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Abstract The problem of the spatial structure of coupled
azimuthally small-scale Alfvén and slow magnetosonic
(SMS) waves is solved in an axisymmetric magnetotail
model with a current sheet. It is shown that the linear trans-
formation of these waves occurs in the current sheet on
magnetic field lines stretched into the magnetotail. From
the ionosphere to the current sheet these modes are linearly
independent. Due to the high ionospheric conductivity the
structure of coupled modes along magnetic field lines rep-
resents standing waves with very different typical scales in
different parts of the field line. In most of the field line their
structure is determined by the large-scale Alfvén wave struc-
ture. Near the ionosphere and in the current sheet, small-
scale SMS wave field starts to dominate. In these regions
coupled modes becomes small-scale. Such modes are neu-
trally stable on the field lines that do not cross the current
sheet, but switch to the ballooning instability regime on field
lines crossing the current sheet. An external source is re-
quired to generate these modes and this paper considers
external currents in the ionosphere as a possible driver. In
the direction across magnetic shells the coupled modes are
waves running away from the magnetic shell on which they
were generated.
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1 Introduction

A common feature in the magnetospheres of planets hav-
ing their own magnetic field are magnetotails formed un-
der interaction with the solar wind flow (Blanc et al. 2005;
Kivelson 2007). Most magnetotails have a current sheet di-
viding it into two lobes (for example, the geotail). The cur-
rent is closed through the magnetopause forming a magnetic
field, which is almost dipole near Earth, and exhibits a small
curvature radius at the top of field lines stretched into the
magnetotail. This creates specific conditions for the propa-
gation of and interaction between the Alfvén and slow mag-
netosonic (SMS) waves.

Ultra-low-frequency (ULF) MHD oscillations can be
generated by various sources in the magnetosphere, for ex-
ample, under the impact of shock waves propagating in the
solar wind on the magnetopause (Guglielmi et al. 2000;
Kangas et al. 2001). Fast magnetosonic (FMS) waves can
either penetrate into the magnetosphere from the solar wind
(Leonovich et al. 2003) or be generated by the Kelvin–
Helmholtz instability when the solar wind flows around the
magnetopause (McKenzie 1970; Mazur and Chuiko 2011;
Leonovich 2011). It is known that the direction of FMS
waves propagation is defined by their spatial structure and
can take any direction with respect to the background mag-
netic field. Phase velocity direction for Alfvén and SMS
waves is close to the background magnetic field, which
creates an opportunity for their being “confined” on mag-
netic shells bounded by the highly conductive ionosphere of
Earth’s magneto-conjugated hemispheres. Therefore these
waves form a structure comprising a set of standing waves
along the geomagnetic field lines.

In a plasma that is inhomogeneous across magnetic field
lines, FMS waves can drive resonant Alfvén waves—the so-
called field line resonance (Tamao 1965; Southwood 1974;
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Chen and Hasegawa 1974)—or SMS-waves—the magne-
tosonic resonance (Yumoto 1985; Klimushkin et al. 2010;
Leonovich and Kozlov 2013a). Resonant interaction also
takes place in a plasma that is inhomogeneous not only
across magnetic shells but along magnetic field lines as well.
This resonance occurs for both monochromatic (Rankin
et al. 2000; Leonovich 2001) and broadband MHD oscil-
lations (Leonovich and Mazur 1989; Lee and Lysak 1999;
Agapitov et al. 2009; Dmitrienko 2013). If the plasma con-
figuration under study is axisymmetric the MHD-wave field
can be decomposed into the sum of the azimuthal harmon-
ics of the form exp(imφ), where φ is the azimuthal angle,
m = 0,1,2, . . . is the azimuthal wave number. Resonant in-
teraction is most effective for the m ∼ 1 harmonics. For
m = 0, any coupling is absent between the harmonics of
Alfvén and FMS waves, in the ideal MHD approximation. In
terms of two-fluid MHD, however, and with plasma ion gy-
rotropy taken into account, field line resonance exists even
for m = 0 harmonics (Leonovich et al. 1983).

The situation is completely different for MHD waves
with m � 1. Such FMS waves fail to penetrate from the so-
lar wind into the magnetosphere, with a sufficiently large
amplitude, because the magnetosphere is an opacity region
for them. Therefore, the source for guided waves (Alfvén
and SMS waves) should be located on the same magnetic
shells where these waves are confined. For example, these
waves can be generated in the magnetosphere by external
currents in the ionosphere (Leonovich and Mazur 1993). On
the field lines stretched into the magnetotail these modes
can interact creating a complex wave-field pattern (South-
wood and Saunders 1985; Walker 1987; Cheremnykh and
Parnowski 2006). These oscillations can go into the balloon-
ing instability regime in the current sheet (Ohtani et al. 1989;
Hameiri et al. 1991; Liu 1997)

Often the simplest approximation is used for examin-
ing the ballooning instability, in which the local disper-
sion equation is analyzed (Liu 1997; Mazur et al. 2012;
Klimushkin et al. 2012). This equation is derived for a
medium that is homogeneous along the magnetic field lines
that have identical parameters to the current sheet. As was
shown in Leonovich and Kozlov (2013b), however, solu-
tions of MHD equations obtained for the same geotail model
give different results in the local approach and a WKB ap-
proximation taking into account variations of the medium
parameters along magnetic field lines.

First and foremost, it should be noted that there are two
unrelated branches of MHD oscillations in each of these
approximations—the Alfvén and SMS waves. Solutions ob-
tained in the local approximation show that, under certain
conditions, SMS-wave transfer to the aperiodic ballooning
instability regime and Alfvén wave remains stable under any
medium parameters. In contrast, solutions obtained in the
WKB approximation show that both SMS and Alfvén oscil-
lations can transfer to the ballooning instability regime with

non-zero frequency on the field lines passing through the
current sheet. Since the WKB approximation takes into ac-
count the full structure of the oscillations along the field line,
the results obtained in the local approximation are appar-
ently not applicable to the analysis of MHD oscillations in
real, strongly inhomogeneous, plasma configurations such
as magnetic tails of planetary magnetospheres.

Solutions were analyzed in Leonovich and Kozlov
(2013b) for the basic and the first few harmonics of the
waves standing between the magnetoconjugated iono-
spheres. However, the WKB approximation over the longi-
tudinal coordinate used there, being better than the local ap-
proximation, is still poorly applicable to the basic harmonics
of oscillations with wavelengths comparable to the magne-
tospheric plasma inhomogeneity scale. Therefore, this paper
carries out a numerical solution of the equation describing
the Alfvén and SMS waves for axisymmetric geotail model
in Leonovich and Kozlov (2013b). This will not only allow
the results obtained earlier in the WKB approximation to
be verified, but also the spatial field distribution of the cou-
pled Alfvén and SMS waves to be calculated, which cannot
be done in the WKB approximation. Besides, we will carry
out an analytical study of the Alfvén and SMS oscillation
coupling conditions in the current sheet. In this paper we
restrict ourselves to calculating the field of the basic (even)
harmonic and the second (odd) harmonic of standing waves
for the coupled modes.

The structure of this paper is as follow. Section 2 presents
the axisymmetric model involved for the geotail with current
sheet and the basic equation describing the spatial structure
of the coupled guided modes. In Sect. 3 the problem is nu-
merically solved of the structure of coupled modes along
geomagnetic field lines. A qualitative analytical study of a
linear transformation of the Alfvén and SMS waves in the
vicinity of the singular points of the equation describing the
structure of the coupled modes along the magnetic field lines
is contained in Sect. 4. In Sect. 5 we solve the problem of the
oscillation structure across magnetic shells. The main results
of the work are listed in the Conclusion.

