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Abstract

We analyze the weak component of the localized temporal pattern variability of 3 GHz solar burst observed by the Ondrejov radio-

spectrograph. A complex, short and weak impulsive sample from the time series was analyzed by applying a method based on the gra-
dient pattern analysis and discrete wavelet decomposition. By analyzing canonical temporal variability patterns we show that the new
method can reliably characterize the phenomenological dynamical process of short time series (N 6 103 measurements) as the radio burst
addressed here. In the narrowest sense, by estimating the mutual information distance in the gradient spectra, we show that the fluctu-
ation pattern of the short and weak 3 GHz impulsive solar burst, with energetic amplitudes <350 SFU, is closer to the intermittent and
strong MHD turbulent variability pattern.
� 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Solar flares frequently radiate in the lowest microwave
range (1–3 GHz) but not much is known about the com-
plex pattern variability of these emissions. However, it is
known that the large amount of energy released during a
solar flare and the relatively short timescale in which all
related events occur lead to the conclusion that a solar flare
is a magneto-hydrodynamic (MHD) instability taking
place in a strongly anisotropic turbulent plasma (Kuperus,
1976). In this context, the solar radio burst at 3 GHz
observed during the June 6, 2000 flare, has been analyzed
for its complex temporal variability, which was also
observed by EIT/SOHO and SXT/Yohkoh, whose images
indicate the complex spatio-temporal flare loop interactions.
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Recently, using the Global Wavelet Analysis (also consid-
ering the Fourier Power Spectrum) the power spectra of
the 3 GHz signal, observed at low (0.6 s) temporal resolu-
tion, have been determined (Rosa et al., 2002a,b). The
3 GHz radio burst power spectrum exhibits a power-law
x�a with 1.50 6 a 6 1.82 which is an evidence of stochastic
process due to a self-affine dynamics as found in the MHD
turbulence theory. The basic definition of a self-affine sto-
chastic process is that the power spectral density of the cor-
responding time series has a power-law dependence on
frequency and its correspondent time series can exhibit a
finite correlation dimension due to anomalous fractal scal-
ing over its Gaussian fluctuation (Theiler, 1991). The pres-
ence of this characteristic power-law implies that the
fluctuations are correlated without a dominant characteris-
tic time scale, as predicted in the models for multi-loop
interactions (Tajima et al., 1987). From a previous analysis
it follows that loop structures can exist in a broad range of
ved.
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Fig. 2. (a) A fractional Brownian variability pattern; (b) A turbulent
variability pattern. Both are short (512 points) and have an equivalent
clustered impulsive profile pattern as the solar radio burst showed in
Figure 1b.
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spatial scales and their mutual interactions give rise to the
corresponding broad range of temporal scales with no pref-
erence for any particular period (Rosa et al., 2005).

An interesting aspect of these data, addressing its high
resolution time series (0.01 s), is that the entire time series,
as shown in Fig. 1, is composed by three impulsive clus-
tered events (on the left, middle and right of the entire time
series). The main profile, for each impulsive cluster, has a
peak of low (<350 SFU), intermediate (350–500 SFU)
and high amplitudes (>500 SFU). Of particular interest
are the clustered events whose amplitudes range within rel-
atively low solar flux units (<350 SFU), usually disregarded
from statistical analysis due to their low amount of mea-
surement points (�103). As showed in Fig. 1 these events
are interesting because their impulsive components are
richer in fine structures than the more intense components
(>500 SFU). As a consequence of this property the fine
characterization of the underlying self-affine variability is
less evident when compared to stochastic canonical fluctu-
ation patterns as shown in Fig. 2a and b. For fluctuation
patterns, showed in Fig. 2a and b, the power spectra are
Fig. 1. (a) The corresponding time series for the 3.0 GHz solar radio flux
observed, with 0.01 s resolution, from 16:34:50 to 16:35:17 UT in June 6,
2000 during a X2.3 solar flare. In the windows are impulsive clustered
events where the peak is of low (<350 SFU), intermediate (350–500 SFU)
and high amplitude (>500 SFU). In the small window on the left is shown
a short weak clustered impulsive event composed by 512 time-steps. (b)
The short weak clustered impulsive event with a normalized amplitude. (c)
Selected snapshots, observed by TRACE (171 Å

´
), representing the

evolution of the complex mutual loop structure from where the X2.3
flare is observed.
also like x�a with a = 2 and a = 5/3, respectively. These
time series were generated with the same length of the
selected short burst pattern showed in Fig. 2b (512 points)
as the reference pattern variability for two slightly different
canonical stochastic processes that will be introduced in
Section 2.2. As mentioned above, the problem here is that
time series like that are too short ((N < 103 measurements)
for robust power-law analysis aiming characterization of
self-affine stochastic processes.

