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a b s t r a c t

A problem of the structure and spectrum of standing slow magnetosonic waves in a dipole

plasmasphere is solved. Both an analytical (in WKB approximation) and numerical solutions are found

to the problem, for a distribution of the plasma parameters typical of the Earth’s plasmasphere. The

solutions allow us to treat the total electronic content oscillations registered above Japan as oscillations

of one of the first harmonics of standing slow magnetosonic waves. Near the ionosphere the main

components of the field of registered standing SMS waves are the plasma oscillations along magnetic

field lines, plasma concentration oscillation and the related oscillations of the gas-kinetic pressure. The

velocity of the plasma oscillations increases dramatically near the ionospheric conductive layer, which

should result in precipitation of the background plasma particles. This may be accompanied by

ionospheric F2 region airglows modulated with the periods of standing slow magnetosonic waves.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Electromagnetic oscillations of planets’ magnetospheres in the
low-frequency part of the spectrum are MHD waves. The typical
spatial scales of most low-frequency MHD oscillations are
comparable with the magnetospheric scales. There are two modes
of MHD oscillations capable of propagating almost exactly along
magnetic field lines—the Alfven waves and slow magnetosonic
(SMS) waves. Propagation of the fast magnetosonic (FMS) waves
is not related to the magnetic field direction. Since magnetic field
lines are closed, they cross the ionosphere twice (in the case of the
Earth—in the Northern and Southern hemispheres). Because it is
highly conductive, the ionosphere is an almost ideally reflecting
boundary for the waves under consideration. Therefore the Alfven
and SMS oscillations can form standing (along magnetic field
lines) waves in the magnetosphere. Many papers have been
devoted to the structure and spectrum of the standing Alfven
waves in dipole-like model magnetospheres (see Radoski, 1967;
Cummings et al., 1969; Leonovich and Mazur, 1989; Chen and
Cowley, 1989; Lee and Lysak, 1991; Wright, 1992 etc.).

Meanwhile, investigations of standing SMS waves are fairly
few: Taylor and Walker (1987), Leonovich et al. (2006), and
Klimushkin and Mager (2008). Insufficient attention paid to the
waves is probably due to their rather large decrement (Leonovich
and Kozlov, 2009), thanks to which the eigen-SMS-oscillations
decay rapidly making them difficult to register. Nevertheless,

if there is a rather strong source capable of generating such waves,
they may well be observed in the magnetosphere. Resonant SMS
waves excited in a dipole magnetosphere by a monochromatic
fast magnetosonic wave penetrating from the solar wind into the
magnetosphere were studied in Leonovich et al. (2006). The
typical wavelength of such SMS oscillations both in the direction
along magnetic field lines and in the azimuthal direction is of the
order of the characteristic scale of magnetospheric plasma
inhomogeneity. Across the magnetic shells, they have a typical
resonance structure with a characteristic scale that is much
smaller than the scale of magnetospheric plasma inhomogeneity.
Their amplitude decreases dramatically from the magnetospheric
equatorial plane to the ionosphere. Therefore, such oscillation is
possible to register at high-orbit spacecraft only.

Total electronic content (TEC) oscillations were registered by
Afraimovich et al. (2009) in GPS observations over Japan
concerning the terminator transit over the Earth’s ionosphere in
regions connected with the observation region through the
geomagnetic field lines. Such oscillations are best registered at
times close to the summer solstice. The oscillations appear in the
ionospheric region under consideration 20–30 min after the
evening terminator passes over the magnetoconjugated region
of the Southern hemisphere. The terminator passes through the
observation regions only 1 h after the TEC oscillations start. Since
the terminator at the latitudes under consideration moves at
supersonic velocity, the �OÅÑ oscillations in the period in question
cannot be related to the inner gravity waves generated by the
terminator. These waves are most likely responsible for the
oscillations of the total electronic content after the terminator
passes over the observation point. The periods of the observed
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TEC oscillations were within the 15–30 min range. Lower-
frequency oscillations were filtered artificially so as to eliminate
the effect of the GPS satellite movement.

Thus, a relationship is clearly traceable between the TEC
oscillations and processes in the magnetoconjugate region of the
ionosphere. Therefore it was suggested that the magnetoconju-
gate regions of the ionosphere interact through the Alfven or SMS
waves moving along the geomagnetic field lines. Both these wave
types are capable of disturbing the electron concentration near
the ionosphere. The disturbance of the concentration is an
essential property of the SMS waves. Whereas the Alfven waves
can disturb the concentration when they impinge onto the
ionosphere, by generating a FMS oscillation in the ionospheric
conducting layer (Pilipenko and Fedorov, 1995).