2 Medium model and governing equation

Let us introduce an orthogonal curvilinear coordinate sys-
tem (x1, x2, x3) tied to magnetic field lines (see Fig. 1). The
x3 coordinate is directed along the field line, the x1 coordi-
nate is across magnetic shells, and the x2 coordinate is such
that the system should be a right-side system. Let us model
a magnetic field with tailward-stretched closed field lines as
the sum of a dipole magnetic field and the magnetic field of
an azimuthal current localized near the equatorial plane. In
order to describe the MHD oscillations we will use the set
of ideal MHD equations:
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Fig. 1 An axisymmetric model of the geomagnetic tail with a current
sheet. The coordinate systems used: the orthogonal (x1, x2, x3) and
non-orthogonal (a,φ, θ ) curvilinear system tied to the magnetic field
lines, the cylindrical system (ρ,φ, z)

ρ
d v̄
dt

= −∇P̄ + 1

4π
[curl B̄ × B̄], (1)

∂B̄
∂t

= curl[v̄ × B̄], (2)

∂ρ̄

∂t
+ ∇(ρv̄) = 0, (3)

d

dt

P̄

ρ̄γ
= 0, (4)

where B̄ and v̄ are the magnetic field and plasma veloc-
ity vectors, ρ̄ and P̄ are the plasma density and pressure,
and γ = 5/3 is the adiabatic index. We restrict ourselves
to small-amplitude perturbations. This allows us to linearize
the system (1)–(4). The parameters of unperturbed plasma
will be subscripted with ‘0’, while leaving the perturbed pa-
rameters unindexed (ρ̄ = ρ0 + ρ, P̄ = P0 + P , B̄ = B0 + B,
v̄ = v0 + v). Unperturbed plasma is assumed to be station-
ary (v0 = 0). To the leading order of the perturbation theory,
(1) yields the equilibrium condition for a plasma configura-
tion

∇P0 = 1

4π
[curl B0 × B0]. (5)

Let us also use the frozen-in condition linking the electric
field and velocity vectors:

E = −[v × B0]/c. (6)

In this approximation, perturbed electric field is perpendic-
ular to the background magnetic field.

An axisymmetric model of the geomagnetic tail is pre-
sented in Appendix A. Figure 2 depicts magnetic field
lines in a model of the geotail with the current sheet cal-
culated with (34) and distributions of the Alfvén speed
A = B0/

√
4πρ0 (Fig. 2a) and SMS wave speed Cs =

AS/
√

A2 + S2 (where S = √
γP0/ρ0 is sound speed in

plasma) in the meridional plane (Fig. 2b).
Let us construct an equation describing a spatial structure

of monochromatic MHD waves with large azimuthal wave

Fig. 2 The distribution of (a) Alfvén speed A (km/s) and (b) SMS
speed CS (km/s) in the meridional plane calculated using the model
geotail with a current sheet

numbers (m � 1). In accordance with Helmholtz’s expan-
sion theorem, an arbitrary vector field whose first derivatives
are defined at each point can be resolved as the sum of the
potential and solenoidal vector fields (Korn and Korn 1968).
For an electric field lacking the longitudinal component, the
decomposition takes the form

E = −∇⊥ϕ + [∇⊥ × Ψ ], (7)

where ∇⊥ is the gradient across magnetic field lines, ϕ and
Ψ are, respectively, the scalar and vector potential of the per-
turbed electric field. With certain gauge, the vector potential
can be chosen such as to have the longitudinal component
only, Ψ = (0,0,ψ).

In an axisymmetric medium model, the solutions to the
linearized system (1)–(4) can be sought as a Fourier de-
composition into harmonics exp (ik2x

2 − iωt), where k2 is
the azimuthal component of the wave vector (if x2 ≡ φ,
where φ is the azimuthal angle, k2 = m = 0,1,2,3, . . . is
the azimuthal wave number), ω is the wave frequency. Let
us consider oscillations with large azimuthal wave numbers
m � 1. The equation for a scalar potential of such oscilla-
tions was derived in Leonovich and Kozlov (2013b):

̂LS∇1̂LT ∇1ϕ − k2
2(̂LS

̂LP + ̂LC)ϕ = 0, (8)

where ∇i ≡ ∂/∂xi and the following operators in the longi-
tudinal x3 coordinate are introduced:

̂LT = 1√
g3

∇3
p√
g3

∇3 + p
ω2

A2
,

̂LP = 1√
g3

∇3
p−1

√
g3

∇3 + p−1 ω2

A2
,

which are the longitudinal toroidal and poloidal operators
describing the structure of Alfvén oscillations with toroidal
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(m = 0) and poloidal (m → ∞) polarization in a “cold
plasma”, p = √

g2/g1, where g1,2,3 are the metric tensor
components,

̂LS = κ1gρ0

B0P
σ
0

√
g

∇3

√
g

g3

P σ
0

ρ0
∇3

B0

κ1g

+ ω2

C2
s

,

̂LC = κ1gω
2

A2√g1g2

[

B0

ω2P σ
0

√
g3

∇3
κ1BA2P σ

0

B0
√

g3
∇3 −κ1P

]

,

where

κ1g = ∇1(ln
√

g3), κ1B = ∇1(ln
√

g3B0),

κ1P = ∇1
(

ln
√

g3P
σ
0 /B0

)

,
(9)

g = √
g1g2g3, σ = 1/γ . The relation between potentials ϕ

and ψ for MHD oscillations with m � 1 takes the form:

ik2B0
κ1g√

g3
˜�⊥ψ ≈ ∇1B0̂LT ∇1ϕ − k2

2B0̂LP ϕ, (10)

where

˜�⊥ = g3√
g

∇1
g2√
g

∇1 − k2
2

g2
.

Let us express the components of the oscillation field in
terms of potentials ϕ and ψ . We get from (7):

E1 = −∇1ϕ + ik2
g1√
g

ψ,

E2 = −ik2ϕ − g2√
g

∇1ψ,

E3 = 0.

Using (11), (2) and (6), we can obtain the following expres-
sions for components of a perturbed magnetic field and ve-
locity:

B1 = c

ω

g1√
g

∇3

(

k2ϕ − i
g2√
g

∇1ψ

)

,

B2 = c

ω

g2√
g

∇3

(

i∇1ϕ + k2
g1√
g

ψ

)

,

B3 = i
c

ω
˜�⊥ψ,

v1 = −cp−1

B0

(

ik2ϕ + g2√
g

∇1ψ

)

,

v2 = cp

B0

(

∇1ϕ − ik2
g1√
g

ψ

)

.

The perturbed pressure and the v3 component of the veloc-
ity are described by two coupled equations. The first one can
be obtained from the third component of a linearized equa-
tion (1)

v3 = − i

ωρ0
∇3P + icB0κ1B

4πρ0ω2√g1g2

(

k2ϕ − i
g2√
g

∇1ψ

)

,

and we have the second equation from linearized equa-
tions (3) and (4):

P = −i
S2ρ0

ωP σ
0

√
g

[

∇1

(√
g

g1
P σ

0 v1

)

+ ik2

√
g

g2
P σ

0 v2

+ ∇3

(√
g

g3
P σ

0 v3

)]

.

Equation (8) describes the structure of azimuthally small-
scale MHD oscillations in the meridional plane. This equa-
tion should be complemented with boundary conditions at
the ends of closed field lines that intersect the ionosphere
in the Northern (x3 = x3+) and Southern (x3 = x3−) hemi-
spheres. The ionosphere is a highly conductive medium.
With external currents flowing in the ionosphere, the bound-
ary conditions for the potential ϕ (Leonovich and Mazur
1996) are

ϕ(l±) = ∓i
v±
ω

∂ϕ

∂l

∣

∣

∣

∣

l±
− J±

‖
V±

, (11)

where dl = √
g3dx3 is the length element along the field

line, the ± signs correspond to the parameters in the North-
ern (+) and Southern (−) hemispheres, v± = c2 cosχ±/

4πΣP±, V± = ΣP±/ cosχ±, where ΣP± is Pedersen con-
ductivity of the ionosphere, χ± is the angle between the field
line and the normal to the ionosphere (see Fig. 1), and the
function J±

‖ is related to the density of field-aligned currents

in the ionosphere j±
‖ by

�⊥J±
‖ = j±

‖ .