In this paper, a complementary analysis, for short non-
stationary time series, is performed using the Gradient
Pattern Analysis (GPA) (Assireu et al., 2002; Rosa et al.,
2003) combined with the discrete wavelet decomposition
(Percival and Walden, 2000; Bolzan, 2005). The asymmetry
coefficient as a function of frequency provides a new kind
of spectrum from where it is possible to classify the short
temporal variability pattern taking into account a mutual
information distance among particular gradient spectra.
The proposal described here is to classify the selected short
burst pattern variability (SBP) (Fig. 1b) estimating its
mutual information distance with respect to the self-affine
canonical patterns representing weak and strong MHD
turbulent processes, respectively.

The paper is organized as follows: In the next Section we
describe the data including the canonical simulated turbu-
lent-like patterns. In Section 3 we introduce the gradient
spectral analysis method and show the results from its
application to the data described in Section 2. In the last
Section we discuss the performance of the method in the
context of solar physics.
2. Data

2.1. Selected solar burst

The June 6, 2000 flare, classified as X2.3, was observed
during 15:00–17:00 UT in the active region NOAA AR
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9026 (N21�, E23�). A full-halo coronal mass ejection and
the type II radio burst were reported in association with
this flare (Solar Flare NOAA Report). During the flare,
two impulsive phases at 15:14–15:40 UT and 16:34–16:40
UT were observed by the Ondrejov radiospectrograph
(Jiricka et al., 1993). The second phase of the flare was also
observed by the EIT/SOHO and SXT/Yohkoh instruments
(Rosa et al., 2005). Fig. 1a shows the main high resolution
sample observed at 3 GHz in the interval of 16:34:50–
16:35:17 UT with time resolution of 0.01 s (a time series
composed of 2658 points) from where it is possible to select
clustered impulsive bursts, specially those whose intensities
are restricted to low solar flux units (<350 SFU). Fig. 1b
shows the normalized selected short burst pattern (SBP)
that has been analyzed in this paper. Due to its short com-
position it is impossible to characterize the robustness of
the turbulent power-law, found by the whole burst, based
uniquely in the global wavelet spectra of the SBP event.

In Fig 1c are shown three snapshots, observed by

TRACE (171 Å
´

), representing the spatio-temporal dynam-

ics of the complex mutual loop structure from where the

X2.3 flare is observed.
2.2. Turbulent-like variability patterns

Stochastic intermittent fluctuations are characterized by
time series that display multi-scaling, irregular and quasi-
regular, amplitudes. Usually, intermittency is a characteris-
tic of the underlying dynamics and it is difficult to quantify,
as it appears in many variability patterns. A particularly
relevant case for physics is when the energy spectrum of
the stochastic intermittent fluctuations is a power-law com-
patible with turbulent process. In this context, one of the
basic questions in the theory of MHD turbulence is on
the slope of the one-dimensional energy spectra (Cho
et al., 2002). Contrary to the hydrodynamic turbulence,
the magneto-hydrodynamics (MHD) turbulence can exhi-
bit a class of energy spectra E(j) � j�a with 1 6 a 6 7/3
depending on the structural and dynamical aspects of the
magnetic field and wave number, j, involved. According
to the traditional Iroshnikov–Kraichnan theory, the
MHD turbulent spectrum has a = 3/2 (Kraichnan, 1965).
However, in this theory the MHD turbulence is formulated
upon the assumption that the turbulent process is three-
dimensionally isotropic and the nonlinearity becomes
weaker at smaller scales describing only the weak turbulent
process. In the last two decades analytic and high-resolu-
tion numerical simulations have shown that the MHD
energy cascade is directed mostly perpendicularly to the
guiding magnetic field, demonstrating that the MHD tur-
bulent process is indeed anisotropic and, as the anisotropy
is scale-dependent, eventually turbulence becomes strong
(Mason et al., 2006). Anisotropic models for strong
MHD turbulence where the process does not require inter-
mittency have the form Eðj?Þ � j�3=2