However, the specific periods of the first harmonics of standing
Alfven waves at the magnetic shells under consideration (� 10 s)
are very far from the periods of the observed TEC oscillations.
Therefore the generation of the observable oscillations by the
Alfven wave appears to be ineffective. The periods of the first
harmonics of standing SMS waves (� 20 min) fit exactly in the
required range. Therefore the conclusion has been made in
Afraimovich et al. (2009) that the TEC oscillations related to the
terminator transit in the magnetoconjugated region of the
ionosphere are, in fact, one (or a few) of the first harmonics of
standing SMS waves.

The assumption was based on the periods of the several first
harmonics of these oscillations as calculated in the WKB
approximation. More rigorous substantiation is needed, however.
For the purpose, we will calculate the total field of standing SMS
waves in the dipole model of the Earth’s plasmasphere and
compare the results with the observational data. SMS waves
related to the terminator transit are likely to have a rather large
typical wavelength across magnetic shells (comparable with the
typical scale of magnetospheric inhomogeneity) while being fairly
small-scale in the azimuthal direction. This paper is devoted to
calculating the spectrum, structure and amplitude of the wave
field components of such azimuthally small-scale standing SMS
waves observed near the ionosphere. The calculations are done
both analytically—in the WKB approximation—and numerically.
The results of the analytical calculations are compared to the
numerical results, and both these results are also compared to
observational data.

This paper has the following structure. Section 2 deals with
describing the model medium, deriving the basic equation for
calculating the structure and spectrum of azimuthally small-scale
standing SMS waves as well as obtaining analytical expressions
for the oscillation field components. An analytical WKB solution
to the basic equation describing the structure of the oscillation
field along a magnetic field line is obtained in Section 3.
A numerical solution to the basic equation is found, the
distributions of the oscillation field components along a magnetic
field line are constructed and the results are discussed in Section
4. The Conclusion lists the main results of the paper.

2. The model medium and the basic equations

Let us consider a model plasmasphere with dipole-like
magnetic field in Fig. 1. Let us introduce a curvilinear
orthogonal coordinate system (x1,x2,x3) associated with the
magnetic field lines. The x3 coordinate is directed along the field
line, x1 across the magnetic shells, and x2 makes the coordinates
system a right-handed one. The square of the length element in
this coordinate system is determined as

ds2
¼ g1ðdx1

Þ
2
þg2ðdx2

Þ
2
þg3ðdx3

Þ
2,

where g1,g2,g3 are the metric tensor components of the
curvilinear coordinate system under study. Let us assume the
plasma and magnetic field to be homogeneous with respect to
the x2 coordinate. We will describe the MHD oscillations using
the equation system for the ideal MHD:

rdv

dt
¼�rPþ

1

4p ½curl B� B�, ð1Þ

@B

@t
¼ curl½v� B�, ð2Þ

@r
@t
þrðrvÞ ¼ 0, ð3Þ

d

dt

P

rg ¼ 0, ð4Þ

where B and v are the magnetic field intensity and plasma motion
velocity vectors, respectively, r and P are the plasma density and
pressure, g is the adiabatic index. Moreover, we will determine
the oscillation electric field E using the drift approximation

E¼�
½v� B�

c
:

In steady state (@=@t¼ 0) the system (1)–(4) describes the
distribution of parameters of an unperturbed magnetosphere:
B0,v0, E0,r0,P0. We will assume the plasma to be immobile
(v0 ¼ E0 ¼ 0). Let us linearize the system (1)–(4) with respect
to small disturbances: B¼ B0þ

~B, v¼ v0þ ~v,E¼ ~E,r¼ r0þ ~r,
P¼ P0þ

~P , where ~B, ~v, ~E, ~r, ~P are the field components related to
the plasma MHD oscillations. Let us present each disturbed
component as an expansion over the Fourier harmonics of the
form expðik2x2�iotÞ, where o is the oscillation frequency, k2 is
the azimuthal wave number (if x2 �f is the azimuthal angle,
k2 �m¼ 1,2,3, . . .). From (1) we have

�ior0v1 ¼�r1
~Pþ

B0

4p
1ffiffiffiffiffi
g3
p ðr3B1�r1B3Þ, ð5Þ

�ior0v2 ¼�ik2
~P�

B0

4p
1ffiffiffiffiffi
g3
p ðik2B3�r3B2Þ, ð6Þ

ior0v3 ¼r3
~P , ð7Þ

where vi,Bi ði¼ 1,2,3Þ are the covariant components of the
disturbed velocity ~v and magnetic field ~B vectors, ri � @=@xi.
From (3), (4) we obtain

~P ¼�i
g
o

P1�s
0 ffiffiffi

g
p r1

ffiffiffi
g
p

g1
Ps0 v1

� ��
þ ik2

ffiffiffi
g
p

g2
Ps0 v2þr3

ffiffiffi
g
p

g3
Ps0 v3

� ��
,

where g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g1g2g3
p

, s¼ 1=g.

