# Федеральное государственное бюджетное учреждение науки Институт солнечно-земной физики Сибирского отделения Российской академии наук (ИСЗФ СО РАН)



# Рабочая программа учебной дисциплины

Приборы и методы астрофизики

Направление подготовки 03.06.01 «Физика и астрономия»

Направленность (профиль) Астрофизика и звездная астрономия

Квалификация (степень) **Исследователь. Преподаватель-исследователь** 

Форма обучения Очная, заочная

# СОДЕРЖАНИЕ

| I. Общие положения                                                  | 3  |
|---------------------------------------------------------------------|----|
| II. Характеристика рабочей программы                                | 3  |
| 2.1. Вид деятельности                                               |    |
| 2.2. Задачи деятельности                                            | 3  |
| 2.3. Перечень компетенций                                           | 4  |
| 3.4. Перечень умений и знаний                                       | 4  |
| III. Цель и задачи освоения программы дисциплины                    | 5  |
| 3.1. Цель                                                           | 5  |
| 3.2. Задачи                                                         | 5  |
| IV. Место дисциплины в структуре основной образовательной           |    |
| программы                                                           | 6  |
| V. Основная структура дисциплины                                    | 6  |
| VI. Содержание дисциплины                                           | 6  |
| 6.1. Краткое описание содержания теоретической части разделов и тем |    |
| дисциплины                                                          |    |
| 6.2. Тематика заданий для самостоятельной работы                    | 7  |
| VII. Применяемые образовательные технологии                         | 8  |
| VIII. Методы и технологии контроля уровня подготовки по дисциплине  | 8  |
| 8.1. Виды контрольных мероприятий, применяемых                      |    |
| контрольноизмерительных технологий и средств                        | 8  |
| 8.2. Критерии оценки уровня освоения учебной программы              |    |
| (рейтинг)                                                           |    |
| 8.3. Фонд оценочных средств для итоговой аттестации по дисциплине   |    |
| IX. Рекомендуемое информационное обеспечение дисциплины             |    |
| 9.1. Основная учебная литература                                    |    |
| 9.2. Дополнительная учебная и справочная литература                 |    |
| 9.3. Ресурсы сети Интернет                                          |    |
| 9.4. Рекомендуемые специализированные программные средства          |    |
| 9.5. Материально-техническое обеспечение дисциплины                 | 12 |

# І. ОБЩИЕ ПОЛОЖЕНИЯ

Программа составлена в соответствии с приказом Министерства образования и науки Российской Федерации от 19.11.2013 г. № 1250 «Об утверждении Порядка организации и осуществления образовательной деятельности по образовательным программам высшего образования — программам подготовки научно-педагогических кадров в аспирантуре (адъюнктуре)» и на основании письма Министерства образования и науки Российской Федерации от 22.06.2011 г. «О формировании основных образовательных программ послевузовского профессионального образования» на основе программы, разработанной экспертным советом Высшей аттестационной комиссии Министерства образования и науки Российской Федерации по физике при участии ИЗМИРАН и ИСЗФ СО РАН.

Рабочая программа «Приборы и методы астрофизики» входит в состав рабочих программ учебных дисциплин по профилю «Астрофизика и звездная астрономия» и представлена на сайте ИСЗФ СО РАН в разделе «Аспирантура» в открытом доступе для аспирантов и сотрудников Института.

# ІІ. ХАРАКТЕРИСТИКА РАБОЧЕЙ ПРОГРАММЫ

#### 2.1. Вид деятельности

Дисциплина охватывает круг вопросов, относящихся к научноисследовательской деятельности аспиранта. Область профессиональной деятельности включает: совокупность средств, способов и методов человеческой деятельности в области науки, направленных на изучение внешних слоев Солнца.

#### 2.2. Задачи деятельности

Задачами профессиональной деятельности аспиранта является теоретическая подготовка аспирантов к решению научных задач; изучение процессов в атмосфере Солнца; знакомство аспирантов с методами исследования внешних слоев Солнца.

