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Abstract-Based on equations of ideal magnetohydrodynamics a theoretical study is made of the spatial 
structure of poloidal Alfvtn oscillations of the axisymmetric magnetosphere with large but finite values of 
azimuthal wave number m. The study has revealed a transverse dispersion of such oscillations which is 
attributable to the curvature of geomagnetic field lines that determines the fine transverse structure of the 
oscillation field. Solutions for different cases of the behaviour of magnetospheric parameters are obtained. 
By taking the summation over harmonics with different 112, we have constructed a solution localized in 
both transverse coordinates which may be treated as the oscillation of a thin flux tube. 

1. INTRODUCTION 

Since the first work by Dungey (19.54), when inves- 
tigating MHD oscillations of the axisymmetric mag- 
netosphere, it has been customary to distinguish two 
particularly simple kinds of natural Alfven oscil- 
lations : toroidal and poloidal modes. To the former 
ones there corresponds the value of azimuthal wave 
number m = 0. A disturbed electric field in the toroi- 
da1 mode oscillates in the direction normal (radial) 
to the field line and the magnetic field and the plasma 
oscillate in the azimuthal (binormal) direction. Poloi- 
da1 modes have extremely large values, m = co. The 
electric field in them oscillates azimuthally, and the 
magnetic field and the plasma oscillate normally. In 
the range m = 0 and m = co the equations of ideal 
magnetohydrodynamics split, thus allowing simple 
solutions to be obtained for Alfvtn eigenmodes. These 
solutions are standing Alfven waves enclosed between 
magnetoconjugate ionospheres and concentrated on 
certain, so-called resonance magnetic surfaces. This 
means that their eigenfunctions are &functions in 
the direction perpendicular to magnetic shells. This 
permits us to treat toroidal modes as torsional oscil- 
lations of separate magnetic shells and poloidal modes 
as radial oscillations of individual field lines. The 
longitudinal (along a field line) structure of standing 
waves and frequency spectra are determined by cor- 
responding one-dimensional problems for eigenvalues 
(Radoski, 1967; Radoski and Carovillano, 1969; 
Cummings et al., 1969; Krylov et al., 1981; Krylov 
and Lifshitz, 1984). In papers by Walker (1987) and 
Taylor and Walker (1987) an analysis was made 
of the influence of finite plasma pressure upon the 
longitudinal structure of the poloidal Alfven wave 

(m = a). When p - 1, the strong connection between 
the Alfvtn wave and slow magnetosound makes this 
influence fundamentally important. At the same time 
the transverse structure of the wave field remains 
unchanged ; the wave field is also concentrated on the 
resonance surface. 

The singularity of eigenfunctions of toroidal and 

poloidal modes on resonance shells is caused by an 
excessive idealization and simplification of the prob- 
lem statement. Taking account of effects beyond the 
scope of ideal magnetohydrodynamics and con- 
sidering finite values of m (i.e. m # 0 and m # co) 

removes the singularity, thus permitting the fine struc- 
ture of the oscillation field to be determined. Such an 
investigation was carried out for Alfven oscillations 
with relatively small values of m which have a nearly 
toroidal character. A first attempt in this direction 
was made in fundamental papers by Southwood 
(1974) and Chen and Hasegawa (1974). The sub- 
sequent development of the theory was outlined in a 
review by Southwood and Hughes (1983 ; and ref- 
erences therein). At that stage the investigation was 
confined to a very simple magnetosphere model in the 
form of a flat plasma layer located in a homogeneous 
magnetic field. In a number of later papers (Lifshitz 
and Fedorov, 1986 ; Southwood and Kivelson, 1986) 
attempts were made to consider oscillations with finite 
values of m in a curvilinear magnetic field and in a 
plasma which is inhomogeneous in both the radial 
and longitudinal directions. This problem was solved 
in a most thorough and consistent way in papers by 
Leonovich and Mazur (1989a,b). 

As far as poloidal Alfvtn oscillations are concerned, 
their fine transverse spatial structure has not yet been 
investigated. Meanwhile, without solving this issue, 
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the conclusion itself about the existence of poloidal 
modes cannot be regarded as justified. The point here 
is this. The polarization of a poloidal mode assumes 
that the transverse component of its wave vector is 
directed azimuthally. It would seem that the limit 
m = 03 which implies that the azimuthal component 
of wave vector ICY is equal to infinity, ensures this 
statement; but since the mode is concentrated on a 
certain magnetic surface, the normal component of 
wave vector %c, is also equal to infinity so that the 
question of the direction of the full transverse com- 
ponent remains open. In this lies the substantial 
difference of the poloidal mode from the toroidal one. 
For the latter one, in the zeroth-order approximation 
ICY = 0 and K, = co, which agrees quite well with its 
polarization. Taking account of the various effects 
determining its fine structure in the direction across 
field lines leads to finite but small values of K~ and to 
finite but large values of K,. In this case the inequality 
K, CC K, is satisfied, which ensures the toroidal charac- 
ter of the mode. 

