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Abstract. This paper discusses effects of turbulent transport of
mean axisymmetric magnetic fields in inhomogeneous rotating
fluids. Rotationally-induced anisotropy was shown to enable
turbulence transporting toroidal and poloidal components of the
field in different directions. Qualitative interpretations of the
findings are suggested. For the Rossby numbers typical of deep
layers of the solar convection zone, the poloidal field is trans-
ported towards the poles while toroidal field moves equator-
wards. The vertical component of toroidal field transport changes
its sign at a latitude 1* ~ 30°, being directed downward at higher
and upward at lower latitudes. Typical velocities and times of the
field transports in the solar convection zone are estimated, and
the possible role of the transport effects in the mean field
dynamics over a solar cycle is discussed.
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1. Introduction

It is widely accepted that magnetic fields of the Sun are generated
by dynamo mechanisms operating in convection zone. The
dynamo-models are known to require an increase in angular
velocity of global rotation with depth to reproduce the observed
equatorward drift of solar activity. However, recent helioseismo-
logy data (Harvey 1988; Libbrecht 1988; Narrow 1988) revealed a
near-constancy of angular velocity with depth at middle and low
latitudes. Hence, the drift of dynamo-waves along isorotational
surfaces (Yoshimura 1975) cannot account for the equatorward
migration of sunspot activity. This suggests that traditional
dynamo-models of the solar cycle miss some physics which is
important for the mean magnetic field transport in the convection
zone of the Sun.

The solar dynamo literature concentrates mainly upon two
effects of convection: turbulent diffusion and the so-called alpha-
effect (Steenbeck et al. 1966) of cyclonic turbulence. This is,
probably, because these two effects, together with inhomogeneity
of global rotation, were found sufficient to get oscillatory solu-
tions of the induction equation and to model solar cyclicity. It has
long been known, however, that there is, at least, one more effect
of turbulence, namely turbulent transport of magnetic field, which
may be important for the solar magnetic field dynamics.

Zeldovich (1957) and Spitzer (1957) discovered diamagnetism
of inhomogeneously-turbulent conducting fluids: the mean mag-
netic field is transported with the velocity vy = —Vn,/2, where 7,
is turbulent diffusivity of the field. However, the inhomogeneity of
turbulent diffusivity in convection zone of the Sun is small (Spruit
1974). Density inhomogeneity is more pronounced by far. This
inhomogeneity was also found capable of causing turbulent
transport of mean magnetic field. Drobyshevski (1977) considered
the two-dimensional random flow of a density-stratified rotating
conducting fluid and has found that the mean magnetic field is
transported with the effective velocity vy ~ (Vp)n,/p, though the
fluid as a whole is at rest. Later on, Vainshtein (1978) demon-
strated this effect to disappear for three-dimensional locally-
isotropic turbulence. However, the transport reappears again
when turbulence has an anisotropy with preferred direction
different from that of density gradient (Vainshtein 1978; Plieva
1987). The required anisotropy can be induced by rotational
influence on turbulence.

This paper considers the mean magnetic field transport by
turbulence in density-stratified rotating fluids. We shall find that
rotational influence on convection (turbulence) causes the trans-
port effect to acquire a remarkable property: the direction of
magnetic field transport depends on the orientation of the field.
The poloidal axisymmetric field is transported polewards. On the
contrary, the toroidal axisymmetric field is transported equator-
ward in latitude, whereas radial transport velocity of this field has
no definite sign and is positive (upward) at low latitudes and
negative (downward) at high latitudes for values of the Rossby
numbers typical of the large-scale solar convection. These find-
ings are consistent with the observed poleward migration of solar
poloidal fields (Howard 1974; Makarov et al. 1983) and with the
equatorward transport of the toroidal fields implied by the
observed drift of sunspot activity. The estimated transport velo-
cities are close to the required values, and the latitude of a change
of sign of the radial velocity of toroidal field transport roughly
corresponds to the maximal latitude of the sunspot activity zone.
The same features of the mean field transport by random
convective motions are expected for any star whose rotation is
sufficiently rapid. When the angular velocity of global rotation
tends to zero, velocities of turbulent transport of toroidal and
poloidal fields tend to coincide and to be purely radial, as should
be the case.

Our treatment starts with a consideration in Sect. 2 of two
simple examples of the turbulent transport of the mean magnetic
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field which, though being not directly applicable to the solar
convection zone, serve well to illustrate the physical nature of the
transport mechanisms discussed in the next sections. Velocities of
axisymmetric mean field transport by turbulence in density-
stratified rotating fluids will be derived in Sect. 3. Section 4
considers implications for mean magnetic field dynamics in the
Sun. Section 5 contains brief final remarks.

2. Two simple examples

In this section we consider two relatively simple cases of turbu-
lence. The consideration reproduces the main features of the
mean field transport effects found in the subsequent treatment of
rotating turbulence and simplifies greatly the qualitative inter-
pretation of the findings.

A description of dynamics of mean magnetic field B=(H)
(magnetic field H is a superposition of mean, B, and fluctuating, A,
components: H= B+ h, (h)=0) requires derivation of the mean
electromotive force (EMF), e= {u x k), which contributes to the
averaged induction equation.

0BJot=V x {ux h>+nAB, @.1)

where velocity u is assumed to have a zero mean value, and 7 is
magnetic diffusivity.