### 2.3. Перечень компетенций

Освоение программы настоящей дисциплины позволит сформировать у обучающегося следующие компетенции:

приобретение новых знаний и умений в теоретических и методических вопросах исследований Солнца, знакомство с самыми современными их технологиями;

самостоятельным принятием решения в рамках своей профессиональной компетенции, готовностью работать над междисциплинарными проектами способностью находить, анализировать и перерабатывать информацию, используя современные информационные средства, включая гелиоинформационные технологии;

способностью применять знания о современных методах гелиофизических исследований;

способностью планировать и проводить гелиофизические научные исследования, оценивать их результаты;

способностью профессионально эксплуатировать современное гелиофизическое оборудование, оргтехнику и средства измерения; способностью выбирать методы их применения;

способностью выполнять эксплуатацию телескопов;

способностью решать прямые и обратные (некорректные) задачи гелиофизики на высоком уровне фундаментальной подготовки по теоретическим, методическим и алгоритмическим основам создания гелиофизических процессов.

## 2.4. Перечень умений и знаний

В процессе изучения курса «Приборы и методы астрофизики» аспирант должен приобрести знания и умения, необходимые для его дальнейшего профессионального становления, а именно:

#### Знать:

строение Солнца;

виды солнечного излучения;

образование магнитных полей.

#### Владеть:

умением работать на телескопах, обеспечивающих сбор необходимой информации;

умением составления научных отчетов по проведенным исследованиям и написанию статей.

#### Уметь:

применять методы обработки информации, получаемой при наблюдениях;

применять методы организации и проведения солнечных исследований.

# ІІІ. ЦЕЛЬ И ЗАДАЧИ ОСВОЕНИЯ ПРОГРАММЫ ДИСЦИПЛИНЫ

#### 3.1. Цель

Целью курса «Приборы и методы астрофизики» является получение фундаментальных знаний и возможности их использования в процессе дальнейшего обучения, при прохождении учебных практик, написания научных работ, в своей научной деятельности.

### 3.2. Задачи

Задачей курса «Приборы и методы астрофизики» является знакомство аспирантов с физическими процессами на Солнце, понятиями и физическими основами солнечной активности, физическими механизмами воздействия солнечных факторов на околоземное космическое пространство и биосферу.

# IV. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОСНОВНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Курс входит в вариативную часть Блока 1 «Дисциплины (модули» основной образовательной программы по профилю подготовки «Астрофизика и звездная астрономия» направления подготовки 01.03.06 «Физика и астрономия».

Для изучения дисциплины, необходимы знания и умения из дисциплин: «Математика», «Физика», «Теория поля», «Информатика».

Знания и умения, приобретаемые аспирантами после изучения дисциплины, будут использоваться для решения научных задач на этапе обработки полученного гелиофизического материала.

# V. ОСНОВНАЯ СТРУКТУРА ДИСЦИПЛИНЫ

| No        | Наименование тем       | Всего | Лекции | Практика | Самостоятельная |
|-----------|------------------------|-------|--------|----------|-----------------|
| $\Pi/\Pi$ |                        | часов |        |          | работа          |
| 1         | Фотосфера. Хромосфера. | 15    | 2      | _        | 4               |
|           | Корона Солнца          |       |        |          |                 |
| 2         | Излучение Солнца       | 5     | _      | _        | 12              |
| 3         | Магнитные поля         | 6     | _      | _        | 12              |
| 4         | Радиоизлучение Солнца  | 10    | 2      | _        | 4               |
|           | Итого:                 | 36    | 4      | _        | 32              |

### VI. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

# 6.1. Краткое описание содержания теоретической части разделов и тем дисциплины

# Тема 1. Фотосфера. Хромосфера. Корона Солнца

Фотосфера, непрерывный спектр, потемнение к краю. Фраунгоферов спектр. Грануляция. Пятиминутные колебания.

Хромосфера, ее структура, плотность, температура. Спикулы, Супергрануляция и хромосферная сетка. Протуберанцы, их типы, физические свойства, устойчивость.

Корона Солнца, строение, яркость и поляризация. Непрерывный и линейчатый спектр. Температура и плотность. Ионизационное равновесие.

# Тема 2. Излучение Солнца

Излучение Солнца в видимой, рентгеновской и далекой ультрафиолетовой областях спектра. Радиационное остывание. Механизмы «уширения» спектральных линий. Линии поглощения.

Баланс энергии в атмосфере Солнца. Источники нагрева и охлаждения. Переходная область между хромосферой и короной.

Магнитные поля на Солнце: крупномасштабное поле, локальные поля Солнечные пятна. Биполярные области. Тонкая структура полей.