Thus, there is a pressing need to investigate the fine 
transverse structure of the poloidal mode. It appears 
that in this case it suffices to consider large, but finite 
values of m in the approximation of ideal magneto- 
hydrodynamics. In this also lies the difference of 
the poloidal mode from the toroidal one, and inves- 
tigating its transverse structure requires taking 
account of effects beyond the scope of ideal magneto- 
hydrodynamics. 

2. THE DIFFERENTIAL EQUATION FOR 

POLOIDAL ALFVEN OSCILLATIONS 

For describing the axisymmetric magnetosphere, 
we shall be using an orthogonal curvilinear coordinate 
system x’, x2, x3 where x’ = const. coincides with 
magnetic shells, the coordinate x2 specifies a field line 
on a given shell, and x3 specifies a point on a given 
field line (see Fig. 1). By xl and x? we denote the 
coordinates of intersection of the field line with the 
ionosphere of conjugate hemispheres. These quan- 
tities are functions of the magnetic shell: xi = 
x:(x’). Disturbances in the wave will be described by 
covariant components of the vector of a disturbed 
magnetic field 

Bi = &xl, x3) exp (iK2x2 -iot), 

i = 1,2,3, 

where w is the frequency of the wave, and rc2 is the 
covariant azimuthal component of the wave vector. 
If the azimuthal angle cp is chosen as x2, then ICY = m 
is an azimuthal (integer) wave number. For making 

FIG. 1. THE CURVILINEAR ORTHOGONAL COORDINATE SYSTEM 
(X’, X’) IN THE MERIDIONAL PLANE (X’ = CONST.). 

The possible North-South asymmetry of the magnetosphere 
is especially stressed. The figure also shows : the equatorial 
line which is a separatrix for curves x3 = const., one of 
the magnetic shells and coordinate lines x3 = const., cor- 
responding to the intersection of this shell with the iono- 
sphere in the Northern (x:) and Southern (x?) 

Hemispheres. 

order-of-magnitude estimates, we shall also use typi- 
cal values of the other two components of wave vec- 
tors K~ and K) which are equal to inverse values of 
typical spatial scales of the oscillation in the coor- 
dinates x’ and x3. Note that the respective com- 
ponents of the wave vector in a local Euclidean basis 
(i.e. physical components) are given by the relation- 
ships J& = KJ&, where gi represents diagonal com- 
ponents of the metric tensor. Note further that the 
quantities employed in the Introduction are K, = J?, 
and IC+, = e2. 

The system of equations describing disturbed fields 
of a monochromatic wave have the form 

curlE = iwB, curl B = -iwET, 
c c (1) 

where E^ is the tensor of dielectric permittivity of 
plasma. In the approximation of ideal magnetic 
hydrodynamics this tensor is a diagonal one, and in a 
local Euclidean basis 

2 

E,, = &2* = -, 
;2 

&jS = 00, (2) 

where A = B,,/& is the AlfvCn velocity. In an 
axisymmetric magnetospheric model we have 

A = A(x’,x3). From (1) and (2) follows a system of 
equations for a disturbed magnetic field 
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(3b) 

where g = g,g2g3 is the determinant of the metric 
tensor. Instead of one of the equations of the system 
(3) one can use the identity div B = 0 (which follows 
from this system). In curvilinear coordinates it is of 
the form 

a&- A- a & 
~g,Br+i%~B2+axJgBg =O. (4) 3 

If a, is expressed from it and is substituted into 
(3~) then a simple manipulation yields 

1. (5) 

Equations (3a) and (5) form a closed system of equa- 
tions for the B, and B3 components. 

In a homogeneous plasma this system describes two 
independent oscillation modes, namely an Alfven 
wave and a fast magnetosonic wave, and the B, com- 
ponent is different from zero only in the second of 
them. In an inhomogeneous plasma such a separation 
is, strictly speaking, impossible; but also in this case, 
for illustration purposes, we shall treat the 8, com- 
ponent as a perturbation in a fast magnetosound 
wave, and the relation between B”, and j3 ensuing 
from equation (5) will be treated as the mutual influ- 
ence of the two oscillation modes attributable to the 
inhomogeneity of the medium. 