2.1. First example: two-dimensional turbulence
of a density-stratified fluid

Let us consider a turbulent conducting fluid with an inhomogene-
ous density distribution. We assume the density gradient, Vp, to
have the same direction (downward) everywhere and the density
profile to be steady,

div pu=0. 2.2)

Note that Eq. (2.2) naturally results from the anelastic approxi-
mation for subsonic convection (see, e.g., Gilman & Glatzmaier
1981) which is widely applied to the Sun. Equation (2.2) makes it
more convenient to use solenoidal momentum density p=pu,
instead of velocity . Let turbulence be two-dimensional with the
flow velocity, u, not varying along a horizontal (normal to density
gradient) direction defined by a unit vector e. (Note that parallel
velocities u,, =(u'e) need not be zero but merely independent of
the coordinate x =(r-e).) Assume further that turbulence is statis-
tically steady and quasi-isotropic in planes normal to vector e.
Inhomogeneous turbulence cannot be strictly isotropic. The term
“quasi-isotropy” means inhomogeneous but as close to isotropy
as possible (Vainshtein 1978; Kichatinov 1987). The spectral
tensor for such turbulence is

E(k, o, k)
4k
+ (kik— k) 2k2] Sk - ) (e + ),

(pilz, ) py(a, )y = [6;;— kik;/k*

(2.3)
where
k=(z—27')2 and k=z+7.

The circumflex above letters in (2.3) and below means Fourier-
amplitudes, e.g.,

p(r, )={exp(iz- r—iot) p(z, ®) dz do.

The spectral tensor (2.3) differs from that derived by Kichatinov
(1987) for three-dimensional quasi-isotropic turbulence by the

presence of the delta-function 6(k-e), which means two-dimen-
sionality, and by the normalizing coefficient. We keep in (2.3) only
terms of up to first order in the ratio x/k which is equivalent to
I/L, where [ is a typical scale of turbulent motions, and L is the
spatial scale of variations of mean quantities.

The function E(k, w, k) in (2.3) is a Fourier-transform of a local
spectrum, i.e.,

E(k, , = E(k, w, k) exp(ix-r)dx

is a local spectrum:

<pi>=p2<ui>=J J E(k, w, r)dk dow,

0 0

where the “1” sign means a component of a vector normal to e.
Mean amplitudes of the velocities normal and parallel to direc-
tion e are equal for the turbulence defined by (2.3):

Cupy=<(e-u?y=Lut).

We assume that (u?) is much less inhomogeneous than density.
It may be shown that under this assumption the local spectrum
can be written as

E(k, o, r)=p*(r) q(k, w),

where g is the spectrum of fluctuating velocities:

u?> =J J q(k, w)dk dw.
0 0

The derivation of mean EMF will be made using the first
order smoothing approximation (FOSA). Though this approxi-
mation may be (and has been) the subject of some criticism, it
remains the basic tool of the mean-field electrodynamics. We
sidestep further discussions of FOSA because this has been done
in detail elsewhere (see, e.g., Moffatt 1978). We note only that it is
convenient for our purposes to represent the products ; B; in the
induction equation as u; B;= p;(B;/p) to deal with solenoidal field
p=pu instead of the velocity field u.

Fluctuating magnetic field A’ resulting from wiggling of mean
field lines of force by random motions can be found from the
equation for Fourier-amplitudes:

(nk? — i)k, )= ik J[ﬁi(k—q, o) (B;/p)(q)

—p;(k—q, w)(Bi/p)(q)]1dq. 24

We neglect spatial inhomogeneity of the field B when deriving
mean EMF. This means the neglect of eddy diffusivity. By
successively forming a cross product of (2.4) with p, averaging,
using (2.3) and transforming to real variables with taking first
order terms in //L into account, one gets

{uxhy=vyx B—2vy x e(e"B), (2.5)
where velocity vy, is
1 (™ [*k*nq(k, w)
= — A= ————dkdo,
o 12[0 J; k*n* +?
Substitution of (2.5) into (2.1) yields
0B/0t=V x (vp x B—2vp, x e(e- B)),

A=Vp/p.

(2.6

where the diffusive term is omitted. The first term on the right-
hand side of (2.6) corresponds, obviously, to mean field transport
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with effective velocity vy. To understand the meaning of the
second term, let us consider a two-dimensional magnetic field
which does not vary along direction e. In a Cartesian coordinate
system with the x-axis parallel to e and the z-axis directed along
the density gradient (downward) such a two-dimensional field can
be represented as

B=eB(y, z)+V x (eA(y, 2)), 2.7

where scalar B is a field component parallel to the x-axis,
henceforth referred to as the p-field, and eA is a vector potential
for the field normal to e, which will be named ¢-field.

Substitution of (2.7) into (2.6) yields equations for components
of the mean field,

0B/ot= —0(vp B)/ 0z,
0A/0t=vy,0A4/0z,

(2.8a)
(2.8b)

where vp is an absolute value of vector vy. If the same algebra
were made with the equation

0B/ot=V x (vp x B), 29
one finds, instead of (2.8), the following equations

0B/0t=0(vp B)/ 0z, (2.10a)
04/ at =vp,0A4/0z. (2.10b)

Equations (2.10) differ from (2.8) by the sign of the right-hand side
of the first equation only. Equations (2.10) are merely another
representation of (2.9) and describe certainly the transport of both
p- and t-fields upward with the same velocity vp,. The difference of
signs between the right-hand sides of (2.8a) and (2.10a) shows that
(2.8) describes the transport of p-field and ¢-field in opposite
directions. Equation (2.6) describes certainly the same process. p-
field is transported downward, whereas t-field still moves upward.
This means that the term —2vp, X e (e B) in the expression (2.5) for
mean EMF represents the effect of an additional transport of p-
field with velocity —2uvp,.