? (Boldyrev, 2005). In
the other hand, theoretical approaches for strong MHD
turbulence considering intermittency affecting the scaling
of higher-order correlation functions provide
Eðj?Þ � j�5=3

? (Goldreich and Sridhar, 1995). Interestingly,
intermittent anisotropic models forcing MHD weak turbu-
lence have shown a power-law with a = 2 (Galtier et al.,
2002). In the present case, mutual interacting solar loop
with nonlinear oscillations requires models considering
both anisotropy (Fig. 1c) and intermittency (Fig. 1a and
b). Thus, in the phenomenological analysis of the 3 GHz
solar flare considering the scenario given in our previous
papers (Rosa et al., 2002b, 2005), we investigate energy
spectra from intermittent MHD turbulent-like stochastic
variability patterns with a = 2 (weak turbulence) and
a = 5/3 (strong turbulence).

In order to characterize the fluctuation pattern of the SBP
time series, showed in Fig. 1b, we selected two turbulent-like
variability patterns generated from the stochastic systems as
given by Osborne and Provenzale (1989). In numerical the-
ory of 1/x noise the spectrum of the stochastic process is sam-
pled into a discrete series of frequencies and the random
function is then computed as a discrete series at times
ti = iDt, i = 1, . . . ,M. Thus, given a power spectrum of a ran-
dom function xk; P ðxkÞ � x�a

k , characterized by the spectral
index a, they define the correspondent real random time ser-
ies by simple superposition of harmonic oscillations given by

AðtiÞ ¼
XM=2

k¼1

½P ðxkÞDx�1=2 cosðxkti þ /kÞ; i ¼ 1; . . . ;M

ð1Þ

where xk = kDx (k = 1, . . . ,M/2), with Dx = 2p/MDt, and
the /k ‘s are the phases chosen to be random. The value of
MDt is the length of the time series requiring that the spec-
trum has a high-frequency cutoff at the Nyquist frequency
(p/Dt) (Panchev, 1971).

These stochastic time series have a self-affine structure in
the increments and they represent a class of fractional

Brownian fluctuation of index a with turbulent-like variabil-
ity patterns. From the symmetry principles codified in
group theory, self-affine fluctuations are only self-similar
under specific scaling transformations (Barabási and
Stanley, 1995). In that sense, fractional Brownian fluctua-
tions are a generalization of ordinary Brownian motion,
which corresponds to the case a = 1/2 (Mandelbrot, 1999).

A remarkable aspect in this approach has been investi-
gated by Rosa et al. (1998b) and Theiler (1991). They show
that the correlation dimension for fractional Brownian fluc-
tuation is a small finite value given by m = 2/(a � 1). From a
phenomenological point of view, even for stochastic fluctu-
ations driven by infinite modes as in turbulence, the space
dimension where coherent structures arise is the relevant
information given by distinct scaling regimes regulating
the self-oscillatory dynamics.

Thus, although scaling can be observed as a universal
characteristic, the causes of the scaling for different pro-
cesses can be physically different. Two interesting cases
are those involving turbulent fluids (neutral and ionized).



Fig. 3. The gradient pattern for the fluctuations among the first 484
measurements of the SBP profile showed in Figure 1b.
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The case a = 2 with m = 2 is for weak turbulence, where the
turbulence is driven by 2D Lagrangian inhomogeneities
without strong instabilities. As discussed above, this case
is also valid for weak MHD turbulence as given by Galtier
et al., 2002. The case a = 5/3 with m = 3 is for strong turbu-
lence driven by 3D Eulerian progressive fractionation of a
three-dimensional structure due to strong instabilities, also
valid for strong MHD turbulence with intermittency as
given by the model of Goldreich and Sridhar, 1995. Actu-
ally, for fully developed turbulence we have a � 5/3 in the
inertial range and a � 2 in the dissipative range (Yoshizawa
et al., 2003).

As we are interested in the SBP profile, we first com-
puted time series with 6000 points and then we selected
SBP-like burst profiles composed of 512 points. Two exam-
ples were normalized, one for a = 2 and the other for
a = 5/3, and they are shown in Fig. 2a and b, respectively.