#### Тема 3. Магнитные поля

Магнитные поля на Солнце: крупномасштабное поле, локальные поля. Солнечные пятна. Биполярные области. Тонкая структура полей.

### Тема 4. Радиоизлучение Солнца

Радиоизлучение спокойного Солнца и активных областей: спектр, поляризация. Всплески радиоизлучения I–V типов, причины возникновения их радиоизлучения, особенности всплесков в сантиметровом и дециметровом диапазонах. Низкочастотное радиоизлучение (гектометровый и километровый диапазоны). Исследование Солнца радиоастрономическими методами.

### 6.2. Тематика заданий для самостоятельной работы

Основные параметры солнечной атмосферы. Кулоновское взаимодействие. Квазинейтральность. Проводимость. Теплопроводность.

Магнитная гидродинамика. Основные уравнения. Понятия вмороженности. Силы, действующие на плазму в магнитном поле. Магнитостатика. Бессиловые и потенциальные поля. Численные МГД-методы.

Колебания в плазме. Звуковые и МГД-волны. Бесстолкновительные ударные волны. Перенос и диссипация энергии в плазме. Проблема нагрева хромосферы и короны.

Устойчивость. Методы исследования устойчивости. Энергетический принцип.

Пересоединение магнитных силовых линий. Токовые слои. Понятия о теории динамо.

#### VII. ПРИМЕНЯЕМЫЕ ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

При реализации данной программы применяются образовательные технологии, описанные в Таблице 2.

Таблица 2 - Применяемые образовательные технологии

| Технологии              | Виды занятий |          |     |  |  |
|-------------------------|--------------|----------|-----|--|--|
|                         | Лекции       | Практ.з. | CPC |  |  |
| Слайд-материалы         | +            | -        | -   |  |  |
| Работа в команде        | -            | -        | -   |  |  |
| Исследовательский метод | +            | -        | +   |  |  |
| Другие методы           | -            | -        | -   |  |  |

# VIII. МЕТОДЫ И ТЕХНОЛОГИИ КОНТРОЛЯ УРОВНЯ ПОДГОТОВКИ ПО ДИСЦИПЛИНЕ

# 8.1. Виды контрольных мероприятий, применяемых контрольноизмерительных технологий и средств

- Проверка наличия конспектов лекций по дисциплине.
- Экзамен по дисциплине.

# 8.2. Критерии оценки уровня освоения учебной программы (рейтинг)

Критериями оценки освоения программы являются:

1. Наличие конспектов лекций по дисциплине (наличие предоставляет допуск к экзамену).

#### 2. Сдача экзамена по дисциплине.

# 8.3. Фонд оценочных средств для итоговой аттестации по дисциплине

Вопросы для проведения экзамена:

Общие сведения и строение Солнца: ядро, радиативная и конвективная зоны.

Солнечная атмосфера: фотосфера, хромосфера и корона.

Солнечный спектр: рентгеновское и ультрафиолетовое излучение, видимый свет, инфракрасное излучение. Солнечная постоянная.

Радиоизлучение Солнца. Понятие медленно изменяющейся и спорадической компонент радиоизлучения.

Спорадическое радиоизлучение Солнца и его основные типы.

Излучение Солнца в видимой, рентгеновской и далекой ультрафиолетовой областях спектра.

Радиационное остывание.

Механизмы «уширения» спектральных линий. Линии поглощения.

Магнитные поля на Солнце: крупномасштабное поле, локальные поля, солнечные пятна.

Биполярные области. Тонкая структура полей.

Радиоизлучение спокойного Солнца и активных областей: спектр, поляризация.

Всплески радиоизлучения I-Y типов, причины возникновения их радиоизлучения, особенности всплесков в сантиметровом и дециметровом диапазонах.

Низкочастотное радиоизлучение (гектометровый и километровый диапазоны).

Исследование Солнца радиоастрономическими методами.

# IX. РЕКОМЕНДУЕМОЕ ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

## 9.1. Основная учебная литература

Прист Э.Р. Солнечная магнитогидродинамика. М.: Мир, 1985

Мартынов Д.Я. Курс общей астрофизики, 4-е изд., М.: Наука, 1988.

Соболев В.В. Курс теоретической астрофизики. М.: Наука, Физматлит, 1967.

Каплан С.А., Цытович В.Н., Пикельнер С.Б. Физика плазмы солнечной атмосферы, М.: Физматлит, 1977.