It may be shown that nothing changes in the above consider-
ations when A4 in (2.7) is x-dependent, i.e., when t-field varies
along direction e. Therefore, it may be concluded that if the mean
magnetic field is a superposition of magnetic p-field parallel to
direction e and magnetic ¢-field normal to this direction, the two-
dimensional turbulence considered separates these two compon-
ents and transports the p-field down and the ¢-field up with the
same velocity vp.

We must be careful, however, when applying these conclu-
sions to arbitrary three-dimensional fields. Any magnetic field can
be certainly decomposed into t-type and p-type vectors. However,
these vectors cannot always be treated as magnetic (divergence-
free) fields. If the p- and t-components of the mean magnetic field
are not solenoidal, the effects produced by Eq. (2.6) cannot be
reduced to transport of the field components. Nevertheless, in the
remainder of the paper we shall be dealing with mean fields which
possess a symmetry sufficient to ensure that EMF with the
structure like (2.5) produce transport effects only.

It is known that rotational influence on large-scale solar
convection makes the convective elements elongate along the axis
of rotation (cf. Gilman & Miller 1986). In other words, rotation
changes convection towards two-dimensionality. The above find-
ings make it tempting to anticipate that the influence of rotation
should result in convective transport of the poloidal component
of the global magnetic field toward the axis of rotation and the
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toroidal component outward of the axis. We shall discuss this
issue in more detail in Sects. 3 and 4.

Let us now proceed with the interpretation of the turbulent
transport effects. Consider first the transport of p-fields. Figure
1A shows cross-sections of p-field flux tubes which experience
vertical displacements. The density of the lines of force is shown
by dots. The plane of Fig. 1 is supposed normal to vector e. When
a p-field flux tube moves up, it swells up, and the flux density
decreases. If a tube moves down, it is compressed and the field
strength in it increases. Therefore, mixing of an initially homo-
geneous p-field by two-dimensional turbulence results in an
increase of the field strength with depth, i.e., the field is trans-
ported downward. This is just Drobyshevski’s (1977) mechanism.

The situation with ¢-field is quite different. Let a line of force of
this field be horizontal (for simplicity) at an initial instant. This
line is shown dashed in Fig. 1B. At later instants the line is
perturbed by fluid motion and assumes the form shown as the
solid line in Fig. 1B. If the field is frozen-in to the fluid, the line of
force is a (flexible) boundary which cannot be crossed by the fluid.
Therefore, masses of matter on each side of the line of force do not
change with time. In other words, the masses of the fluid (for unit
length of the x-axis) of dashed areas S; and S, are equal for the
steady density distribution considered. Hence, a downward in-
crease of density requires the inequality S; > S,. Consequently,
an arbitrary perturbation should displace a greater portion of ¢-
field line of force upward. For this reason, the two-dimensional
mixing of a density-stratified fluid transports mean ¢-field in the
direction opposite to density gradient.

2.2. Second example: three-dimensional MHD turbulence
of a density-stratified fluid

If the derivations of the preceding section were made for three-
dimensional quasi-isotropic hydrodynamic turbulence, the mean
field transport effect would disappear (Vainshtein 1978). The
situation changes, however, with allowance for fluctuating mag-
netic fields of turbulent origin. These fields are usually ignored in
mean field dynamo literature and some introductory discussion
of their origin and nature seems to be appropriate.

Traditional kinematic approaches assume that the only
source of fluctuating magnetic fields is turbulent wiggling of mean
field lines of force. However, this is not the case when magnetic
Reynolds numbers are sufficiently large. It was firstly suggested

Si

| .

A B

Fig. 1. A The downward displacements of a p-field flux tube increases the
field strength because of the tube compression (left). The line-of-force
density is shown by dots. An up-going tube swells and the field strength in
the tube decreases (right). Hence, the two-dimensional mixing of p-field
results in downward field transport. B Any disturbance of an initially
horizontal t-field line lifts the larger portion of the line up

Z
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by Batchelor (1950) that highly conducting turbulent fluids may
be unstable to weak seed random magnetic fields with a typical
spatial scale of the order of that of turbulent motions, i.e., the
small-scale fields may be amplified by turbulence. Later on
Kraichnan & Nagarajan (1967) demonstrated the extreme com-
plexity of the small-scale dynamo problem which is funda-
mentally impossible to solve by approximate methods; this is
probably why the fluctuating fields produced by small-scale
dynamos are usually ignored. At the same time, Kraichnan &
Nagarajan (1967) have shown that using Lagrangian history
direct interaction approximation results in asymptotic expo-
nential growth of fluctuating magnetic fields with time. Further,
Kazantsev (1968) demonstrated that the kinematic small-scale
dynamo problem can be solved exactly for the case of infinitely
small Strouhal numbers and also found turbulent amplification of
the fields at sufficiently high magnetic Reynolds numbers. The
dynamic problem with Lorentz forces included was treated by
Pouquet et al. (1976) using the eddy-damped quasi-normal
Markovian approximation. They also found initial growth of
magnetic fluctuations, with the growth stabilized at subsequent
moments in the inertial interval of wave numbers at near equipar-
tition of kinetic and magnetic energies. That paper was probably
the first to note an important role played by fluctuating fields
produced by small-scale dynamo in the dynamics of large-scale
magnetic fields. Finally, direct three-dimensional numerical simu-
lations done by Meneguzzi et al. (1981) also yield a dynamo-
amplification of small-scale magnetic fields, though magnetic
Reynolds numbers (~100) were not far above the instability
threshold. Though these results do not resolve completely the
small-scale dynamo problem, they leave little doubt that any
turbulent motion is unstable to fluctuating magnetic fields at
sufficiently large magnetic Reynolds numbers. Amplification of
the fields is probably stabilized at the near-equipartition of
kinetic and magnetic energies. Observations of fine-structured
magnetic fields of Kilogauss strength on the Sun (Stenflo 1973)
show that small-scale dynamo is probably operating in the solar
convection zone. Note again that the small-scale dynamo gener-
ates fluctuating magnetic fields from these same fields and the
mean magnetic field is not needed for this process.