3. The gradient spectral analysis

3.1. The asymmetry coefficient

Usually the characterization of irregular fluctuations
from time series, as given by turbulent-like profiles, is per-
formed on the amplitude differences, specifically on the
kurtosis measures from the respective PDF. For that, it is
necessary to have time series composed of �104 points.
For time series the GPA operation, described in the Appen-
dix of this paper, is straightforward and brings some
advantages on the traditional methodologies. The asymme-
try coefficient G is intrinsically calculated on the amplitude
differences (fluctuations) given by the gradient pattern. As
the first gradient moment is very sensitive to small changes
in the phase and modulus of each fluctuation vector, it can
distinguish complex variability patterns even when they are
very similar and consist of a low amount of vectors (Assi-
reu et al., 2002).

The SBP profile under investigation in this paper is com-
posed of only 512 SFU measurements. Thus, its respective
matrix of fluctuations, in order to get the square correspon-
dent minimum gradient lattice (22 · 22), must be con-
structed by taking 484 points. Note that 512 are not
reducible to a square gradient lattice L · L. This procedure
can be conducted by taking the points from left to right or
vice-versa, without loss of significant information (Assireu
et al., 2002). Thus, from each 484 measurements, a value
for G parameter is calculated from the operation on the
respective square gradient lattice 22 · 22. Fig. 3 shows
the 22 · 22 matrix of fluctuations for the first 484 measure-
ments of the SBP profile shown in Fig. 1b.

All the signals considered in this analysis are rich in
scales where the information about higher-order joint
probability densities and self-affine dimensions are hidden.
Thus, our second-step consists in obtaining the values of
asymmetric coefficient for each inherent frequency of the
signal. Thus, in such cases we can have the asymmetry coef-
ficient as a function of frequency G(x).
3.2. Wavelet decomposition

In a general framework, the wavelet transformation of a
time series A(t) is its deconvolution into a set of functions
xa,b where xa, b(t) = a�1/2x[a�1(t � b)], all derived from
the mother wavelet (MW) by translation b and scaling a
(e.g., Farge, 1992; Torrence and Compo, 1998). The MW
may be chosen to best reveal the signal’s structure under
consideration and, for very short time scale variability
under nonlinear modulation, we choose the discrete
Daubechies wavelet (DB8) (Daubechies, 1990). Thus, the
wavelet decomposition of our time series was obtained fol-
lowing a dyadic scale, using one scale at each octave from 1
to 9, giving nine decompositions (29 = 512), where the fre-
quencies are 1/2, 1/4, 1/8, 1/16, . . . , 1/512 of the fundamen-
tal frequency, considered here as 1 Hz (for the normalized
time series). Note that each original signal component pro-
vides a set of 9 specific 512 points time-series representing
the typical scaling variability in that frequency. In Fig. 4a
it is shown, as an example, the complete DB8 decomposi-
tion for the SBP time series. Once we have defined how
to decompose each original time series in a set of nine scal-
ing characteristic time series, the next step in our operation
is to obtain the respective gradient spectra by computing
the respective asymmetry coefficients.
3.3. Gradient spectra

For each set of decomposition it is possible to calculate
the respective asymmetry coefficient G, so that for each sig-
nal it is possible to have the asymmetry coefficient as a
function of the characteristic frequencies x, G(x). Thus,
the gradient spectrum obtained from a N-measurements
time series consists of ‘ values of G:{G(x1), . . . ,G(x‘)}
where ‘ is the amount of discrete decomposed time series
from the original signal, having 2‘ = N. In our case we have
‘ = 9 and then the respective gradient spectrum
{G(x1), . . . ,G(x9)} can be plotted in the G · log10 (x)
space. Note that, instead of using the discrete dyadic
decomposition, we could have a denser gradient spectrum