Fig. 1. The curvilinear orthogonal coordinate system (x1 ,x2 ,x3) associated with

magnetic field lines and the nonorthogonal coordinate system (a,f,y) used in

numerical calculations. The structure of the fifth harmonic of standing SMS-waves

along a magnetic field line is shown schematically.
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In order to describe the MHD oscillation field it is convenient
to use potentials instead of the field oscillation components
~B, ~v, ~E, ~r, ~P . The Helmholtz expansion theorem (Korn and Korn,
1968) allows an arbitrary vector field at each point of which its
first derivative is determined to be represented as the sum of the
potential and vortex fields. For a two-dimensional (2-D) vector
field ~E ¼ ðE1,E2,0Þ this expansion has the form:

~E ¼�r?jþ½r?,W�,

where r? � ðr1,r2Þ, j is the scalar potential, and W is the vector
potential.

An appropriate calibration can be used to make the vector
potential have only one, longitudinal, component: W¼ ð0,0,c3 �cÞ.
Using a linearized system (1)–(4) it is possible to express the
components of a perturbed field through the potentials j and c:

E1 ¼�r1jþ ik2c, ð8Þ

E2 ¼�ik2j�r1c, ð9Þ

E3 ¼ 0, ð10Þ

B1 ¼
c

o
g1ffiffiffi

g
p r3 k2j�i

g2ffiffiffi
g
p r1c

� �
,

B2 ¼
c

o
g2ffiffiffi

g
p r3 ir1jþk2

g1ffiffiffi
g
p c

� �
, ð11Þ

B3 ¼ i
c

o
g3ffiffiffi

g
p r1

g2ffiffiffi
g
p r1c�k2

2

g1ffiffiffi
g
p c

� �
,

v1 ¼�
cp�1

B0
ik2jþ

g2ffiffiffi
g
p r1c

� �
,

v2 ¼
cp

B0
r1j�ik2

g1ffiffiffi
g
p c

� �
, ð12Þ

v3 ¼�i
r3

~P

or0

, ð13Þ

and we obtain an equation for disturbed pressure

L̂0
~P ¼ ig c

o
P1�s

0 ffiffiffi
g
p ik2jr1

ffiffiffiffiffi
g3
p

Ps0
B0

:þr1
pPs0
B0
r1c�k2

2

p�1Ps0
B0

c
�

,

�
ð14Þ

where p¼
ffiffiffiffiffiffiffiffiffiffiffiffi
g2=g1

p
,

L̂0 ¼
g
o2

P1�s
0 ffiffiffi

g
p r3

ffiffiffi
g
p

g3

Ps0
r0

r3þ1:

Let us multiply (5) by ik2B0=r0, (6) by B0=r0, differentiate with
respect to x1 and subtract one obtained equation from the other. The
result will be

r1L̂Tr1j�k2
2 L̂Pjþ

S2

A2

jffiffiffiffiffiffiffiffiffiffi
g1g2
p r1lnB0r1ln

ffiffiffiffiffi
g3
p

Ps0
B0

� �

¼ i
k2

o
r1L̂T

g1ffiffiffi
g
p c�L̂P

g2ffiffiffi
g
p r1c

� �
, ð15Þ

where

L̂T ¼
1ffiffiffiffiffi
g3
p r3

pffiffiffiffiffi
g3
p r3þp

o2

A2
,

L̂P ¼
1ffiffiffiffiffi
g3
p r3

p�1ffiffiffiffiffi
g3
p r3þp�1 o2

A2
,

are the toroidal and poloidal longitudinal operators, S¼ g
ffiffiffiffiffiffiffiffiffiffiffiffiffi
P0=r0

p
is

the sound velocity in plasma, A¼ B0=
ffiffiffiffiffiffiffiffiffiffiffiffi
4pr0

p
is the Alfven speed. Let

us act the L̂0 functional on (6) and substitute the components of the
disturbed field from (10)–(13) into the resulting equation. After

some regrouping, we obtain

B0
ffiffiffiffiffi
g3
p

4pr0

L̂0
B0ffiffiffiffiffi
g3
p ~DcþS2Dcþo2c¼

�i
B0

ffiffiffiffiffi
g3
p

4pk2r0

L̂0B0L̂Tr1j�ijk2S2 g3ffiffiffi
g
p r1ln

ffiffiffiffiffi
g3
p

Ps0
B0

, ð16Þ

where

~D ¼
g3ffiffiffi

g
p r1

g2ffiffiffi
g
p r1�

k2
2

g2
þr3

g2ffiffiffi
g
p r3

g1ffiffiffi
g
p ,

D ¼
B0

Ps0

1ffiffiffiffiffiffiffiffiffiffi
g1g2
p r1

pPs0
B0
r1�

k2
2

p

Ps0
B0
þr3

ffiffiffi
g
p

g3

Ps0
r0

r3
r0

B0
ffiffiffiffiffi
g3
p

� �
,

are Laplacian analogues. Eqs. (15) and 16 formed a set of equations
closed with respect to potentials j and c. The right sides in (15) and
(16) tend to zero when we pass to homogeneous plasma. The
functional in the left side of (15) yields a dispersion equation for the
Alfven waves o2 ¼ k2