Let us now consider an MHD turbulence with fluctuating
magnetic field & supported by small-scale dynamo and with no
mean field B present. Magnetohydrodynamic equations are
invariant with a change of sign of magnetic field. Therefore, a
random flow u generates a fluctuating field h with the same
probability as —h, and it may be assumed that the correlation
u;h;» equals zero for the MHD turbulence considered. For this
reason, {ux h)=0.

Let a weak mean magnetic field B be imposed on the turbulent
fluid. The field B perturbs the MHD turbulence and fluctuating
fields are now equal to u + ' and A+ &', where small perturbations
u' and K are induced by the mean magnetic field influence. The
mean EMF {(u+u)x (h+Hh)>=<{ux )+ {u' xh) may no
longer be zero (the term <{u’' x k') is neglected).

If FOSA is used, the perturbations k' satisfy Eq. (2.4) and are
produced by wiggling of mean field lines of force. The contribu-
tion of (ux k') to mean EMF is just what is derived by
traditional kinematic theories. We assume in this section that the
MHD turbulence is quasi-isotropic (locally isotropic but in-
homogeneous) and momentum density p = pu to satisfy Eq. (2.2).
The contribution of {u x k') to mean EMF is zero for this case
(Vainshtein 1978).

Let us consider the contribution of (&’ x k). The perturbation
u' is produced by Lorentz force (V x h)x B/u. We apply FOSA
and shall find momentum density perturbations p’' = pa’ from the
Fourier-transformed equation of motion

[ — i+ vk +iv(k-L)] pi(k, w)=ilk-B) hy(k, )/, @.11)

where A=Vp/p, u is vacuum permeability, and v is molecular
viscosity. We neglected inhomogeneity of the mean field B and
used (2.2) when deriving (2.11). Vector A may be considered
constant because our derivations are linear in the parameter I/ L.
Fluctuating magnetic field will be assumed quasi-isotropic:

Hik, o, K)
16 nk?
+(k;k;— K;k;)/2k2] d(w + o), (2.12)

where k=(z—17')/2, k=2+7, and H is the Fourier-transform of
the local spectrum:

<’;i(z’ a))i{j(zla w))= [5ij—kikj/k2

H(k, o, r)= J‘exp(ix'r) H(k, o, k) dx,

<h2>=ijwH(k, w, r)dkdo.
oJo

For the sake of simplicity, we assume energy equipartition for the
local spectra:

H(k, w, r)=p(r) nq(k, w), (2.13)

where ¢ is the velocity spectrum; remember that inhomogeneity of
{u?) is neglected in comparison with a more pronounced density
inhomogeneity.

By forming cross product of (2.11) with h, using (2.12) and
transforming to real variables, we find

e={u' xh)y=v, x B,

where

1 (= (= vk2q(k,
., =1—J J ek ) k.

2.14
6JoJo vkt + 0? 219

Hence, the presence of fluctuating magnetic fields produced by
small-scale dynamo results in the downward transport of the
mean magnetic field.

Consider now a possible interpretation of the transport effect.
Velocity ' may be estimated as u' ~7(V x h) x B/up, where tis a
typical lifetime of the fluctuations. These are certainly not the
velocities #' which transport the field B. In the opposite case,
velocity v,, would depend on B. The velocities # can also not
directly contribute to the transport effect considered because they
were not explicitly involved in derivations of (2.14).

The following interpretation of the obtained transport effect
may be suggested. The intensity of magnetic fluctuations <h*)
=up{u?> increases downward because the intensity of fluctuat-
ing velocities, (u?), was assumed to vary with position much less
than the density. Amplitudes of fluctuating currents j=(V x h)/u
should also increase along the z-axis (see Fig. 2). Let the mean
field B be parallel to the y-axis as shown in Fig. 2. The random
Lorentz force j x B produces small-scale motions with velocities
' isotropic in the xz plane. Let us consider a level shown by the
dashed line in Fig. 2. Vertical motions u,, will carry to this level the
fluid elements from other levels together with fluctuating currents
flowing in them. The velocities u, results from x-components, j,,
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Fig. 2. An illustration of mean field transport due to fluctuating mag-
netic fields produced by small-scale dynamo (see text)

of the currents. The components u, and j, always have different
signs (see Fig. 2), i.e., the signs of j, for upward and downward
motions are opposite. However, the up-going fluid elements carry
relatively large currents. This results in mean current J along the
x-axis. The current J produces a new mean field which decreases
the original mean magnetic field at upper levels and decreases it at
lower levels. The resulting change of the mean field B distribution
is equivalent to the field transport with the effective velocity
v,,(2.14), though there are no real hydrodynamic motions which
move the field B with such a velocity.

