξ + iε).

It is evident that the field of the resonant Alfvén wave has a
well-known singularity whenε→0.

Conversely, at the asymptotics|ξ |→∞, the bulk of the
integral (18) is due to small values ofk→0. Assumingk=0
in the integrand denominator and in9(k), we have

VN ≈ −i
fN

κN
√
βN

1

ξ + iε
.

The resonant oscillation field linearly decreases with distance
from the resonant surface on a scale∼|(γN/ω̄)ā|�ā.

5 Discussion

Let us numerically investigate the resonant Alfvén oscilla-
tions excited by the monochromatic FMS wave in the mag-
netosphere with dipole magnetic field. Figure 3 presents
the Alfvén velocity distribution in the meridional plane in
this model (seeLeonovich et al., 2004). This model simu-
lates the dayside part of the moderately disturbed magneto-
sphere fairly well. For numerical calculations we employed
the nonorthogonal coordinate system (a, φ, θ ) in which the
equatorial radius of the magnetic shella , the azimuthal an-
gle φ , and the latitudeθ , measured from the equator, are
unambiguously related to the transverse coordinatex1, the
azimuthal coordinatex2, and the longitudinal coordinatex3

respectively (see Fig. 1). In this coordinate system

d` ≡
√
g3dx

3
= a cosθ

√
1 + 3 sin2 θdθ,

g1 = cos6 θ/(1 + 3 sin2 θ), g2 = a2 cos6 θ.

Figure 4 shows the distribution of several first eigenfre-
quencies of standing Alfv́en waves across magnetic shells
�N (x

1). Also presented is the distribution of functions
ω̄(x1) for several values of the azimuthal wave numberm

and for the fixed frequency of magnetosonic oscillations
f=ω/2π=10−2 Hz. Intersection points of these functions
are resonant surface positions. Obviously the resonant sur-
faces are mainly concentrated in the transition zone of the
magnetosphere, near the magnetopause.

We denote a physical component of the magnetic field of
Alfv én oscillations that has the highest amplitude on the res-
onant magnetic shell asBy=B2/

√
g2=|By | exp(iαy). As ev-

ident from test calculations, the best effect of the background

Ann. Geophys., 26, 689–698, 2008 www.ann-geophys.net/26/689/2008/



D. A. Kozlov and A. S. Leonovich: Structure of field line resonances in a dipole magnetosphere with moving plasma 695

(a) 8 9 10 11 12
L

0

2

4

αy
(rad)

1

0

5

2

7

3

(b) 8 9 10 11 L

-2

0

2

4

αy
(rad)

Fig. 5. The distribution of the resonant Alfvén oscillation phase
αy across magnetic shells. Panel(a) presents the distribution of
αy(x

1) in the model with moving plasma on the magnetic shell
L=10 for the harmonicsN=1, m=1,2,3,5,7, as well as in the
case of stationary plasma (�=0) (that is similar to the choice of
m=0). Panel(b) displays the distribution ofαy(x1) for the har-
monicN=1, m=7 on different resonant shells within the transition
layer.

plasma motion manifests itself in the transition zone near the
magnetopause. Let us consider the resonant oscillation phase
αy distribution across the resonant shellL=10, where the
gradient∇1�(x

1) is maximum (Fig. 5a). The plasma mo-
tion effect increases significantly with the increasing num-
ber of the azimuthal harmonic of the oscillations. This im-
plies that the phaseαy varies nonmonotonically across the
resonant layer, and decreases after having increased by∼π .
The higher the number is of the azimuthal harmonicm, the
smaller the scale of its subsequent decrease. This scale in-
creases with an increasing in the number of the longitudi-
nal harmonicN . Figure 5b presents the distributionαy(x1)

for the harmonicN=1, m=7 on different resonant mag-
netic shells within the transition layer 9<L<11. The higher
the plasma motion velocity gradient, the more pronounced
its effect on the phase of resonant oscillations. Notice that
near the plasmapause the same effect may be observed only
for the first harmonics of the resonant Alfvén oscillations
with a rather thin plasmapause (∼0.1RE), when the gradi-
ent∇1�(x

1) is comparable with that on the magnetopause.

(a) 8 9 10 11 L
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(b) 8 9 10 11 L
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|By|
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 Ω
(rad/s)

Fig. 6. The distribution of the resonant Alfvén oscillation am-
plitude |By | across magnetic shells. Panel(a) shows the distribu-
tion of |By(x

1)| on the magnetic shellL=10 for the harmonics
N=1, m=1,5, both in the moving plasma model (solid lines) and
in the stationary plasma case (dashed lines). Panel(b) presents the
distribution of|By(x1)| inside the transition layer for the harmonic
N=1, m=7, on different resonant shells (left semiaxis), as well as
of the plasma angular velocity�(x1) (right semiaxis).

Nonmonotonic behaviour of the phase of resonant Alfvén os-
cillations can be an indicator of a region with a high gradient
of the background plasma velocity.