J A2, where k2
J � k2

3=g3, while the operator in
the left side of (16) yields a dispersion equation for the magneto-
sonic waves:

o4�o2k2ðA2þS2Þþk2k2
J A2S2 ¼ 0, ð17Þ

where k2 ¼ k2
J þk2

?, k2
? ¼ k2

1=g1þk2
2=g2. Therefore, it is justified to

conclude that the Alfven oscillations are described by the scalar
potential j, and the magnetosonic waves by the longitudinal
component of the vector potential c. In an inhomogeneous plasma
the right sides of (15) and (16) describe coupling of these branches
of MHD oscillations. A solution to (17) may be presented in the
form:

o2 ¼
k2

2
ðA2þS2Þ7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k4

4
ðA2þS2Þ

2
�k2k2

J A2S2

r
:

The plus sign corresponds to a dispersion equation for FMS waves,
whereas the minus sign to a dispersion equation for SMS waves. If
one of the inequalities S5A, A5S, jkJj5 jk?j is valid, it is possible to
obtain the following approximate dispersion equations:

o2 � k2C2
F ,

–for FMS-waves, where C2
F ¼ A2þS2, and

o2 � k2
J C2

S ,

– for SMS-waves, where C2
S ¼ A2S2=ðA2þS2Þ. One can see from the

form of these dispersion equations that CF and CS are the phase
velocities of the FMS and SMS wave, respectively. The numerical
calculations to follow rely on using the numerical Krinberg–Tashchilin
model plasmasphere, presented in detail in Krinberg and Taschilin
(1984) to calculate the distribution of parameters of background
plasma along a magnetic field line. Fig. 2 presents the distribution the
Alfven speed A and the velocity of SMS waves CS along the magnetic
field line crossing the Earth’s ionosphere over Japan (371N, 1381E) for
June 14, 2008, at 11 h UT. One can see that at least one of the above
inequalities (S5A) holds practically for the entire length of the field
line. The parameters of the medium in the Northern and Southern
hemispheres were calculated from 80 km altitude up to the field-line
top point � 1700 km. Let us take a special note of the sharp increase
of A and the decrease of Cs for altitudes ho400 km. They are due,
respectively, to a sharply decreasing concentration and temperature
of plasma ions at altitudes below the ionospheric F2-layer. The strong
asymmetry in the A and Cs profiles in the Northern and Southern
hemisphere is caused by differing boundary conditions on the
ionospheric ends of the field line: the ionosphere in the Northern
hemisphere is illuminated by the Sun, while being already in the
shades in the Southern hemisphere.

In this approximation the dispersion equation for SMS waves is
very similar to the dispersion equation for Alfven waves. The

A.S. Leonovich et al. / Planetary and Space Science 58 (2010) 1425–1433 1427
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velocity of SMS waves, as well as the Alfven speed, is directed
along the magnetic field lines. Since the potential c describes
both the fast and the slow magnetosonic waves, it is possible to
represent it in the linear approximation as a sum c¼cFþcS

where the cF component refers to the FMS wave, and the cS

component to the SMS wave. It is possible to demonstrate that in
homogeneous plasma the following relations are valid for SMS
waves (j¼ 0, c¼cS)

ð ~PþPmÞ= ~P � ð ~PþPmÞ=Pm ¼
k2
J

k2

A2

A2þS2
,

where Pm ¼ B0BJ=4p is disturbed magnetic pressure. It follows
from here that, for the oscillations with k?bkJ, the total pressure
in the SMS wave is practically not disturbed:

~Pþ
B0BJ

4p � 0: ð18Þ

In the frame of the magnetospheric model under consideration,
the typical eigenfrequencies of the first harmonics of standing
Alfven and SMS waves differ by more than two orders of
magnitudes. This means that coupling of the Alfven and SMS
waves on the closed field lines is almost zero. Therefore, when
studying the structure of the SMS oscillations described by (16),
let us assume j¼ 0 in its right side. For FMS waves with periods
410 min, examined in this work, the entire magnetosphere is an
opacity region. Therefore, we will assume that the FMS waves
from the solar wind do not penetrate into the plasmasphere and
cF ¼ 0. For SMS waves in the plasmasphere we use (16) to obtain