3. Mean field transport by rotating turbulence

Let the turbulent fluid rotate as a whole with an angular velocity
2. The equation for fluctuating momentum density p= puin a co-
rotating coordinate system is

[vk2 + iv(k-A)—iw] p(k, o)+ 2k~ 2 (k- ) (k x p(k, w))
—f*(k, 0)=ih(k, ) (k- B)/ p, 3.1)

where pressure was eliminated with the help of the anelasticity
condition (2.2), and f * is the solenoidal part of a random force
f f s=f—kik j)/k2 We assume the Strouhal numbers for the
turbulence to be small, which allows the neglect of nonlinear
terms when deriving (3.1) (FOSA is used).

Let us consider first the turbulence not perturbed by mean
magnetic field. The neglect of the right-hand side of (3.1) leads to
the usual (Riidiger 1989) linear relation:

Pi(k, 0)=D;;(k, », 2) p5(k, w), (32
where

Pk o)=f5(k, w)/(vk2 +iv(A-k)—iw), (3.3)
and tensor D is defined as

Dy;=(5;; + aoe;, k,/k)/(1+aa?), (3.4)

o=k-Q/(kQ) is a cosine between vectors k and 2, a=2Q/(vk>
+iv(A-k)—iw). The random field p° in Egs. (3.2) and (3.3)
corresponds to the so-called “original turbulence” which would
take place under real sources of turbulence but in the absence of
rotation (Riidiger 1989). The original turbulence will be assumed
quasi-isotropic (Kichatinov 1987):

(ﬁ?(z, 60) 7 (2, 0')) _%[ ij—kikj/k2
+(kik; — k;k) [2k2 ] S + o),
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k=(z2—-7)/2, k=2+7, (3.5

where again only terms of up to first order in x/k~1/L are kept.
The spectral tensor for rotating turbulence can be found by using
(3.2)

<ﬁi(za w)ﬁj(zla (l)/)> =Dim(z) w, Q) Djn(z,’ CL)/, 9)
+ Pz, @) fr (2, @) (3.6)

Magnetic Reynolds numbers will be assumed large; this
means that the small-scale dynamo discussed in the preceding
section is operating and produces fluctuating magnetic fields A.
The small-scale dynamo is an essentially nonlinear process
(Kraichnan & Nagarajan 1967; Kazantsev 1968; Pouquet et al.
1967, Meneguzzi et al. 1981) which is principally impossible to
describe using FOSA. Nevertheless, the perturbations #’ and A’
which the mean field B produces in the fluctuations # and h can be
derived within the framework of FOSA, and this will be done
below.

The spectral tensor of fluctuating magnetic fields will be
assumed to have the same structure as the spectral tensor (3.6) of
random motions generating these fields,
<i:li(z’ CO) ﬁj(zl3 (DI)> =Dim(z’ w, Q)Djn(zla (l)’, Q)

+(hn(z 0) B (@, @),
where (RS R is the quasi-isotropic spectral tensor (2.12).

One more essential point should be discussed before proceed-
ing with derivation of the mean field transport velocities. In
contrast to the examples of the preceding section, the transport
effects are not all nondiffusive (proportional to B but not to
spatial derivatives of B) contributions to mean EMF for rotating
turbulence. There is also the so-called alpha-effect by Steenbeck
et al. (1966). This paper is restricted to discussion of mean field
transport and does not consider the alpha-effect. The question
arises, however, as to how one from another can be distinguished.
It is appropriate at this point to note that the turbulent transport
of the field must be independent of the direction of rotation of
convection shell. Therefore, the corresponding contributions to
the mean EMF must be even functions of angular velocity. We
shall see below that these even contributions coincide in their
structure with Eq. (2.5) and do, indeed, represent the sought-for
transport effects. On the other hand, it may be shown that the
remainder of mean EMF which is an odd function of Q has a
structure typical (Ridiger 1978) of the alpha-effect: «;; B;, where

ij )

3.7)

o =0y 0;; + aly(gie; + gje) s ee;

is a symmetric pseudo-tensor (a, are pseudo-scalars, and g and e
are unit vectors in radial direction and along the rotation axis,
respectively). The contribution of «;; B; to the mean EMF gener-
ates a toroidal field from a poloidal one and vice versa, i.e., this
actually is an alpha-effect.

We derive below the part of mean EMF which is symmetric
with respect to a change of sign of the angular velocity. Similar to
the derivations made above, there are contributions of two kinds:

e=<uxhy+{u xh), (3.8)

where k' and ' are perturbations of fluctuating magnetic field and
velocity resulting from mean magnetic field influence on turbu-
lence. The first term in the right-hand side of (3.8) is the usual
kinematic contribution. The second term is brought about by
fluctuating magnetic fields generated by small-scale dynamo. We
shall derive these two contributions separately.
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3.1. Contribution of fluctuating velocities

The perturbation K is found from (2.4) to be

b (k, )=

5 J[p.(k q. ) (B;/p)(@)
nk

—pilk—q, ») (Bi/p)/(q)1dq. (3.9)

The sought-for contribution {u x k'>={p x k') /p can be derived
using (3.9) and the spectral tensor of momentum density p defined

by (3.5) and (3.6). After rather involved algebra we find
{uxhy=VxB—2Vxe)e B), (3.10)

here and below e=£2/Q is a unit vector in the direction of angular
velocity (note the difference with the horizontal vector e of the
preceeding section), and the velocity V is

Jjnkzq(kw

2k4+ 2
In this equation, 4, =A—e(e-d) is a component of vector
A=(Vp)/p normal to the rotation axis, and I, is defined as

2 A ]
1k o, Q)= {BCoqu-Q [tan“(ﬂ sm((p/2)>
Q2 | Qcos(e/2) cos(p/2)
+tan_1(Q+sm(<p/2)>:|
cos(p/2)

3(1—cos @) | <f22 —2Qsin(@/2)+ 1)—6}
T 20sin(0/2) T \02+20sin(¢/2)+ 1 :

1, (k, , Q) dk do. (3.11)

(3.12)
where
0=20/./vk*+w?, ®2)/(vV*k* + w?).