The relation of field-aligned currents j‖ to wave processes
in the ionosphere is defined in Appendix A. The solutions
of (8) with the boundary conditions (11) were found in the
WKB approximation over the x3 coordinate in Leonovich
and Kozlov (2013b). In this paper we will seek the numerical
solutions of (8) for the fundamental and second harmonics
of standing Alfvén waves as well as analytically investigat-
ing the mechanism of their coupling with SMS waves in the
current sheet. Lower-frequency SMS oscillations will not
be considered here for they are strongly dissipative modes
and are more difficult to drive in the magnetosphere than the
Alfvén waves.

3 The structure of coupled Alfvén and SMS waves
along magnetic field lines

As was shown in Kozlov et al. (2006), Alfvén oscillations
with m � 1 can be driven in the vicinity of the poloidal
resonant shell by external ionospheric currents whose spec-
trum includes the eigenfrequencies of standing poloidal
Alfvén waves. Another source of such Alfvén oscillations
are the flows of high energetic particles in the magneto-
sphere (Mager and Klimushkin 2005). If we describe the
structure of the oscillations in hand in the WKB approxi-
mation over the x1 coordinate as ϕ ∼ exp(i

∫

k1(x
1)dx1),
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the relation |k1/k2| → 0 is correct in the vicinity of the
poloidal resonant shell. The oscillations generated near this
shell run across magnetic shells to the toroidal resonant shell
(where |k1/k2| → ∞), remaining standing waves along
magnetic field lines. While traveling from the poloidal to
the toroidal resonant shell, the polarization of Alfvén waves
changes from poloidal to toroidal. In the vicinity of toroidal
resonant shell (the Alfvén resonance region) oscillations are
fully absorbed due to ionospheric dissipation. Therefore,
there is no wave reflected from the toroidal shell.

As will be shown further, the distance between the
poloidal and the toroidal shells is larger in this case than
in the case of a “cold plasma”. Poloidal oscillations are
likely to be absorbed very close to the poloidal resonant shell
where they are generated. In order to describe the structure
of these oscillations along magnetic field lines in the vicinity
of the poloidal resonant shell only the operator proportional
to k2

2 should be left in Eq. (8), in the zeroth approximation:

̂LS
̂LP ϕ + ̂LCϕ ≈ 0. (12)

The structure of the fundamental harmonics is such that their
typical wave length along geomagnetic field lines is much
larger than their wave length in the directions perpendicular
to field lines. Using the multiple scale technique, we can
seek the structure of oscillations in the meridional plane in
the form:

ϕ = U
(

x1)H
(

x1, x3), (13)

where U(x1) describes the small-scale structure of oscil-
lations across magnetic shells, H(x1, x3) describes their
structure along magnetic field lines (here the dependence on
x1 is defined by varying the coefficients (12) on the inhomo-
geneity scale).

In the local approach, the dispersion equation can be ob-
tained from (12):
(

ω2

k2‖
− A2

)(

ω2

k2‖
− c2

s

)

= κ̄1gc
2
s

k2‖

(

ω2

k2‖
κ̄1P + A2

κ̄1B

)

, (14)

where k‖ = k3/
√

g3, κ̄1 = κ1/
√

g1 are the scaled com-
ponents of the corresponding parameters. As is shown in
Leonovich and Kozlov (2013b), Eq. (14) fully corresponds
to the dispersion equations for ballooning modes obtained in
Liu (1997), Mazur et al. (2012), Klimushkin et al. (2012).

Substituting (13) into (12) and differentiating the result
produces an equation for the H(x1, x3) function
[∇4

l + κ3∇3
l + κ2∇2

l + κ1∇l + κ0
]

H = 0, (15)

where ∇l ≡ ∂/∂l = (g3)
−1/2∇3 is a derivative with respect

to the longitudinal l coordinate, the length element of which,
in the coordinate system (a,φ, θ), has the form

dl =
√

r2(a, θ) + (∂r/∂θ)2dθ.

Radius r(a, θ) of the point on the field line is defined
by (34), and the expressions for the κi coefficients are given
in Appendix B.

For a numerical integration of Eq. (15) the latter should
be supplemented by the boundary conditions on the iono-
sphere. In the same zero-order approximation, in which
Eq. (15) was obtained, we will assume the ionosphere to be
perfectly conductive. Therefore, the boundary conditions are
reduced to the requirement that the electric field oscillation
components tangential to the ionosphere, defined through
E1 and E2, should tend to zero. It follows from (11) that,
when (|k1/k2| → 0),

ϕ(l±) = 0, (16)

where l± are the coordinates of the field line intersection
points with the ionospheres of the Northern and South-
ern hemispheres, respectively. As follows from (10), the
boundary condition ψ(l±) = 0 implies that ̂LP ϕ|l± = 0 or,
given (16),

∇2
l ϕ|l± = κlp∇lϕ|l± , (17)

where κlp = ∇l (lnp−1). In the numerical integration of (15)
the value of ∇lϕ|l− can be chosen arbitrary as it determines
the amplitude of the solution and is defined by normaliza-
tion. When integrating a fourth-order equation, the first stage
should be to specify the third derivative on the ionosphere
ϕ′′′− ≡ ∇3

l ϕ|l− (assuming that the integration starts from the
ionosphere of the Southern Hemisphere). ϕ′′′(l−) is not de-
fined from any other boundary conditions. Since on the other
end of the field line the required solution must also satisfy to
two boundary conditions, (16) and (17), it is determined by
two eigenvalues of the parameters of the problem in ques-
tion.

As such parameters, we choose the eigenfrequency
of standing waves between the ionospheres (denoted by
ω = ΩN , where N = 1,2,3, is the longitudinal wave num-
ber of a large-scale poloidal standing Alfvén wave) and the
corresponding value of the third derivative of the required
function on the ionosphere ϕ′′′

N− ≡ ϕ′′′
N (l−). Note that eigen-

value ΩN should not be seen as the eigen-frequency of the
entire problem (8). Both eigenvalues, ΩN and ϕ′′′

N−, deter-
mine the spatial structure of the harmonic of the standing
waves on the magnetic shell at hand. They are functions of
the transverse coordinate ΩN ≡ ΩN(x1), ϕ′′′

N− ≡ ϕ′′′
N−(x1).

As will be seen from the following calculations, the value
of Re(ΩN(x1)) can be thought of as the frequency in the
spectrum of the external source capable of driving the N -th
harmonic of standing waves on the resonant magnetic shell
in question. Im(ΩN(x1)) determines the distribution of the
amplitude of these oscillations across magnetic shells.

To simplify our numerical calculations, let us make use
of the model symmetry with respect to the equatorial plane.
The second pair of boundary conditions can then be formu-
lated for the equatorial plane as follows. For even modes
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Fig. 3 The longitudinal (along a field line) distribution of the scalar
potential of the fundamental (N = 1) and second (N = 2) harmonics
of coupled modes: (a) and (b) in the inner magnetosphere on the L = 6
shell; (c) and (d) in the current sheet region on the L = 15 shell. Here
θ is latitude as counted from the equatorial plane (see Fig. 1)

(N = 1,3,5, . . . in our notation) this means that all the odd
derivatives of the required function are equal to zero. Re-
quirements ∇lϕ|le = ∇3

l ϕ|le = 0, where l = le is the equato-
rial plane coordinate, are enough for our problem. For odd
modes (N = 2,4,6, . . .) the corresponding boundary condi-
tions have the form ϕ(le) = ∇2

l ϕ|le = 0.
Figure 3 shows the structure of the first two harmonics of

standing waves along the magnetic field lines, obtained from
the numerical solution of Eq. (15) with the boundary condi-
tions (16), (17) on the ionosphere. The structure of standing
waves on magnetic shells, one of which is located in the in-
ner magnetosphere (magnetic shell L = a/RE = 6, where a

is the equatorial radius of the field line, RE is the Earth’s
radius), are shown in Figs. 3a and 3b, and the second one
intersects the current sheet (L = 15) in Figs. 3c and 3d. The
oscillation parameters in the current sheet (Figs. 3c and 3d)
were computed by gradual transformation of the solutions
found in the inner magnetosphere (Figs. 3a and 3b) while
moving, at a small step, across magnetic shells in the cur-
rent sheet area.