B0
ffiffiffiffiffi
g3
p

4pr0

L̂0
B0ffiffiffiffiffi
g3
p ~DcSþS2DcSþo2cS ¼ 0: ð19Þ

The boundary condition for the function cS on the ionosphere was
obtained in Leonovich et al. (2006). Vertical motions of the
atmosphere disturb the ionospheric conducting layer and
generate external currents jðextÞ in it. The boundary condition for
the function cS is

cSjx3 ¼ x3
�
¼ i

Jð�Þ

Sð�ÞP

, ð20Þ

where the x3
� coordinate corresponds to the intersection point of

a field line with the Southern ionosphere, Sð�ÞP is the high-
integrated Pedersen conductivity of the ionosphere, and the
functions Jð�Þ � Jðx3 ¼ x3

�Þ are related to the density of external
currents as follows:

D?J¼

Z D

0
ðr � jðextÞ

Þz dz,

where D? ¼r
2
xþr

2
y is the transverse Laplacian, D is the thickness

of the ionospheric conducting layer.
The characteristic scales of the first harmonics of standing SMS

waves excited by the terminator transit over the ionosphere, in a
direction along magnetic field lines (over the x3 coordinate) and
across magnetic shells (over the x1 coordinate), are much larger
than their azimuthal scale (over the x2 coordinate), determined by
the width of the terminator front. Therefore, the method of
various scales may be applied to finding a solution to (19). In the
main order, (19) retaining the terms proportional to the large
azimuthal wave number k2 (determined as the value inverse to
the azimuthal wavelength) only yields

S2A2

o2

r0

ffiffiffiffiffi
g3
p

Ps0
ffiffiffi
g
p

B0
r3

ffiffiffi
g
p

Ps0
g3r0

r3
B0

g2
ffiffiffiffiffi
g3
p cSþ

A2þS2

g2
cS ¼ 0: ð21Þ

The solution to this equation may be written as

cS ¼ Vðx1ÞSðx1,x3Þ,

where the function Vðx1Þ is determined by the source of
oscillations under consideration and describes the distribution
of their amplitude across the magnetic shells. The function
Sðx1,x3Þ describes the potential distribution cS along a magnetic
field line and is determined by Eq. (21). The function depends on
the x1 coordinate as a parameter. In further calculations it is
convenient to introduce the function Hðx1,x3Þ ¼ Sðx1,x3ÞB0=ðg2

ffiffiffiffiffi
g3
p
Þ

described by the equation

@

@‘
aðx1,‘Þ

@H

@‘
þ
o2

C2
S

aðx1,‘ÞH¼ 0, ð22Þ

where @‘¼
ffiffiffiffiffi
g3
p

@x3 is the length element along a field line (see
Fig. 1), aðx1,‘Þ ¼ Ps0

ffiffiffiffiffiffiffiffiffiffi
g1g2
p

=r0. The main field components of
azimuthally small-scale SMS waves may be represented in
the form

E1 ¼ ik2cS, ð23Þ

E2 ¼�r1cS, ð24Þ

E3 ¼ 0, ð25Þ

B1 ¼�i
c

o
g1ffiffiffi

g
p r3

g2ffiffiffi
g
p r1cS, ð26Þ

B2 ¼ k2
c

o
g2ffiffiffi

g
p r3

g1ffiffiffi
g
p cS,

B3 ¼�i
c

o
k2

2

g2
cS, ð27Þ

v1 ¼�
c

B0
ffiffiffiffiffi
g3
p r1cS, ð28Þ

v2 ¼�i
k2c

B0
ffiffiffiffiffi
g3
p cS, ð29Þ

v3 ¼�i
r3

~P

or0

: ð30Þ

In determining the disturbed pressure, let us use an approximate
Eq. (18), which together with (27) and (29) yields the following
expression for the longitudinal component of the plasma

-200 20

θ°

0

0.001

0.002

0.003

C
s (

10
3 km

/s
)

0
0

2

4

A
 (

10
3 km

/s
)

1200 16001600 1200 800800

h (km)

Fig. 2. Alfven speed AðyÞ (dashed line) and SMS wave velocity CsðyÞ distributions

(solid line) along the field line crossing the Earth’s ionosphere in the Northern

hemisphere above Japan (371N, 1381E) at 11 h UT on June 14, 2008. The

parameters of the medium were calculated using the numerical model of the

plasmasphere by Krinberg and Taschilin (1984).
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oscillation velocity

vJ �
v3ffiffiffiffiffi
g3
p � Vðx1Þ

ck2
2

4pr0o2

@Hðx1,‘Þ

@‘
: ð31Þ

As will be seen in the subsequent calculations, the plasma
concentration oscillations near the ionosphere determining the
TEC oscillations registered by the GPS receiver system, are mainly
linked to the longitudinal velocity component of the oscillations
(31). Therefore, having the linearized Eq. (21) retain the main
term only, � vJ, that has an antinode in the ionospheric
conductive layer, produces the following expression for the
disturbed density

~r � i
vJ

o ffiffiffiffiffiffiffiffiffiffi
g1g2
p

@

@‘
r0

ffiffiffiffiffiffiffiffiffiffi
g1g2
p

, ð32Þ

which serves as a basis for determining the plasma concentration
oscillations.