Fig. 4. (a) Db8 wavelet decomposition of the SBP time series. (b) The mutual gradient spectra obtained from the decomposition of each time series: solar
burst (circle), turbulent (cross) and Brownian (triangle).
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obtaining the equivalent continuous time–frequency
domain by means of a continuous wavelet transform. Actu-
ally, from such continuous time–frequency domain, it
would be possible to have an infinite set of time series
and, consequently, a continuous gradient spectrum. How-
ever, based on the multiresolution analysis theory, it is easy
to show that the reduction of the continuous wavelet trans-
form to its equivalent discrete decomposition contains the
main time–frequency components by means of the so-
called asymptotic representation. Moreover, the signals
are well approximated by a superposition of spectral lines
that represent a smooth transition between each pair of fre-
quency or period component guided by the wavelet skele-
ton (Mallat, 1989). Thus, for a given decomposed signal,
the search for its best gradient spectrum is well performed
by interpolating the ‘ points using a nonlinear fitting. After
fitting the ‘ points by a cubic spline, we can resample the
original ‘ points gradient spectrum by a denser set of
points. This, of course, costs much less computationally
than using a continuous wavelet transform to obtain the
gradient spectrum and, for our analysis, the denser resam-
ple procedure is necessary to estimate, with high precision,
the normalized mutual information distance between a pair
of gradient spectra.
3.4. The normalized mutual information distance

Based on the concept of relative entropy (or Kullback–
Leibler distance) (Kullback and Leibler, 1951), the normal-
ized mutual information distance, dN, is defined here as

dNðv=qÞ ¼
1

N

XN

n¼1

vn ln
vn

qn

� �
ð2Þ
where qn is the reference discrete gradient spectrum (in this
paper, it is alternatively the gradient spectra for one of the
canonical time series) and vn is the discrete gradient spec-
trum to be characterized (in this paper, it is the gradient
spectrum for the SBP time series). It is easy to show that
dN converges when the total number of gradient spectral
points is N P 102, so that we always use this criterion in
our denser discrete resample from the fitted continuous
function. For the time series analyzed in this paper, the rel-
ative entropic distances, dN, have been calculated consider-
ing at least 16 interpolated points between each two
adjacent points of the original gradient spectrum. Thus,
we have computed the normalized mutual information dis-
tances between gradient spectra having, at least,
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8 · 16 = 128 spectral points each, satisfying the conver-
gence condition mentioned above.

In Fig. 4b we can appreciate each characteristic gradient
spectrum: weak turbulence (D), strong turbulence (·) and
SBP (o). The values of dN obtained having vn as the SBP
are dN(vjqa=2) = 0.061 ± 0.002 and dN(vjqa=5/3) =
0.016 ± 0.002. Thus, comparing these values for dN, we
found the SBP closer to the strong MHD turbulent-like
pattern variability.

Performing several calculations (�200) for distinct
groups of short stochastic fluctuations, especially for both
MHD turbulent phenomenologies (a = 2 and a = 5/3), we
obtained a mutual information distance of 0.08 ± 0.01
between their respective gradient spectra.

4. Concluding remarks

Previous analysis of the 3 GHz radio burst investigated
in this work has shown the presence of a power-law x�a

with 1.50 6 a 6 1.82, which is an evidence of a stochastic
self-affine dynamics, probably related to the nonlinear loop
structure interactions in the solar corona. In this paper, we
have shown a more precise characterization of the weaker
component of this burst (here we call SBP) found in the
low amplitude clustered impulsive event with intensity
<350 SFU. Our analysis, based on an innovative method-
ology called gradient spectral analysis, has been classifying
the time variability profile of this SBP burst component as
a strong MHD turbulent-like pattern, a process with spec-
tral index a = 5/3 (Goldreich and Sridhar, 1995). In the
other hand, some theoretical approaches for solar radio
emission are based on plasma instabilities and Langmuir
turbulence without the explicit power-law derivation (e.g.,
Rizzato et al., 2003). Therefore, understanding of turbu-
lent-like variability patterns is a necessary requirement
for making further progress in the 1–3 GHz solar flare
radio emission interpretation.

In order to understand the role of plasma turbulence in
the development of solar flares, this result suggest that
anisotropic strong MHD intermittent turbulent process
can play a fundamental role in the generation of solar
bursts observed in the 1–3 GHz range. In that sense, scal-
ing free processes as intermittency and coherent states driv-
ing the loop system MHD coalescence instabilities can be
considered in the interpretation of complex solar radio
bursts and their EUV spatio-temporal counterpart (e.g.
Aschwanden et al., 2001).

Considering the correspondent correlation dimension
m = 3 and more intense and long radio bursts, attention
should also be given to other MHD 3D processes, such
as formation of MHD dissipative structures from a pro-
gressive fragmentation of a three-dimensional structure
and scale-dependent dynamics alignment (Mason et al.,
2006).