Of most interest here is the presence of a small-scale
structure in the oscillation eigenfunctions near the iono-
sphere. This is likely to be a manifestation of a small-scale
SMS wave coupled with a large-scale Alfvén wave. What is
unusual here is that it manifests itself not only in the current
layer, as was expected in some previous papers (see Walker
and Pekrides 1996; Leonovich and Kozlov 2013b), but near
the ionosphere as well. Such a structure have also been
obtained in the numerical calculations in Cheremnykh and
Parnowski (2006), Parnowski (2007), Mazur et al. (2014),
where, however, it appeared only in a few individual compo-
nents of the oscillation field. According to our calculations,
this feature should appear in all components for they all are
expressed in terms of the scalar potential ϕ.

Fig. 4 The longitudinal distribution of the amplitude-normalized lead-
ing components of electromagnetic field oscillations (Ey,Bx,Bz) for
the fundamental harmonics (N = 1) of coupled modes: (a), (b), and
(c) in the inner magnetosphere on the L = 6 shell; (d), (e), and (f) in
the current sheet region on the L = 15 shell. Sharp peaks in the oscilla-
tion field distribution at magnetic field lines crossing the current sheet
correspond to the inflection points of the field line. Here θ is latitude
as counted from the equatorial plane (see Fig. 1)

Spatial structure refinement for this oscillation is also ob-
served in the current sheet but with smaller amplitude. This
is also linked to coupling between a large-scale Alfvén wave
and a small-scale SMS wave in the equatorial region, which
is particularly intense in the current sheet. It becomes dif-
ficult enough to rely on the shape of their large-scale com-
ponent in determining any link between the oscillation and
an initial harmonic of the standing waves on magnetic shells
inside the current sheet, due to the small-scale oscillation
structure both near the ionosphere, and in the current sheet.

Figure 4 presents the distribution of the main electro-
magnetic field components Ey , Bx , Bz of the oscillations
of interest along magnetic field lines, for the fundamental
harmonic N = 1, on the same magnetic shells L = 6 and
L = 15. The small-scale constituent near the ionosphere
manifests itself even more obviously in these components.
This is due to the distribution features of plasma parameters
in a magnetic field with field lines converging toward the
ionosphere (see Erkaev et al. 2005).

Refinement of the spatial structure of the oscillation field
components is more complex in the current sheet. The be-
havior of the structure of the Bz-component of the field in
the equatorial area is shown in the bottom of Fig. 4. Sharp
peaks in the structure on field lines crossing the current sheet
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Fig. 5 The transverse (across magnetic shells) distribution of the
eigenfrequencies of fundamental (N = 1) and second (N = 2) har-
monics of toroidal (thick dashed lines) and coupled modes (thick solid
lines), their increments in the current sheet region (thin solid lines)

are due to the fact that the κ1g parameter goes through zero
in the region in question. This takes place in the inflection
points of a field line (where its curvature becomes zero).

As can be seen from Figs. 2 and 4, there are four such
points on a field line. Two are located near the current sheet,
while the other two are at a distance from the current sheet.
A higher-order correction should be taken into account near
these points to regularize the singularity in the relation equa-
tion (10) between the ϕ and ψ potentials. This feature of
the structure of the oscillation field components can be used
to determine the inflection points of geomagnetic field lines
from satellite observations of poloidal ULF oscillations and
to find the location of the current sheet boundaries.

It should be noted that real SMS waves are strongly dis-
sipative, which is impossible to take into account in the
ideal MHD framework used in our calculations. In the real
magnetosphere, therefore, the dominance of the small-scale
component near the ionosphere will not be so obvious as in
the structures calculated here. Variations in the oscillation
structure will also be smooth enough in the current sheet,
given the actual dissipation of SMS waves. These features
will still manifest themselves to some degree, however, and
can be used to identify these coupled modes in satellite-
observed ULF oscillations.

Figure 5 shows the dependence of frequencies Ω1,Ω2

of the first two harmonics of standing waves of the coupled
modes in hand on magnetic shell parameter L = a/RE . Note
the difficulty of computing the eigen solutions of (15). Each
root ΩN(L), corresponding to a large-scale Alfvén mode in
the inner magnetosphere, is split into many “branches” in

the transition region of the current sheet exhibiting a differ-
ent structure of their small-scale components. As a result,
the Newton gradient method we used to find the solutions
with two eigenvalues is very sensitive to the initial param-
eters of the problem we employed. Therefore, we cannot
track the behavior of each of the solutions continuously in
the entire computational domain. However, an appropriate
choice of the initial parameters can minimize the number of
jumps from one branch to another. Regions of existence for
all possible branches obtained by integrating the solutions
for various large-scale modes may overlap.

The solutions in Fig. 5 corresponding to harmonics Ω1

and Ω2 are neutrally stable outside (Im(Ω1,2) = 0), but be-
come unstable inside the current sheet (Im(Ω1,2) > 0). This
phenomenon is a ballooning instability of Alfvén oscilla-
tions in the current sheet. As can be seen, the instability
in question is not associated with any coupling between
Alfvén and SMS oscillations, as was assumed previously
(see Ohtani et al. 1989; Liu 1997). Coupled Alfvén and
SMS modes become unstable only within the current sheet
when the conditions of ballooning instability are satisfied
for them. A similar problem was solved in Leonovich and
Kozlov (2013b) in the WKB approximation. In that approx-
imation there is no coupling of the oscillations in question.
It was shown, however, that in the geotail model under study
both the Alfvén and SMS waves can independently become
unstable in the current sheet.

In the next section we show that coupling between modes
occurring in the current sheet takes the form of their lin-
ear transformation and is described by a different formal-
ism from the WKB approximation. Thanks to high dissipa-
tion of SMS waves, this coupling should have the opposite
effect—it should result in Alfvén wave attenuation, compet-
ing with ballooning instability. Note that this instability can-
not be regarded as an instability of the eigen oscillations of
the plasma configuration under study. As will be shown in
Sect. 5, the presence of this instability can increase the am-
plitude of the oscillations under study when moving from
the poloidal resonance shell across magnetic shells.

For comparison, the same Fig. 5 shows the distributions
of toroidal Alfvén wave frequencies ΩT 1,ΩT 2, the eigen-
values of the problem

̂LT (ω = ΩT N)ϕ = 0

with ideal boundary conditions on the ionosphere. Compar-
ing eigen-frequencies Ω1,Ω2 to ΩT 1,ΩT 2 shows that the
resonant shells for toroidal and poloidal standing Alfvén
waves with the same frequency are very far spaced in the
geotail model. Waves generated on the poloidal resonant
shell are not capable of retaining an appreciable amplitude
by the time they reach the toroidal resonant shell. They will
be absorbed near the poloidal resonant shell due to iono-
spheric dissipation. When resolving the structure of these
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Fig. 6 The longitudinal distribution of the κ2 coefficient for the fun-
damental harmonics of coupled modes (N = 1) on magnetic shells
(1) L = 6 (thick line) and (2) L = 15 (thin line)

oscillations across magnetic shells, therefore, we can restrict
ourselves to dealing with the structure in the neighborhood
of the poloidal resonant shell.