3. Determination of standing SMS wave components using the
WKB approximation

In order to obtain a qualitative picture of the structure of the
main components of the SMS oscillation field under consideration,
let us solve the Eq. (22) in the WKB approximation. Its solution
may be found using perturbation theory methods. In the zero
order we obtain Eq. (22), and we use (20) as the boundary
condition, where we assume the ionosphere to be ideally
conductive (Sð�ÞP -1). This is similar to the vanishing of the
tangential components of the oscillation electric field:
E1ðx

1,‘7 Þ ¼ E2ðx
1,‘7 Þ ¼ 0. Hence we have Hðx1,‘7 Þ ¼ 0, where

‘7 are the intersection points of a field line with the upper
boundary of the ionospheric conducting layer in the Northern
(plus) and Southern (minus) hemispheres, respectively. In the first
order of the perturbation theory it is possible to obtain an
equation for the function Vðx1Þ, and to take into account the
nonzero right part in the boundary condition (20). Solving this
equation it is possible to determine the amplitude distribution of
Vðx1Þ, expressed through the amplitude of external currents in the
ionosphere. The procedure is presented in its full form in Kozlov
(2008). Unfortunately we do not know the amplitude of external
currents in the ionospheric conducting layer. Therefore we will
restrict ourselves to solving the zero approximation describing
longitudinal eigenfunctions Hðx1,‘Þ. We will determine the TEC
oscillation amplitude applying the data on the parallel plasma
velocity of the oscillations, registered by the DEMETER satellite
simultaneously with TEC oscillations, to calibrating the eigen-
functions.

The solution of (22), with such boundary conditions, is a series
of eigenfunctions Hnðx1,‘Þ and corresponding eigenfrequencies
OSnðx

1Þ, where n¼1,2,3,yis the longitudinal wavenumber. In the
two first orders of the WKB approximation the solution of (22)
satisfying the above boundary conditions has the form

Hn ¼ Cn

ffiffiffiffiffiffiffiffi
aCs

OSn

s
sin OSn

Z ‘

‘�

d‘u

Cs

� �
, ð33Þ

where Cn is an arbitrary constant, OSn ¼ pn=ts,

ts ¼

Z ‘þ

‘�

d‘u

Cs
ð34Þ

is the travel time at SMS wave velocity along a field line between
the magnetoconjugate ionospheres.

Thus, the form of the solution (33) implies that it is only those
components of the standing SMS wave field that have an antinode
in the ionospheric conductive layer (�r3cS � @cS=@‘) that will
have an amplitude large enough to be observed near the

ionosphere. It is clear from (25)–(32) that B? ¼ ðB1=
ffiffiffiffiffi
g1
p

,B2=
ffiffiffiffiffi
g2
p
Þ,

vJ and ~r are such field components. For the n-th harmonic of
standing SMS waves we have, in the WKB-approximation,

vJn ¼
wn

r0

ffiffiffiffiffi
a
Cs

r
cos OSn

Z ‘

‘�

d‘u

Cs

� �
,

where the notations are wnðx1Þ ¼ CnVnðx1Þck2
2=4pO3=2

Sn ðx
1Þ. Plasma

density disturbance is determined by Eq. (32) when vJ ¼ vJn and
o¼OSn, while for the main component of a disturbed magnetic
field of azimuthally small-scale SMS waves we have

B? � By ¼ B2=
ffiffiffiffiffi
g2
p
¼ vJnOSnB0

ffiffiffiffiffi
g2
p

=k2A2:

Let us now address the results of numerical calculations of the
spectrum and structure of basic field components of standing SMS
waves.

4. Numerical calculation results and discussion

The calculations below refer to the date of June 14, 2008,
discussed in Afraimovich et al. (2009), when the TEC oscillations
related to the terminator transit in the magnetoconjugate iono-
sphere were observed over Japan. The field line crossing the
Northern hemisphere at the point with coordinates (371N, 1381E)
is taken as an example. The numerical model of Krinberg and
Taschilin (1984) was used to calculate the medium parameters.
The numerical calculations relied on a coordinate system (a,f,y)
associated with the field line of a dipole magnetic field (see Fig. 1).
Here a is the equatorial radius of a field line, f is the azimuthal
angle, y is the latitude measured from the equator. The radius
vector of a point on a field line in this coordinates system is

r¼ acosy,

and the length element

dl¼ acosy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ3sin2y

q
dy:

The dipole magnetic field intensity is determined by

B0ða,yÞ ¼ B0
a0

a

� �3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ3sin2y

p
cos6y

,

where B0 is magnetic field magnitude on the field line with
equatorial radius a0 (on the Earth’s surface a0 ¼ RE, B0 ¼ 0:32 G).
The metric tensor components in this coordinate system are

g1 ¼
cos6y

1þ3sin2y
, g2 ¼ a2cos6y:

The AðyÞ and CsðyÞ distributions along the field line in question at
11 h UT on June 14, 2008 are shown in Fig. 2.