It may be shown that the contribution of (3.10) to mean EMF
represents transport of toroidal (t-field) and poloidal (p-field)
components of an axisymmetric field B in opposite directions
with velocities ¥V and — ¥, respectively. To demonstrate this,
consider an axisymmetric field

B=e B+V><(e A),

cos o =(v2k*—

(3.13)

where e, is an azimuthal unit vector, B is t-field, and ¢ A is a
vector potentlal for p-field. Let the field (3.13) satisfy the equation,

0B/dt=V x ¢, (3.14a)
e=vx B+ (v xe)(e B), (3.14b)

where v and v’ also possess axial symmetry. If Eq. (3.14) is written
in cylindrical coordinates z, r, and ¢, we find

0B/ot= —0(v,B)/0z—0(v,B)/dr,

0A)0t= —v,04/0z—(v, + v,)r 1 &(rA)/or. (3.15)

Equations (3.13)—(3.15) clearly demonstrate that v, =v' —e(e-v')
is an additional velocity of p-field transport. Comparison of (3.10)
with (3.14b) shows that in (3.10) v'=—2VF and v=V. There-
fore, (3.10) represents the p-field transport with the velocity
v+v'=—V.

This result is easy to explain within the framework of the
interpretation of mean field transport by two-dimensional turbu-
lence suggested in the preceding section. Rotational influence is
known to elongate convective cells along the axis of rotation. This

effect is accounted for by Eq. (3.2). It may be understood as the
appearance in rotating turbulence of a two-dimensional compon-
ent, whose properties vary slowly along direction e. Such a two-
dimensional turbulence transports p- and t-fields in opposite
directions. The t-field is transported to regions of relatively low
fluid density with the velocity ¥, in accordance with the inter-
pretation of the preceding section (Fig. 1B). The p-field is trans-
ported in opposite direction (Fig. 1A). The presence in p-field of a
component normal to e plays no role because this component is
parallel to the velocity ¥ (3.11).

Let us return to Eqgs. (3.11) and (3.12). If rotation is slow
(Q < 1), the function I, of (3.12) is small:

I, =802 (2cosp—1)/15,

where only the lowest-order term in Q is kept. The velocity (3.11)
for this case,

4 [ [ yk?(v*k*—3 w?)q(k, ®)
V=—4, Qz_ 204 4 2\2 (214, 2

15 o W k*+0?) (n*k*+w?)

is small as well.
For the opposite limit of rapid rotation (Q3 1), from (3.12) we
find

I =n/(Qcos(9/2)),

where we keep only the lowest order term in Q1. Therefore, the
velocity (3.11) for this case,

i 2k“+w
pe q(k, ®) dk dw,
16|le o

is also small.

The kinematic transport effect is, probably, most pro-
nounced in the moderate rotation case when the parameter Q
= ZQ/\/ v2k*+ w? is of order unity for those wave numbers and
frequencies, which make a dominant contribution to the integral
(3.11). If rotation is slow, rotationally induced anisotropy, which
is necessary for the transport effect to arise, is small. This is
probably why the velocity (3.16) decreases with decreasing Q. If
rotation is rapid, rotational suppression of turbulence causes the
velocity (3.17) to decrease with increasing Q.

dk do, (3.16)

(3.17)

3.2. Contribution of fluctuating magnetic fields

Let us now consider the contribution of {(#’ x h) to the mean
EMF (3.8). This contribution may be written as {(p'xh)/p in
terms of momentum density p. The perturbation p’ can be found
from (3.1),

iD,;(k, w, 2)h;(k, w) (k- B)

ulvk? + iv(k-2)—iw]

A rather involved algebra with the use of (3.7), (2.12), and (2.13)
yields

pi(k, w)=

(3.18)

{u' x hy=V,, x B+(V, xe)(eB), (3.19)
where
1 (* vk?qk, )
=Z—J J mlz(k, w, Q)dkdw, (3.20a)
k2 q(k,
Vie—1, j J V2k2 KAED ) k0, Q) dkdo, (3.20b)
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and the functions I, and I; are

1 02-1
> 1+—=
Q¢ cos? (¢/2) 2Qcos(¢/2)

. Q—sin((p/Z)) _1(Q+sin(go/2)>:|}
X [tan <—_cos(<p/2) +tan —_cos((p/Z) . (321
: Q%cosp+1
I3k, Q)_ﬁzcosz (0/2) {1 * Q*+20%cosp+1

Q-3 [ _1<Q—sin(q)/2)>
+—= tan
2Qcos(¢/2) cos(p/2)
+tan_1(ﬁ+sin((p/2)):|}’
cos(¢/2)
0=20/./v*k* + 0?,

It has been shown in Sect. 3.1 that mean EMF with the structure
(3.19) represents the ¢-field transport with the velocity ¥, and the
p-field with velocity ¥, + V,, i.e., ¥,, is an additional velcoity of p-
field transport.