4 The linear transformation of Alfvén and slow
magnetosonic waves in the current sheet

Let us conduct a qualitative examination of some features of
the spatial structure of oscillations under study in the cur-
rent sheet. As is shown in the previous section, in most of
the field line their structure is determined by the large-scale
component corresponding to a poloidal Alfvén wave. Be-
yond the current sheet C2

S ≈ S2 � A2 and |κ0L̄
4|, |κ1L̄

3|,
|κ2L̄

2| � |κ3L̄| ∼ 1, where L̄ is the typical field line length.
Therefore, in the qualitative study we can neglect the first
two terms with higher derivatives in almost the entire field
line, in Eq. (15):
[

κ2∇2
l + κ1∇l + κ0

]

H ≈ 0, (18)

which, in the leading order, reduces to the well-known equa-
tion for poloidal Alfvén waves ̂LP H ≈ 0. The solution of
(18) in the WKB approximation has the form

H ≈ 1

(κ0/κ2)1/4
exp

[

±i

∫

√

κ0/κ2dl − 1

2

∫

κ1

κ2
dl

]

. (19)

Let us examine the distribution of the κ2 parameter along
a field line. Figure 6 illustrates such distributions for the
fundamental harmonics of coupled modes (N = 1) on two
magnetic shells L = 6 and L = 15 discussed above. In the
current sheet region, S2 � C2

S ≈ A2, and the main feature of
the κ2 coefficient is that it goes through zero at some points
l = l0. It is evident that in the vicinity of l0 the chosen ap-
proximation is not valid and higher derivatives must be taken
account of in (15). Points l0 are special points of Eq. (19)
and singular turning points for the azimuthally small-scale
Alfvén wave (see Leonovich and Mazur 1993).

For a qualitative study of the solution in the vicinity of
points l = l0, we keep the highest derivative in (15), which
provides for regularizing the solution. Keeping the third
derivative leads to a small correction in the position of these
points. Linearizing the coefficients of such an equation in
the vicinity of l = l0, we write it as
[∇4

z + z∇2
z + α1∇z + α0

]

HN ≈ 0, (20)

where these notations are introduced: z = (l − l0)/λ +
iλ2 Im(κ2(l0)), λ = (∂ Re(κ2)/∂l)

−1/3
l0

, α1 = κ1(l0)λ
3, α0 =

κ0(l0)λ
4. Equation (20) has a standard form for using the

contour integral technique to search for its solution (Erokhin
and Moiseev 1966; Leonovich and Mazur 1995). Let us seek
the solution of (20) in the form

HN

(

x1, z
) =

∫

C̃

H̃N (s)eszds, (21)

where C̃ is an arbitrary path in the plane of complex s. Sub-
stituting (20) into (21) and using integration by parts in the
second term, we have the following equation for H̃N

s2H̃N − ∂s2H̃N

∂s
+ α1sH̃N + α0H̃N = 0, (22)

with the constraint

s2H̃Nesz
∣

∣

C̃
= 0, (23)

that is the condition for choosing path C̃. Path C̃ must be
such that either expression (23) vanish at its end or its start
and end points coincide. The solution of (22) takes the form

H̃N = 1

s2−α1
exp

(

s3

3
− α0

s

)

, (24)

and corresponding solution to (21) is

HN

(

x1, z
) =

∫

C̃

exp

(

s3

3
− α0

s
+ sz

)

ds

s2−α1
, (25)

and the condition for selecting paths C̃

sα1 exp

(

s3

3
− α0

s
+ sz

)∣

∣

∣

∣

C̃

= 0.

Let us write complex variable s as s = rse
iψs . It follows

that expression (23) vanishes with s → 0 in the region
−π/2 < ψs < π/2 provided Reα0 > 0 and in the sec-
tor π/2 < ψs < 3π/2 provided Reα0 < 0. With s → ∞,
there are sectors π/6 < ψs < π/2, 5π/6 < ψs < 7π/6, and
3π/2 < ψs < 11π/6. They are white in Fig. 7. We will not
construct the full set of solutions of (20), as was done in
Erokhin and Moiseev (1966), Leonovich and Mazur (1995).
We focus on those paths C̃ corresponding to path integrals
(21) which describe the solutions with coupled modes.

Let us use the saddle-point method to estimate the value
of path integrals (21) under |z| → ∞ (see Budden 1985).
Saddle points of (21) correspond to the zeros of the inte-
grand exponent index

s2 + α0

s2
+ z = 0.
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Fig. 7 Azimuth variations of saddle points Si (i = 1,2,3,4) from (25)
in the course of the transition from Re z → ∞ to Re z → −∞ and the
paths C̃1,2 used in solving Eq. (21) when Reα0 > 0

Consequently,

s2 = − z

2
±

√

z2

4
− α0.

When Re z → ∞, we have four saddle points S1,2 = ±i
√

z

and S3,4 = ±i
√

α0/z (for Reα0 > 0). The z value is com-
plex in the general case, its imaginary part determined by
complex frequency ω. The bypass rule for singular point
z = 0 when passing from Re z → ∞ to Re z → −∞ is de-
fined in the same manner as when Imω > 0, i.e. the phase of
z varies 0 to π . Thus, when Re z → −∞, the saddle points
transform into S1,2 = ∓√−z, S3,4 = ±√−α0/z, as shown
in Fig. 7.

Let us choose path C̃1 and C̃2 as shown in Fig. 7.
Both paths cross two saddle points and describe coupled
Alfvén and SMS modes. Let us denote α0 = rαeiν . Using
the saddle-point method procedure for estimating the inte-
grals, and given the contribution of both points, produces
the following asymptotics for the solution of (20):

H
(1)
N =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

z1/4−α1/2

α
3/4−α1/2
0

exp[2i
√

α0z + iϕA1]

+ exp[− 2
3 iz3/2+iϕS1]

z5/4−α1/2 , Re z → ∞,

(−z)1/4−α1/2

α
3/4−α1/2
0

exp[−2
√−α0z + iϕA2]

+ exp[− 2
3 (−z)3/2+iϕS2]

(−z)5/4−α1/2 , Re z → −∞,

H
(2)
N =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

z1/4−α1/2

α
3/4−α1/2
0

exp[−2i
√

α0z + iϕA3]

+ exp[ 2
3 iz3/2+iϕS3]
z5/4−α1/2 , Re z → ∞,

(−z)1/4−α1/2

α
3/4−α1/2
0

exp[2√−α0z + iϕA4]

+ exp[ 2
3 (−z)3/2+iϕS4]

(−z)5/4−α1/2 , Re z → −∞,

(26)

where the notations are: ϕA1 = (π + ν)/4; ϕA2 = ν/4 −
α1π/2; ϕA3 = ν/4 + α1π + 3π/4; ϕA4 = ν/4 + α1π/2 +
π/2; ϕS1 = α1π + 3π/4; ϕS2 = 3α1π/2; ϕS3 = π/4;
ϕS4 = (α1 − 1)π/2. The upper lines in (26) describe the
field of Alfvén and SMS waves in the transparency region
(Re z → ∞), and the lower lines refer to the opacity region
(Re z → −∞). Linearizing coefficients κ0,1,2 in the vicinity
of l = l0 in (19), the WKB solution under Re z → 0 can be
represented in the form

HN ∼ z1/4−α1/2 exp(±2i
√

α0z).

The inner asymptotics of the WKB solutions (19) is matched
with the outer asymptotics of the first terms in (26). Hence,
the first terms in (26) correspond to the field of Alfvén waves
and the second terms, to the SMS field.

In the vicinity of points l = l0, a partial linear transfor-
mation takes place of Alfvén waves into SMS waves. There
can be a number of such points in the current sheet. No-
tably, this transformation differs from the resonant interac-
tion of modes such as the Alfvén and magnetosonic reso-
nances. Since Cs ≈ A in the current sheet, the typical spatial
structures of Alfvén and SMS waves become similar, with
no dramatic increase in the oscillation amplitudes.