Fig. 3 presents the diurnal variation of the periods of the first
six harmonics of standing SMS waves on the field line mentioned
above. One’s attention is drawn to the fact that the oscillation
period of the first harmonic (� 3002400 min) is very different
from those of all the other harmonics (less than 90 min). As was
expected, the difference between the oscillation periods
calculated both numerically and in the WKB approximation
decreases with the harmonic number n. The range of the TEC
oscillation periods observed in Afraimovich et al. (2009) includes
harmonics with n¼4,5,6. Given the fact that oscillations with
periods larger than 30 min were filtered in the observations, one
can expect lower-frequency harmonics to be present as well.
However, they are difficult to extract against the background of
dynamical effects related to the motion of the GPS satellites.

Fig. 4 presents the structure of HnðyÞ for the four first
harmonics of standing SMS waves on the field line under
consideration at 11 h UT on June 14, 2008. One can see that the
structures of the first harmonic calculated numerically and in the
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WKB approximation differ very much. The structures of higher
harmonics are not so different, the difference decreasing with
harmonic number n. Fig. 5 presents the structure of derivatives
dHn=dy for the 4th, 5th, 6th harmonics, which are within the
frequency band of the oscillations observed in Afraimovich et al.
(2009). Note that these derivatives, defining the structure of the

SMS wave field components near the ionosphere, have rather
sharp peaks at altitudes � 2002400 km. This fact is important for
the technique for estimating the TEC oscillations which is
presented below.

To find the standing SMS wave amplitude distribution it is
necessary to specify the amplitude of a component of the waves at
any point on the field line. The most direct way is to specify the
oscillation amplitude in the regions of the source—terminator
transit over the ionosphere. Unfortunately, there are still no direct
measuring of such oscillations simultaneously with observations
of the TEC oscillations in the magnetoconjugate ionosphere. There
is a work by Onishi et al. (2009), however, providing data on
simultaneous observations of the TEC oscillations and the long-
itudinal velocity component of the plasma oscillations vJ by the
DEMETER satellite, flying over the region of the TEC oscillations at
altitudes of 650–700 km. One cannot be completely sure, of
course, that the oscillations observed in Onishi et al. (2009) are
standing SMS waves, but we will still make an attempt to apply
the relations in that work to calibrating the SMS oscillations we
are now discussing. During several passages over North America,
the DEMETER satellite registered vJ oscillations with amplitudes
20–80 km/s and the accompanying TEC oscillations with ampli-
tudes (0.1–0.6)�1016 m�2 (oscillations of the total electron
content in a tube 1 m2 in cross-section running from the satellite
to the GPS receiver on the Earth’s surface).

We will set the oscillation amplitude jvJj ¼ 50 km=s at altitude
660 km in our subsequent calculations. Let us assume that the
spectrum of the observed oscillations is dominated by oscillations
of a certain harmonic, so that the set amplitude of vJ determines
the oscillations of this particular harmonic. Fig. 6 presents the
distribution of vJ along the magnetic field line for the 4th, 5th, 6th
harmonics of standing SMS waves. The different signs of vJ

correspond to antiphase oscillations. The most interesting feature
of these oscillations is a sharp growing amplitude, by several
orders of magnitude, at altitudes ho400 km. As follows from (31),
this is due to a sharp decrease in r0 (see also Fig. 2). Of course, the
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model medium in this work does not include the influence of
medium viscosity and collisions between charged particles and
neutrals. In the real ionosphere, therefore, the oscillation
amplitude will not increase so dramatically, but still it may be
asserted that the increase will be rather significant. This in turn
should result in charged particles periodically precipitating into
the ionospheric F2 region, possibly accompanied by an airglow of
the neutral component at these altitudes. If the terminator transit
in the magnetoconjugate ionosphere is regarded as a possible
source of such oscillations, the pre-dawn 1–2 h at a time close to
the winter solstice should be the most favourable times for
observing the airglow. It is during this time that the delay
between the passage of the terminator through the Northern
hemisphere and through the magnetoconjugate area in the
ionosphere of the Southern hemisphere is longest.