Figure 6 presents similar distributions of the resonant
oscillation amplitude|By | within the transition layer. In
these calculations, we used the solution of Eq. (17) with the
unity right sidefN=1. Hereafter the calculations are per-
formed with a sufficiently small decrement of oscillations
γN=10−3 s−1, in order to reveal their resonant structure. Fig-
ure 6a shows the amplitude distribution of the basic longitu-
dinal harmonic of resonant oscillationsN=1 excited by FMS
waves with different azimuthal wave numbersm=1,5 on the
magnetic shellL=10. The plasma motion effect also in-
creases here with increasingm, though it is less pronounced
than for the phase of the oscillations considered. This effect
is an amplitude profile asymmetry. In the same figure, for
comparison, the amplitude distributions are plotted without
the plasma motion (i.e. with�=0) of the same resonant os-
cillations, which are symmetric about the resonant surface.
Figure 5b shows amplitude profiles of the resonant harmonic
N=1, m=5 on different magnetic shells inside the transition
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Fig. 7. The distribution of the amplitude (in the ionospheric pro-
jection) of the total field of resonant oscillations excited by the
monochromatic FMS wave (by the model driver (19)) in the dipole
magnetosphere. Panel(a) shows the field of oscillations excited
by the FMS harmonicn=1, m=1 with a frequency of 0.01 Hz;
Panel(b) presents the field of oscillations excited by the harmonic
n=5, m=3 with the same frequency.

layer. The angular velocity of the plasma rotation profile
�(x1) is also presented. It is obvious that the largest asym-
metry of the amplitude distribution can be observed in the
region with a maximum gradient value∇1�(x

1).

Let us consider now the total field of magnetospheric res-
onant oscillations, which can be excited by the monochro-
matic FMS wave that penetrates into the magnetosphere from
the solar wind or is induced by the Kelvin-Helmholtz in-
stability on the magnetopause. An investigation of mag-
netosonic oscillations in the magnetospheric model under
study is a rather complicated problem that requires special
examination. In this paper, we will replace the real so-
lution of Eq. (9) with the model driver using certain pe-
culiarities of the field of low-frequency FMS waves in the
dipole magnetospheric model (seeLeonovich and Mazur,
2000). Firstly, the inner magnetosphere is an opacity region
for such oscillations. As the WKB approximation, the typ-
ical scale of an FMS oscillation amplitude decrease is de-
termined by a factor exp[−

∫
|k1|dx

1
], where the wave vec-

tor componentk1 is defined by the local dispersion equation
k2

1(x
1)=ω2/(A2

+S2)−k2
2/g2−k

2
3/g3. For extremely low-

frequency wavesk2
1(x

1)≈−k2
2/g2−k

2
3/g3; i.e. the inner mag-

netosphere is the opacity region for them. Therefore we will

(a)

(b)

Fig. 8. The distribution of the amplitude|By(x1)| of the same
oscillations as in Fig. 7, in the meridional plane. The darker colour
marks the regions with high oscillation amplitude.

employ the following model for the function:

fN = mexp

−

√
m2

a2
+
n2

L2
(amp − a)

 , (19)

wherem andn are azimuthal and longitudinal wave numbers
for the harmonic of FMS oscillations,a andL are the typical
equatorial radius and length of the field line of the resonant
magnetic shell in question,amp is the equatorial radius of the
magnetopause. The factorm preceding the exponent corre-
sponds to the factork2 preceding the operator̂LF0 in Eq. (8).

Figure 7a presents the distribution of the amplitude of res-
onant Alfvén oscillations excited by the harmonic of FMS
oscillationsn=1, m=1 with a frequency of 0.01 Hz, across
magnetic shells. One can see that the main three harmonics
of standing Alfv́en wavesN=1, the second three harmonics
N=2, and higher harmonics are excited, respectively, inside
the inner magnetosphere, in the outer magnetosphere and
in the transition layer region. Figure 7b shows the field of
resonant Alfv́en oscillations excited by the FMS harmonic
n=5, m=3 with the same frequency of 0.01 Hz. Whereas
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the oscillation amplitude in the transition layer is practically
the same as in the previous case, the resonant oscillations
abruptly lose their amplitude away from the magnetopause
inside the magnetosphere. Figure 8a, b shows a distribution
of the same resonant oscillations in the magnetic meridian
plane. It is evident from these figures that the resonant oscil-
lation amplitude peaks near the equatorial plane (in longitu-
dinal structure antinodes) and ionosphere. The latter can be
explained by the abrupt increase in the Alfvén velocity value
as the ionosphere is approached (see Eq.14).

6 Conclusion

Let us list the main findings of our investigation.

1. A system for Eqs. (8–9) was derived describing the rela-
tionship between Alfv́en and magnetosonic oscillations
in a dipole magnetosphere with rotating plasma.

2. Analytical solutions were found to Eq. (8) which de-
scribe the structure of standing Alfvén waves excited by
the field of the monochromatic FMS wave on resonant
magnetic shells.

3. A numerical investigation of the field of resonant Alfvén
waves excited by a driver simulating a low-frequency
FMS wave was performed. The background plasma mo-
tion effect was demonstrated to be maximum in a region
with the maximum gradient of its velocity. These re-
gions are in the transition layer near the magnetopause
and at the plasmapause (when it is fairly thin:∼0.1RE).
This effect implies that the phase of resonant oscilla-
tions varies nonmonotonically in the vicinity of the res-
onant magnetic shell, and their amplitude profile be-
comes asymmetrical about the resonant surface. It can
serve as an indicator of regions with a high gradient of
the background plasma velocity.

4. A model with a smooth transition layer and straight
magnetic field lines has only one resonant surface for
the monochromatic FMS wave. In a magnetospheric
model with curved field lines there are numerous res-
onant surfaces for resonant Alfvén oscillations. The
highest density of resonant surfaces can be observed in
the transition layer near the magnetopause. Due to the
complicated profile of the Alfv́en velocity there may
be several resonant surfaces for the same harmonic of
standing Alfv́en waves inside the magnetosphere. Res-
onant oscillations excited by the basic (i.e. the largest-
scale) FMS wave field harmonics have the highest am-
plitude inside the magnetosphere.
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