The linear transformation can take place even if there are
no transformation points. As depicted in Fig. 6, coefficient
κ2 does not go through zero anywhere on magnetic shell
L = 6. However, a small-scale component is still present in
the solutions in Figs. 3 and 4. This is due to the fact that
the linear transformation occurs when the κ2 coefficient be-
comes sufficiently small somewhere on the field line. Fig-
ure 6 shows that this occurs in the equatorial region on mag-
netic shell L = 6. Therefore, the entire current sheet region
is the region of a linear transformation of Alfvén and SMS
waves.

It is impossible to use such a formalism for precise calcu-
lations of wave fields, since the asymptotics are beyond the
computational domain. However, this formalism provides an
opportunity to understand the inner mechanism of coupling
of the guided modes.

5 The structure of coupled MHD modes across
magnetic shells

Let us determine the spatial structure of the oscillations un-
der study across magnetic shells. In order to do that, we
need to find the solution of the full Eq. (8) with boundary
conditions both on the ionosphere and on the asymptotics
over the transverse x1 coordinate. Let us define the bound-
ary conditions. If a solution to (12) is found on some mag-
netic shell x1 = x̄1, with the above-defined boundary condi-
tions, the natural requirement would be for the amplitude of
the monochromatic wave field to be limited away from this
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shell. For complex-frequency eigen oscillations (with no ex-
ternal source) it is demonstrably impossible to construct a
solution to (8) that would satisfy the boundary conditions
for both asymptotics (x1 − x̄1) → ±∞. A solution limited
on one of the asymptotics is sure to increase on the other.

If there is a broadband source for m � 1 Alfvén waves,
however, its spectrum including the frequency ω = Re(ΩN),
then this source will generate a poloidal standing Alfvén
wave on the magnetic shell x1 = x1

N (Leonovich and Mazur
1993). In the current sheet, the Alfvén wave partially trans-
forms into the SMS wave. As a result, a coupled mode forms
along the field line. The magnetic shell x1 = x1

N is a turn-
ing shell that separates the transparency and opacity regions
for such waves over the x1 coordinate. The transparency re-
gion is located between the poloidal (x1 = x1

N ) and toroidal
(x1 = x1

T N ) resonant surfaces of the N -th harmonic of stand-
ing Alfvén waves (see Fig. 5). The distance between these
surfaces on magnetic shells in the region of the current sheet
is rather large. Hence we can restrict ourselves to exploring
the structure in the vicinity of the poloidal resonant shell.

The wave generated on the poloidal resonant shell runs
through the transparency region to the toroidal resonant
shell. The shell x1 = x1

T N is a singular turning shell, the
wave is completely absorbed in its vicinity. Such a wave has
the structure of a traveling wave across magnetic shells in
the transparency region, but remains a standing wave along
magnetic field lines.

Let us construct a solution describing the structure of
(generally unstable) azimuthally small-scale coupled Alfvén
and SMS waves in the vicinity of the poloidal resonant shell.
In the leading order of the perturbation theory, we sought
the structure of the oscillations in hand along magnetic field
lines with the ideal boundary conditions on the ionosphere.
Their structure across magnetic shells can be found in the
next, first, order. In the boundary conditions we take into ac-
count the finite conductivity of the ionosphere and the pres-
ence of external currents (see (11)).

Let us seek the solution of (8) for the N -th harmonic of
standing coupled modes in the form

ϕN = UN

(

x1)[HN

(

x1, x3) + hN

(

x1, x3)], (27)

where the function HN(x1, x3) describes the structure of the
standing wave in the zeroth approximation, and the function
hN(x1, x3) is the first-order correction accounting for the
non-ideality of the boundary conditions on the ionosphere

hN

(

x1, l±
) = ∓i

v±
ω

∂HN

∂l

∣

∣

∣

∣

l±
− J±

‖
V±

U−1
N

(

x1). (28)

In the leading order of the perturbation theory we solved the
equation:

̂LS(ΩN)̂LP (ΩN)HN + ̂LC(ΩN)HN = 0.

Substituting the solution in the form (27) into (8) yields, in
the first order of the perturbation theory

∇2
1UN

(

x1)
̂LT (ΩN)HN

− k2
2UN

(

x1)p−1 (ω2 − Ω2
N)

A2
HN

− k2
2UN

(

x1)
̂LP (ΩN)hN ≈ 0.

We take into account that in most of the field line CS � A

and |̂LS(HN + hN)| ≈ |Ω2
N(HN + hN)/C2

S | � |̂LC(ΩN) ×
(HN + hN)|. Multiplying this equation by HN and inte-
grating along the field line between the magnetoconjugated
ionospheres, we get

βN∇2
1UPn + k2

2

[

αN

(

ω2 − Ω2
N

) + δ̄N

]

UN = 0, (29)

where these notations are introduced

αN =
∫ l+

l−

H 2
N

pA2
dl,

βN = −
∫ l+

l−
HN

̂LT (ΩN)HNdl,

δ̄N =
∫ l+

l−
HN

̂LP (ΩN)hNdl = −hN

p

∂HN

∂l

∣

∣

∣

∣

l+

l−
.

Taking into account the boundary conditions (28) and
choosing the normalization of eigenfunctions HN such that
αN = 1, we get the equation

∇2
1UN + k2

y

ω2

[

(ω + iγN)2 − Ω2
N

]

UN = I‖N, (30)

which describes the structure of standing azimuthally small-
scale waves over the x1 coordinate in the vicinity of the
poloidal resonant shell. Here k2

y = k2
2ω2/βN ,

γN = 1

2ω2

[

v+
p+

(

∂HN

∂l

)2

+
+ v−

p−

(

∂HN

∂l

)2

−

]

is the decrement of Alfvén waves due to the finite iono-
spheric conductivity in the vicinity of the poloidal shell,

I‖N = k2
y

ω2

[

J+
‖

p+V+

(

∂HN

∂l

)

+
− J−

‖
p−V−

(

∂HN

∂l

)

−

]

is the function describing the source of Alfvén waves related
to external currents in the ionosphere.

Let us write ΩN = Ω̄N + iδN , where Ω̄N ≡ Re(ΩN),
δN ≡ Im(ΩN). In the vicinity of the resonant shell x1 = x1

N ,
we then use the following approximate linear decomposi-
tion:

Ω̄2
N ≈ ω2

(

1 − x1 − x1
N

aN

)

,

where aN = (∇1 ln Ω̄2
N)−1 is the typical variation scale

of Ω̄N at x1 = x1
N . Substituting this decomposition into

Eq. (30) and introducing the dimensionless transverse co-
ordinate ξ = (x1 − x1

N)/�N (where �N = a
1/3
N /k

2/3
y ), it is

possible to represent it in the form

∂2

∂ξ2
UN + (ξ + iεN)UN = a

2/3
N

k
4/3
y

I‖N, (31)
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Fig. 8 The structure of coupled poloidal guided modes across mag-
netic shells: (a) the wave has a larger instability increment than its
decrement due to ionospheric dissipation (εN > 0); (b) the wave has
a smaller instability increment than its decrement due to ionospheric
dissipation (εN < 0)

where εN = 2(γN − δN)(kyaN)2/3/ω. The localization of
the wave source in the ionosphere is assumed to be much
larger than their transverse wave length. On the scale of the
localization of the solution, the right-hand part of (31) can
then be assumed to be constant. The solution of (31) satisfy-
ing the given boundary conditions (the limited amplitude on
the asymptotics) is

UN

(

x1) = a
2/3
N

k
4/3
y

I‖NG(ξ + iεN ), (32)

where G(ζ) is the solution of the nonuniform Airy equation
which has the following integral representation:

G(ζ) = −i

∫ ∞

0
exp

[

−i
s3

3
+ isζ

]

ds. (33)

Its asymptotics are

G(ζ) =
{

−π1/2

ζ 1/4 exp( 2
3 iζ 3/2 + i π

4 ), Re ζ → ∞,

ζ−1, Re ζ → −∞.