If Q) tends to zero (no rotation), it may be shown using (3.21)
that I, = 4/3 and I; = 0. Equation (3.20a) transforms in this case
into expression (2.14) for a nonrotating fluid, and V', =0. In other
words, the additional velocity V7, of p-field transport is rota-
tionally induced. In the case of rapid rotation (Q > 1), from (3.21)
we find

I = Iy =/2|Qcos* (¢/2)).

In this case, the velocities (3.20) decrease with increasing angular
velocity which probably results from rotational suppression of
turbulence.

I, (w, k, Q)=

cos ¢ = (v k* —0?)/(vZk* + w?).

3.3. Mixing-length approximation

The results found above are difficult to apply to the Sun or to
other objects because of lack of knowledge of the parameters
involved. The aim of this section is to adapt our findings to
applicational purposes. The widely used mixing-length approxi-
mation seems to meet this aim quite well. This approximation will
be understood as one replacing nonlinear terms together with
time derivatives in the equations for fluctuating fields by z-
relaxation terms, i.e., instead of (3.1) and (3.9) we now have

Plo+2k2 (k- R)(k x p)—f*=ih(k-B)/ s,
Bi/v=ik;{[p:(k—q)(B;/ p)(a) — b;(k—q) (B,/ p)(g)1dg,

where

1)/ <u?y

is a typical lifetime of a convective eddy, and [ is the mixing length.
Reynolds numbers are assumed small, t</?/v, t</?/y, and
viscous terms are neglected in (3.22). We assume next in the spirit
of the mixing-length approximation that the spectrum of turbu-
lent motions is single-scaled:

qk)~d(k—1"1).

(3.22)

There is no need to repeat all the preceding derivations
starting from (3.22) to find the mixing-length representation of the
above findings. It may be shown that the mixing-length analogs of
Egs. (3.11) and (3.20) are obtainable formally by substitution into
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these equations of the expressions to follow
qlk, 0)=2<u?)° 3(k—1"") &(w),
vk?=nk?>=1"1, (3.23)

Equations (3.23) link the above FOSA-findings to the mixing-
length approximation.

Substitution of (3.23) into (3.11) and (3.20) yields
V=—i,1*)° 0,(Q),
Vm = )'T <u2 >O (Pz(ﬁ),
V= —2,72)° 05(Q), (3.24)

where Q=21Q is the Coriolis number (reciprocal of the Rossby
number), <u?>° is mean intensity of fluctuating velocities for

original turbulence, and the functions ¢, (Q)=41,(, k, w)i’=°
vkr=1/t

are

.1 [@*+3
¢1(Q)=4Q2_ Q tan 1(0)_3],

L[ Q-

. A
q;z(Q)_W_H 5 tan (Q):I,

(ﬁ)—1 ‘1+ 2 +Q2_3t “1Q) 325
% Mt a v @) (23

It has been shown above that —2¥ and V', in the second terms of
the right-hand sides of (3.10) and (3.19), respectively, are addi-
tional velocities of transport of p-field. Using (3.10) and (3.19) we
express the velocities of turbulent transport of the toroidal (V')
and poloidal (¥'?) components of an axisymmetric mean field
embedded into a rotating density-stratified highly conducting
fluid in terms of the velocities (3.24):

Vi=V+V,,
Vo= —V4+Vo+ V.

(3.26a)
(3.26b)
Note again that V' and VP differ substantially.

4. In convection zone of the Sun

Solar dynamo is believed to operate in deep regions of convection
zone far below the supergranulation layer. The deviation of
stratification from adiabaticity at these depths is very small (cf.
Gough & Weiss 1976) and the density distribution is almost
spherically symmetric. Therefore

L "
p or y—1¢,T

where e, is radial unit vector, T is temperature, g is gravity, c, is

specific heat at constant pressure, and y is the ratio of specific

heats.

By definition, the quantity {(u?)° is the intensity of convective
velocities which would take place with actual sources of convec-
tion (actual superadiabaticity) if there were no rotation. A
satisfactory estimation for this quantity seems to be the known
mixing-length relation (u?)°=—VAT I[2g/(4T) where VAT is
superadiabatic temperature gradient. However, deriving the
superadiabaticity of stratification leads to a rather complicated
problem of convective heat transport in rotating fluids which
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is beyond the scope of this paper. We shall use the estimate
7{u?»° =3k, where k~10'3 cm?s~! is turbulent diffusivity sup-
plied by models of nonrotating convection zone (Spruit 1974;
Gough & Weiss 1976). Note, however, that such an estimation
lowers the value of {u?»° because it neglects rotational influence
which is known to increase superadiabaticity.

By using (3.24)—(3.26) and (4.1), we find

K . A A
Vi = e oo sin Al @ =05 @), (4.22)
3kg ~ 5 A
Ve= ————[,(Q)+cos* A(¢; () — 93 (Q))], (4.2b)
=D, T

yio 0 Asin A gy (2 4.2¢)
e_mcos sin 4 ¢, (Q), (4.2¢
@) —costi o, (O

Vi= (y—l)cpT[(pZ(Q) cos?A ¢, (Q)]. (4.2d)

In these equations and below A is latitude (scalar) but not the
density gradient (vector) used above.