Let us consider now the distribution of the amplitude of the
longitudinal component of the oscillation magnetic field along a
field line. Fig. 7 shows the amplitude distribution of the
By�component of the field (By ¼ B2=

ffiffiffiffiffi
g2
p

is a physical
component), which is the predominant component near the
ionosphere, for the 4th, 5th, 6th harmonics of standing SMS
waves. It follows from (11) that the amplitude of the component
is inversely proportional to the azimuthal wave number m.
Estimating the typical width of the terminator front � 122 h, we
choose m¼20. The plots demonstrate that the amplitude reaches
its maximum at altitudes ho400 km and does not exceed
0.008 nT. This means that the magnetic field oscillations are
almost impossible to extract against the background of natural
noise.

Finally, let us consider electron density oscillations in standing
SMS waves. In the model medium we employ, the plasma consists
of several types of ions. In the ideal MHD approximation used for
calculating the structure of standing SMS waves, the density of

quasi-neutral plasma is calculated as ~r ¼ ~m ~n, where

~n ¼
X

i

ni

is total ion concentration,

~m ¼

P
inimiP

ini

is normalised mass of the plasma particles, and the summing is
for all the particle types. It follows from (32) that the above
calculation of vJ determines the distribution of ~r, that together
with a quasi-neutrality condition of plasma result in
ne ¼ ~n ¼ ~r= ~mFthe disturbance of the electron concentration.

Fig. 8 presents the distribution of ne along the field line for the
4th, 5th, 6th harmonics of standing SMS waves. ne exhibits sharp
peaks at altitudes � 200 km in the Southern hemisphere and at
� 300 km in the Northern hemisphere. This fact enables us to
estimate the magnitude of the TEC oscillations by integrating ne

along a magnetic field line. Thanks to a sharp peak in the ne

distribution, the magnitude of

NeJðyÞ ¼
Z ‘

‘7

ned‘u¼ a

Z y

y7

neðyuÞcosyu
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ3sin2yu

q
dyu,

at altitudes h4400 km should not be much different from the TEC
oscillation amplitudes obtained by integrating along the line
drawn from the GPS receiver on the Earth’s surface to the satellite.
Here the 7signs refer to the upper boundary of the ionospheric
conductive layer in the Northern and Southern hemispheres,
respectively, and integration is along the magnetic field line.

Fig. 9 presents the distribution of NeJðyÞ in the Southern and
Northern parts of the plasmasphere for the 4th, 5th, 6th
harmonics of standing SMS waves. It is evident that the thus-
obtained oscillation amplitudes jNeJj � ð0:420:8Þ � 1016 m�2 for
h4400 km, tally well with the TEC oscillation amplitudes
observed in Onishi et al. (2009). This makes us hope that the
oscillations observed in Onishi et al. (2009) are also SMS
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oscillations. TEC oscillation amplitudes observed in Afraimovich
et al. (2009) are 10 times as small (0.01–0.04) �1016 m�2.

It follows from the above said that near the ionosphere it is the
oscillations of the longitudinal component of plasma velocity vJ

and plasma concentration ~n oscillations (and relevant TEC
oscillations) that are the observable parameters of standing SMS

waves. Notably, it follows from (32) that the oscillations of vJ and
~n are p=2 out of phase at any point. However, this dephasing may
be different for unsteady oscillation.

5. Conclusion

Let us list the main results of this study.

1. The Eq. (22) is obtained for calculating the field structure of
azimuthally small-scale standing SMS waves in a dipole-like
plasmasphere. Both an analytical (WKB) and numerical
solutions are obtained to this equation for the plasma
parameters distributed similarly to the Earth’s plasmasphere.

2. The spectrum of the oscillation periods of the first harmonics of
standing SMS waves is calculated on the field line crossing the
Earth’s ionosphere at (371N, 1381E) at 11 h UT on June 14, 2008. Of
the harmonics we have calculated, the 4th, 5th and 6th harmonics
fall within the range of periods of the observed oscillations treated
in Afraimovich et al. (2009) as standing SMS waves.

3. Longitudinal (along the above-mentioned magnetic field line)
distributions have been plotted for the components of the SMS
wave field (vJ, ne, By) that can be observed near the ionosphere
at the low-orbit DEMETER satellite. It is shown that near the
ionosphere, the field of standing SMS waves are plasma
oscillations along the background magnetic field, which do
not perturb this field. The plasma velocity vJ and plasma
concentration ~n oscillations are p=2 out of phase at any point.

4. Calibration of the amplitudes of the above field components in
the numerical calculations relied on the data of simultaneous
observations of the TEC oscillations and the vJ oscillations by
the DEMETER satellite in Onishi et al. (2009). The TEC
oscillations NeJ � ð0:420:8Þ � 1016 m�2 calculated by us for
the 4th, 5th, 6th harmonics of standing SMS waves are in good
agreement with TEC oscillations Ne � ð0:1�0:6Þ � 1016 m�2

observed by Onishi et al. (2009).
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