It follows immediately that the solution (32) decreases as a
power law in the opacity region, and describes a wave run-
ning from the resonant shell in the transparency region. The
structure of the solution across magnetic shells is presented
in Fig. 8. If the growth rate of the ballooning instability of
coupled modes in question is larger than their decrement due
to ionospheric dissipation (εN > 0), the amplitude would in-
crease away from the resonant shell (Fig. 8a). That is the
case only on magnetic shells where the condition of the ex-
istence of unstable modes is valid (|k2| > |k1|). The farther

from the resonance shell, the larger is k1 and somewhere on
the way the wave structure suffers a transition to a state with
|k2| < |k1|. After that, the wave amplitude starts to decrease
towards the toroidal resonant shell. If εN < 0, the wave am-
plitude starts to decrease directly after leaving the poloidal
resonant shell (Fig. 8b).

6 Conclusion

Let us now summarize the main results of the paper.

1. The problem is solved of the structure of coupled Alfvén
and slow magnetosonic modes on tailward-stretched field
lines.

2. It is shown that the mode coupling occurs in the region of
the current sheet in the magnetotail and that these modes
are not coupled on most of the field line.

3. Due to the high conductivity of the ionosphere, the field
of the coupled modes forms standing waves along mag-
netic field lines. On most of the field line, a large-scale
Alfvén wave structure dominates. A small-scale SMS
wave structure manifests itself near the ionosphere and
in the current sheet. This feature can be used to iden-
tify such coupled modes in ULF oscillations observed by
satellites. This finding is rather unexpected because some
previous papers suggested that a small-scale structure is
only dominant in the current sheet.

4. At the field lines crossing the current sheet the structure
of the field components of poloidal coupled modes has
singularities at the inflection points of a field line. They
look like resonance peaks. There are four such points on
a field line. Two of them are in the vicinity of the current
sheet. It is possible to use them for determining the ap-
proximate position of the boundaries of the current sheet
in satellite observations of ULF oscillations.

5. In the transition region between the inner magnetosphere
and the current sheet, the spectrum of lower harmonics of
standing waves splits into numerous branches differing
in the structure of their small-scale components. These
oscillations become unstable in the current sheet region,
which is a manifestation of the ballooning instability.

6. The coupled modes under scrutiny can be driven in the
magnetosphere in the presence of an external source. In
this paper, external currents in the Earth’s ionosphere
are used as such a source. Across magnetic shells, the
structure of such oscillations is a running wave from the
resonance shell. When the ballooning instability-induced
growth rate is larger than their decrement due to dissipa-
tion in the ionosphere, the amplitude of the oscillations
increases away from the resonant shell. In the opposite
case, the oscillation amplitude decreases.

7. The presence of a ballooning instability could be consid-
ered as a possible mechanism of magnetic reconnection
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in the current sheet. However, the very presence of this
instability needs further investigation, because the dissi-
pation of SMS waves due to their interaction with the
background ions was not taken into account in the prob-
lem solved in this paper.
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Appendix A: The axisymmetric model of the geotail
with a current sheet

Let us define the magnetic field model as follows. In the
meridional plane, a magnetic field line is described by ra-
dius r(a, θ) from the Earth’s center (Fig. 1), where a is the
equatorial radius of a field line, θ is its latitude as counted
from the equator. We consider a model magnetosphere that
is symmetric about the equatorial plane. The shape of the
dipole magnetic field line is described by r ≡ rd = a cos2 θ ,
while its strength is

Bd = B̄d

(

RE

a

)3
√

1 + 3 sin2 θ

cos6 θ
,

where B̄d = 0.32 G is the magnetic field strength at the
Earth’s equator (RE is the Earth’s radius). The subsequent
calculations will also invoke the cylindrical coordinate sys-
tem (ρ,φ, z) (see Fig. 1). The dipole magnetic field compo-
nents in this coordinate system Bd = (Bdρ,0,Bdz) are

Bdρ = Bd ∗ cos θ̃ , Bdz = Bd ∗ sin θ̃ ,

where θ̃ = arccos(3 sin θ cos θ/
√

1 + 3 sin2 θ) is the angle
between the tangent to the field line and the ρ axis.

In order to model the magnetic field Bj = (Bjρ,0,Bjz)

induced by an azimuthal current, we use the following
model for the magnetic field Bjρ component

Bjρ = Bj∞
2

[

1 + tanh
ρ − ρ̃

�ρ

]

tanh
z

�
,

where ρ̃ ≈ 10 RE is the near-Earth boundary of the plasma
sheet, �ρ ≈ 2RE is the typical thickness of the transition
region, � is the typical thickness of the current sheet (see
Fig. 1), Bj∞ ≈ 20 nT is the magnetic field in the magne-
totail lobes away from the current sheet. The current sheet
thickness is known to vary over a wide range (Birn 2011),
� ∼ 1–2 RE for quiet geomagnetic conditions (thick cur-
rent sheet) to � ∼ 0.1–0.4 RE in a disturbed magnetosphere
(thin current sheet). In the numerical calculations here, we
restrict ourselves to the model with a thin current sheet
where � = 0.2 RE , for which mode coupling and balloon-
ing instability were most conspicuous.

Since the magnetic field of a current obeys this equation

div Bj = 1

ρ

∂ρBjρ

∂ρ
+ ∂Bjz

∂z
= 0,

we have

Bjz = −Bj∞�

2

[

1

ρ

(

1 + tanh
ρ − ρ̃

�ρ

)

+ 1

�ρ cosh2(ρ − ρ̃)/�ρ

]

ln cosh
z

�
.

The Bjz component has a singularity at ρ → 0 and z → ∞.
In the region of stretched field lines (� � ρ, z < ρ), how-
ever, the contribution of this component is negligible. Of
course, in the real magnetosphere, magnetic field has no sin-
gularity, its distribution is determined not only by the sheet
current but also by currents at the magnetospheric boundary.
It is possible to obtain a similar distribution for the back-
ground magnetic field by introducing equivalent shell cur-
rents away from the current sheet. Calculation of the spatial
distribution of such currents is, however, a rather compli-
cated problem, which is beyond the scope of the problem
formulated here.

The leading term of the axisymmetric azimuthal current
j = (0, jφ,0) corresponding to the above-described mag-
netic components is

jφ = c

4π
(curl B0)φ

≈ cBj∞
8π

1

� cosh2(z/�)

[

1 + tanh
ρ − ρ̃

�ρ

]

.

This term describes the azimuthal current localized near the
equatorial plane at scale �.

Hence, the total background magnetic field B0 =
(B0ρ,0,B0z) has the following components: B0ρ = Bdρ +
Bjρ , B0z = Bdz + Bjz. The shape of the field line is defined
by (see for details Leonovich and Kozlov 2013b):

r(a, θ) = a exp

[∫ θ

0

sin θ ′ cos θ ′ − sin θ̄ cos θ̄

sin2 θ̄ − sin2 θ ′ dθ ′
]

, (34)

where θ̄ is the angle between the tangent to the field line and
the ρ axis (sin θ̄ = B0z/B0, cos θ̄ = B0ρ/B0).