Durney & Latour (1978) estimated the Coriolis number for
giant solar convection to be Q~6. The functions ¢, for this
magnitude of Q assume the following values

@, =00426, @,=00319, @, =0.0305. 4.3)

Velocities (4.2a) and (4.2¢) have different signs when (4.3) is used.
V® is negative while V} is positive, i.e., the poloidal and toroidal
fields are transported towards the poles and the equator,
respectively.

The radial velocity (4.2d) of toroidal field transport changes

sign at latitude A*=cos ! (\/@,/¢, ), being negative (dlownward)
for A> A* and positive (upward) for 1 <A*. Using (4.3) we find

A¥~30°.

It is widely believed that sunspot activity is associated with strong
subphotospheric toroidal magnetic fields. Absence of spots at
high latitudes is usually interpreted as indicating that the strong ¢-
fields are lacking there. However, our findings suggest that the ¢-
fields need not be weak at high latitudes but are locked near the
base of convection zone by downward turbulent transport. At
A< A* the vertical transport velocity changes sign and may lift the
t-fields to the upper layers of convection zone, thus stimulating
sunspot activity. Vertical transport of the field may be affected by
magnetic buoyancy. However, Kleeorin et al. (1989) have recently
found that pressure of a mean field embedded in a highly
conducting turbulent fluid is negative which greatly questions the
applicability of the buoyancy concept to mean fields.

LaBonte & Howard (1982) found a close relation between
magnetic activity and the 2/hemisphere mode of solar torsional
oscillations (Howard & LaBonte 1980). The torsional waves are
believed to be of magnetic origin (Schiissler 1981; Yoshimura
1981; Riidiger et al. 1986). At low latitudes, the shear region of
torsional wave zonal velocity coincides with the region of maxi-
mal rate of emergence of new magnetic flux which, probably, is a
manifestation of concentrated subphotospheric toroidal mag-
netic fields. The torsional wave amplitude changes little when the
wave travels from pole to equator. It is tempting, in the light of the
above findings, to speculate that toroidal fields of the strength
sufficient to produce torsional waves are present at high latitudes

as well but are hidden there deep in the convection zone by
downward turbulent transport.

The sin A cos 4 dependence of the velocity ¥V} (4.2c) on latitude
agrees qualitatively with the observed variations (initial increase
and subsequent decrease) of velocity of torsional wave latitudinal
propagation (LaBonte & Howard 1982).

The time interval At of t-field transport from a latitude 4, toa
latitude 4, < 4, with the velocity (4.2¢) is

Al J’“ di (y—1)c, Tn(tgl, /tgi,)
=r =r A
L Ve(d) 3Kg(r) o ()

where distance r is assumed independent of A. Suppose that
the transport occurs near the base of convection zone, ie.,
r=0.7R. The plausible estimates for this location are c,
=3.4108 cm?s~ 2K ! (fully ionized hydrogen), T=210° K, and
y=15/3. Neglecting self-gravitation, we assume next g=g,(R/r)?,
where g, = 2.7410* cm s~ 2 is the surface value of solar gravity.
Substitution of these values into (4.4) and using (4.3) yields

At=9.81n(tg, /tgh,) yr.

4.4

4.5)

If we adopt 4, = 70° and 4, = 10° as starting and final positions,
Eq. (4.5) gives At =27 yr. This value does not differ greatly from
22 yr which a torsional wave takes to travel from polar to
equatorial regions. Probably, the slight overestimation of At
results from underestimation of the velocities (4.2) under the
assumption t<{u?)°= 3k discussed above.

The base of convection zone is known to be a favourable site
for the solar dynamo operation (Galloway & Weiss 1981; Golub
et al. 1981; Spruit & van Ballegooijen 1982). The mechanisms
placing dynamo at this site are uncertain, however. Turbulent
transport with negative (downward) radial velocities VP (4.2b)
and V} (for A<A*) represents one of the possibilities.

Expressions (3.25) show that the inequalities ¢, > ¢3 and
@, > ¢, hold for any star whose rotation is sufficiently rapid
(> 3.4). We may expect from Egs. (4.2) that general features of
mean field migration on such a star must be the same as on the
Sun, i.e., p-fields should migrate poleward and ¢-field should move
equatorward producing lowlatitudinal activity belt.

Finally, we note that the equatorward turbulent transport of
t-fields may serve to reconcile the near-constancy of angular
velocity with depth inferred from helioseismology data (Harvey
1988; Libbrecht 1988; Narrow 1988) with the solar dynamo
models. The direct tree-dimensional simulations of solar dynamo
(Glatzmaier 1985) may be losing the turbulent transport effects
because the Reynolds numbers in the simulations are small. The
small-scale dynamo does not work in this case, and the velocities
V., and V,, fall to nought. The velocity ¥ (3.11) is small for the
case of low Reynolds numbers.

5. Final remarks

We have seen that the rotational influence on MHD turbulence
imparts a new property to the effects of turbulent transport of
mean magnetic fields: poloidal and toroidal fields are transported
with different velocities. The main danger for the applicability of
the expressions found for these velocities to the Sun seems to
come from the lack of reliable information on small-scale dynamo
operation in density stratified rotating fluids. For this reason, we
cannot judge with confidence on how far from reality are our
assumptions about the properties of fluctuating magnetic fields

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1991A%26A...243..483K

FT991ARA 72437 483K

used when deriving the turbulent transport effects. Nevertheless,
these assumptions seem plausible on physical grounds and the
turbulent transport effects reproduce quite well (qualitatively, at
least) the observed redistribution of magnetic fields over a solar
cycle, which probably mean that the relevant physics was
adequately covered by our treatment.
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