As a final note, it is expected that the analysis presented
here will prove useful in investigations of short complex
bursts belonging to solar flare radio signature and the addi-
tion of statistical significance tests will improve both quan-
titative and qualitative phenomenology of gradient spectral
analysis. In a general perspective, we believe that the gradi-
ent spectra can be applied to proceed a fine phenomenolog-
ical classification of the time variability patterns of many
radio bursts (types I, II, III, pulsations, etc) observed in
dynamical spectra.
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Appendix A. The Gradient Pattern Analysis

The Gradient Pattern Analysis (GPA) (Rosa et al.,
1998a,b, 1999, 2000, 2003; Ramos et al., 2000; Assireu
et al., 2002; Baroni et al., 2006a) is an innovative technique,
which characterizes extended patterns based on large and
small amplitude fluctuations of the spatial, temporal, and
spatio-temporal structures represented as a static or
dynamical gradient lattice. The local fluctuation between
each pair of amplitudes of the global pattern is character-
ized by its gradient vector at corresponding mesh-points
in the two-dimensional space. In this representation, the
relative values between adjacent amplitudes (‘‘local fluctu-
ations’’) are relevant, rather than the respective absolute
values.

Note that in a gradient field such relative values can be
characterized by each local vector norm and its orientation
(phase). In this approach, each local fluctuation is repre-
sented by a vector in a 2d-space. Thus, according to Rosa
et al. (2003), a given scalar field of fluctuations can be rep-
resented as a composition of four gradient moments: g1,
the integral representation of the fluctuation distribution
(vectors); g2, the integral representation of the correspond-
ing norms; g3, the integral representation of corresponding
phases; and g4, the complex representation of the gradient
pattern (a complex coefficient composed by each corre-
sponding pair of norm and phase). Considering the sets
of local norms and phases as discrete compact groups, spa-
tially distributed in a square lattice, the gradient moments
have the basic property of being globally invariant (for
rotation and modulation).

In this paper we use the first gradient moment, similarly
as given by Assireu et al. (2002), which we are identifying
here as the asymmetry coefficient G. For a given L · L glo-
bal fluctuation pattern the coefficient G can be computed
by means of the asymmetric amplitude fragmentation
(AAF) operator (Rosa et al., 1999). This computational
operator measures the symmetry breaking of a given fluctu-
ation lattice and has been used in several characterizations
(e.g., daSilva et al., 2000; Neto et al., 2001; Rosa et al.,
2003; Baroni et al., 2006b).

Thus, the gradient measurement of asymmetric fluctua-
tion, called here asymmetry coefficient G, is given by



Fig. A.1. GPA of two examples of time series composed by 64 points each (a and d). The respective gradient lattices (b and e) and triangulation fields (c
and f).
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G = je � fj/f, where f is the number of asymmetric fluctua-
tions and e is the geometric energy correlation given by the
number of connections among all fluctuations. The geo-
metric connection among the fluctuations is generated by
a Delaunay triangulation, taking the middle points of the
asymmetric fluctuations as vertices. Due to the possible
changes in the phases of each fluctuation (a vector in the
gradient lattice), the parameter e is very sensitive in detect-
ing local asymmetric fluctuations on the gradient lattice
(Rosa et al., 1999). Several calculations on random pat-
terns have shown that the parameter G quantifies the level
of asymmetric fluctuations and it is much more sensitive
and precise in characterizing irregular fluctuations than
the correlation length measures (Rosa et al., 1999). When
there is no asymmetric correlation in the fluctuation pat-
tern, the total number of asymmetric vectors is zero and
then, by definition, G is null. For a random and totally dis-
ordered fluctuation pattern, G has the highest value. For a
complex pattern composed by locally asymmetric fluctua-
tions, G is nonzero, defining different classes of irregular
fluctuation patterns. Fig. A.1 shows the GPA applied on
two examples of short time series composed of only 64
points each (A.1a and A.1d). In Fig. A.1b and A1e the
respective gradient lattices are shown. Fig. A.1c and A.1f
show the respective triangulation fields (A.1c and A.1f).
The examples are multi-periodic signals generated by arbi-
trary sine function summations. Note that for more regular
and low frequency fluctuations the triangulation field cap-
tures an increase of regularity in the gradient lattice.
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