Expressions for the metric tensor components in the
(a,φ, θ) system tied to the magnetic field geometry have
the form

g1 = r2(a, θ)

r2(a, θ) + (∂r/∂θ)2

(

∂r

∂a

)2

, (35)

g2 = r2(a, θ) cos2 θ. (36)

Deriving the g3 component is more complicated. Note that
the expression for g3(a, θ) derived in Leonovich and Kozlov
(2013b) only applies to fields with scalable field lines, such
as dipole-like magnetic fields. In our calculations we only
used the logarithmic derivative

κ̄1g = κ1g√
g1

= ∇1(lng3)√
g1

= 2/rc, (37)
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where

rc = [r2 + (r ′)2]3/2

r2 + 2r ′2 − rr ′′ ,

is the curvature radius of the field line, r ′ ≡ ∂r/∂θ . Note that
the (a,φ, θ) coordinates are non-orthogonal, but are unam-
biguously linked to the (x1, x2, x3) coordinates. In particu-
lar, the derivatives of the medium parameters with respect to
the x1 coordinate in the (a, θ ) system have the form

∇1f =
(

∂f

∂a

)

θ

−
(

∂f

∂θ

)

a

(∂r/∂θ)a(∂r/∂a)θ

r2(a, θ) + (∂r/∂θ ′)2
a

,

where the subscripts indicate that the corresponding deriva-
tive is taken at constant a and θ .

Let us simulate the Alfvén speed distribution as fol-
lows. In the region where the dipole component dominates
in the magnetic field (that is ρ < ρ̃) let A(a, θ) ≡ Ad =
Ai/rd(a, θ), where Ai ≈ 5000 km/s is the Alfvén speed
at the upper ionospheric boundary (ri = RE + 1500 km),
rd is the radius of the dipole field line. This simple model
simulates rather accurately the distribution of A along the
field line from the ionosphere to the equatorial plane. Of
course, it does not take into account the drastic change in A

at the plasmapause, but we will not consider this region of
the magnetosphere.

In the current sheet region (ρ > ρ̃), Alfvén speed A de-
pends primarily on the z coordinate. The value of A changes
from A0 ≈ 100 km/s in the current sheet (z = 0) to A∞ ≈
6000 km/s in the magnetotail lobes (for z � �, where � is
the typical current sheet thickness). Let us model the Alfvén
speed as follows, in this region:

A(z) ≡ At = A0
[

1 − (

1 − (A∞/A0)
)

tanh(z/�)
]

.

The complete model of the Alfvén speed can be presented
as

A(ρ, z) = 1

2

[

Ad + At − (Ad − At) tanh
ρ − ρ̃

�ρ

]

. (38)

Equation (38) with a preassigned distribution of the mag-
netic field defines the plasma density distribution ρ0.

To model the sound speed distribution requires specify-
ing a model for the plasma pressure distribution. We define
the plasma pressure distribution in a similar manner to what
was done above for the Alfvén speed distribution, separately
for the ρ < ρ̃ region, dominated by a dipole magnetic field,
and for the ρ > ρ̃ region, dominated by the Bjρ(z) compo-
nent. We neglect the magnetic field of the azimuthal current
in the former region as we do the dipole magnetic field in the
latter. Of course, this distribution of the equilibrium plasma
pressure can only be regarded as approximate. As follows
from (5), the pressure P0 is conserved along magnetic field
lines. If we could specify the exact distribution of pressure
on some shell intersecting all of the field lines (for example,
near the ionosphere), it would be defined in the whole model

magnetosphere. Unfortunately, it does not seem possible to
define such a distribution with good accuracy without taking
into account the currents on the magnetospheric boundary.
Therefore, in this paper we will employ the above method of
approximately describing the equilibrium plasma pressure
distribution.

Given the above assumptions and the fact that the dipole
magnetic field is force-free, we have P0 ≡ P0d = const in
the ρ < ρ̃ region. As for the ρ > ρ̃ region, the equilibrium
condition (5) yields

P0(z) ≡ P0j (z) = P0j (∞) − B2
jρ(z)

8π
+ B2

jρ(∞)

8π
,

where P0j (∞) is the plasma pressure in the magnetotail
lobes away from the current sheet. Let us select P0j (∞)

such that β∞ = 8πP0j (∞)/B2
jρ(∞) = 0.005. The above-

derived distribution of P0(z) corresponds to the Harris layer
model, believed to be a good enough approximation for de-
scribing the geotail current sheet. Since all MHD-oscillation
instability effects are determined by the pressure distribu-
tion within, and next to, the current sheet, these results will,
hopefully, not be very different from a more accurate model
distribution of P0(ρ, z). Let us also set P0d = B2

jρ(∞)/8π ,
for definiteness. We will simulate the complete distribution
P0(z) of plasma pressure using the formula

P0(ρ, z) = 1

2

[

P0d + P0j − (P0d − P0j ) tanh
ρ − ρ̃

�ρ

]

. (39)

Since the distribution of ρ0 is defined by the Alfvén speed
distribution, we can now construct the distribution of the
sound speed in plasma.

Let us now examine the relations of the ionospheric
field-aligned currents j‖ to wave processes in the conduct-
ing ionospheric layer. Internal gravity and acoustic-gravity
waves in the neutral atmosphere can act as such wave pro-
cesses, their range of periods overlapping the range of the
magnetospheric MHD oscillations in question. The iono-
sphere is partially ionized at the conductive layer level so
that the collisions of plasma ions and electrons with neutral
atoms play the main role in their dynamics. The electrons
are magnetized (“tied” to magnetic field lines), and ions are
non-magnetized in the process. The ion component mov-
ing across the magnetic field lines is determined by it being
drawn by the neutral component, while the electrons remain
immobile, in this direction. A transverse current results:

j⊥ = en(vi⊥ − ve⊥),

where ve⊥ ≈ 0 is the speed of electrons, vi⊥ ≈ v0⊥ is the
speed of ions, v0⊥ is the speed of neutral gas in the wave pro-
cess. The transverse conductivity of the ionospheric plasma,
σ̂⊥, is tensorial in form. Therefore the relation of the trans-
verse currents caused by atmospheric wave motions to trans-
verse electric fields has the form

j⊥ = σ̂⊥E⊥,
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where

σ̂⊥ =
(

σ11 σ12

σ21 σ22

)

,

σij are the components of the Hall and Pedersen conductiv-
ity of the ionosphere for the wave process in question.

Since the longitudinal conductivity is much larger than
transverse conductivity (σ‖ � σ⊥) in a strongly inhomoge-
neous ionospheric plasma, the transverse currents are closed
through magnetospheric field-aligned currents j‖, that are
in fact the generated Alfvén wave. Their value at the upper
boundary of the ionosphere can be determined from the con-
dition that the total current be closed

div j = 0,

which should be integrated over the thickness of the conduc-
tive ionospheric layer. Thus, knowing all the components of
the total current and the expressions for the components of
the conductivity tensor of a partially ionized plasma (see e.g.
Alperovich and Fedorov 2007), we can determine the com-
ponents of the oscillation electric field at the ionospheric al-
titude.

Appendix B: The coefficients of Eq. (15)

We write the coefficients of (15) in the following form

κ3 = 3κlp +κlb, (40)

κ2 = κ1gκ1B

g1
+κ

(2)
a +κlsκla + 2κlbκlp

+ 3p∇2
l p−1 + ω2(A−2 + C−2

s

)

, (41)

κ1 = κ1gκ1B

g1
κlc +κlpκlsκla +κlpκ

(2)
a

+κlbp∇2
l p−1 + p∇3

l p−1

+ ω2
(

κlb

A2
+ κlp

C2
s

+ 2p∇l

p−1

A2

)

, (42)

κ0 = ω4

A2C2
s

+ ω2
(

κ
(2)
a +κlsκla −κ1gκ1P /g1

A2

+κlbp∇l

p−1

A2
+ p∇2

l

p−1

A2

)

, (43)

where the notations are

p = √

g2/g1,

κlp = ∇l

(

lnp−1),

κla = ∇l

(

ln
B0

κ1g

)

,

κls = ∇l

(

ln
√

g1g2P
σ
0

ρ0

)

,

κlb = κls + 2κla,

κlc = ∇l

(

ln
κ1BB0P

σ
0

ρ0

)

,

κ
(2)
a = κ1g

B0
∇2

l

B0

κ1g

,

and κ1g,κ1B and κ1P are determined by the expres-
sions (9).
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