Пикельнер С.Б. Основы космической электродинамики, 2-е изд. М.: Физматгиз, 1966.

Альвен Г., Фельдхаммар К.Г. Космическая электродинамика. М.: Мир, 1967.

Солнечная и солнечно-земная физика: Иллюстрированный словарь терминов. М.: Мир, 1980.

Космическая магнитная гидродинамика: Сб./ Под ред. Э. Приста, А. Худа, М.: Мир, 1995.

Сомов Б.В. Космическая электродинамика и физика Солнца. М.: Изд-во МГУ, 1993.

Паркер Е. Динамические процессы в межпланетной среде. М.: Мир, 1965.

Астрофизика космических лучей / Под ред. В.Л. Гинзбурга. М.: Наука, 1990.

Лонгейр М. Астрофизика высоких энергий. М.: Мир, 1984.

Космические лучи и солнечный ветер / Г.Ф. Крымский, А.И. Кузьмин, П.А. Кривошапкин и др. Новосибирск: Наука, 1981.

Топтыгин И.Н. Космические лучи в межпланетных магнитных полях. М.: Наука, 1983.

Алтынцев А.Т., Кашапова Л.К. Введение в Радиоастрономию Солнца, Изд. ИГУ, Иркутск, 2014

Плазменная Гелиогеофизика, Под ред.Л.М.Зеленого, И.С.Веселовского, М.:ФИЗМАТЛИТ, 2008, 1 том, 672с.

Плазменная Гелиогеофизика, Под ред.Л.М.Зеленого, И.С.Веселовского, М.:ФИЗМАТЛИТ, 2008, 2 том, 560с.

Б.П. Филиппов, Эруптивные процессы на Солнце, М.Физматлит, 2007, 216с.

Aschwanden M. Physics of the solar corona: An Introduction with Problems and Solutions (Springer Praxis Books), Springer, 2006.

Ж.А.Биттенкорт, Основы физики плазмы, М.:Физматлит, 2009, 584 с.

А.Г. Куликовский, Г.А. Любимов, Магнитная гидродинамика, М.: Логос, 2005. -328 с.

Кирко И.М., Кирко Г.Е., Магнитная гидродинамика. Современное видение проблем, Научно-изд. центр "Регулярная и хаотическая динамика", 2009 г., 632 стр.

Parks G.K., Physics of Space Plasmas. Introduction, Westview Press., 2nd edition, 2004

Э. Прист, Т.Форбс, Магнитное пересоединение. Магнитогидродинамическая теория и приложения. М. Физматлит, 2005, 591с. Г.Альвен, К.-Г.Фельтхаммар. Космическая электродинамика, Мир, М., 1967.

# 9.2. Дополнительная учебная и справочная литература

Г.С. Иванов-Холодный, Г.М. Никольский. Солнце и ионосфера. М.: Наука. 1969. 456 с.

Д.А. Франк-Каменецкий. Лекции по физике плазмы. М.: Атомиздат. 1968. 287 с.

Л.А. Арцимович, Р.З. Сагдеев. Физика плазмы для физиков. М. Атомиздат. 1979. 165 с.

Солнечно-земная физика М.: «Мир». 1968. 428 с.

# 9.3. Ресурсы сети Интернет

Ресурсами по рабочей программе являются:

научная библиотека <u>eLIBRARY.RU</u>, более 20 полнотекстовых версий журналов по тематике курса;

информационная система доступа к российским журналам и обзорам ВИНИТИ РАН (http://vinitit.ru);

хранилище электронных копий всех издаваемых компанией Springer журналов http://www.springerlink.com/;

научная библиотека ИСЗФ СО РАН.

# 9.4. Рекомендуемые специализированные программные средства

Наряду стандартных офисных программ (MSExcel), расчеты производятся в программе математико-статистического моделирования IDL.

# 9.5. Материально-техническое обеспечение дисциплины

- Мультимедийное оборудование.
- Компьютеры отделов 3.00 и 4.00 ИСЗФ СО РАН.

Составители:

зав. аспирантурой, к. ф.-м. н.

ученый секретарь, к.ф.-м.н.

В.И. Поляков И.И. Салахутдинова

Согласовано: зам. директора по научной работе, д.ф.-м.н.

Одобрено Ученым советом ИСЗФ СО РАН (Протокол № 9 от 27 августа 2014 г.).