In our previous papers (Leonovich and Mazur, 
1989a,b) we have considered in detail toroidal (or 
more exactly, nearly toroidal) oscillations with small 
values of ICY. The smallness of ICY, or equivalently, of 
corresponding values of m, was understood in the 
following sense. From simple considerations it is easy 

to see that in the frequency range of long-period geo- 
magnetic pulsations (f< 30 mHz, say) the mag- 
netosphere is an opacity region for a fast mag- 
netosound wave even for m - 1. In other words, the 
magnetosound field does not have an oscillatory 
character in space but decreases exponentially from 
the source localization region, and a typical scale of 
the decrease is L/m, where L is a typical scale of 
the magnetosphere. In accordance with the widely 
accepted viewpoint we have supposed that the mag- 
netosound source is located either outside the mag- 
netosphere or on its boundary, and the requirement 
that the magnetosound field penetrated sufficiently 
deep into the magnetosphere places a stringent con- 
straint on the value of m; it virtually means m < 10. 
The magnetosound field generates, near so-called res- 
onance magnetic shells, an Alfven oscillation of large 
amplitude, whose typical spatial scale along the nor- 
mal to the magnetic shell is very small (it is determined 
by a weak damping and by dispersion effects). There- 
fore, for an Alfven wave the condition r?, >> r?, is 
quite conservatively satisfied, which does determine its 
toroidal character. Equation (5) describes the back 
influence of the Alfven wave upon the fast mag- 
netosound wave, and this has also been analyzed in 
our papers. Thus, the fast magnetosound wave gen- 
erated by a non-magnetospheric source, has a global 
character and occupies a significant part of the mag- 
netosphere, and the Alfven wave is concentrated in 
narrow layers along the resonance shells. 

In this paper we intend to consider Alfven oscil- 
lations with R2 >> R ,. This presupposes rather large m. 
A corresponding fast magnetosound wave generated 
by non-magnetospheric sources virtually cannot pen- 
etrate inside the magnetosphere. In this case we shall 
be treating equation (5) in the following way. Its right- 
hand side determined by the Alfven wave, plays the 
role of the source for the left-hand side, the fast mag- 
netosound wave. That is, we are dealing with an 
inverse situation, namely the field B3 is a forced mag- 
netosound response to the presence of an Alfven wave. 

Bearing in mind the zeroth-approximation for the 
poloidal mode (m -+ co), one may argue that the 
AlfvCn wave is concentrated near an identified mag- 
netic surface. The fast magnetosound wave also can- 
not move far away from its source. That is, the entire 
MHD oscillation has a scale normal to the magnetic 
shell much smaller than a typical size of the mag- 
netosphere and, as will be assumed subsequently, than 
the longitudinal length of the oscillation wave. In such 
a case on the left-hand side of equation (5) we can 
leave only the first two terms (and differentiation with 
respect to x’ can be referred to disturbance B3 only), 
and the right-hand side can retain the first term only. 
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As a result, we obtain 

a2B”, --__IC2_~3=_!!! -2 .L 291 - ag al? 
axI2 q2 ( > q2 a.+, axI’ 

A solution of this equation is easily obtained 
Green’s function 

(6) 

using 

G(x’,x”) = -&exp(--XIX’--x”l), 

0 
l/2 

z=f=lQ c 
92 

We have 

B _ 1 gl a g2 -JL”,xl-xl~, sd ,, ( 1s 00 
3 2zgg, axjg, _ e axI’ x . (7) 

Here integration with respect to x” is formally 
extended to infinity, taking into consideration that it 
is actually carried out with respect to the localization 
region of the Alfven wave. 

From the expression (7) it is quite evident that 
the AlfvCn wave on the surface x’ engenders a 
magnetosound field which penetrates at a distance 
lx’ -xl’1 - X _ ‘. Let us make the assumption, to be 
justified below, that a typical scale of variation of the 
mode in coordinate x”, measured in physical units 
(we denote it as b) is much larger than a typical scale 
of Green’s function. This means that 

IZ,b >> 1, (8) 

and is equivalent to the inequality rZ2 >> R,. From (7) 

we then have 

,-=ia!? !E, 3 
( > K: ax3g, axI (9) 

This expression is at once obtainable from equation 
(6) if the differential term on its left-hand side is 
omitted. 

On substituting (9) into equation (3a), we obtain 
the desired differential equation for poloidal Alfven 
oscillations 

9] a g2 ,a& -;i & ax z” p--l 

1 gl a %A2 a g2 a*& 
-1 -7 

Ic2 h ax A ( > ax3 9, ax,‘= O. (lo) 
This equation should be supplemented with the 
boundary condition on the ionosphere. Its form for 
the low-frequency waves concerned is rather well 
known (see e.g. Southwood and Hughes, 1983) 

a& _ (- w 93 
ax 

Jz 
3+idf- , A >I = 0. 

x3=,: 
(11) 

Here the “ +” and “ - ” signs correspond to the con- 
jugate ionospheres, and 

6, = 
c2 cos x* 

4nA, C$+) ’ 

where x is the angle between the normal to the iono- 
sphere and the field line, C, is integral Pedersen con- 
ductivity, and A, = A(x’, xi). Some important com- 
ments on this boundary condition are given in a paper 
by Leonovich and Mazur (1989a). They pointed out, 
in particular, that the boundary between the iono- 
sphere and the magnetosphere should be drawn at a 
height of about 1.5 x lo3 km. This choice was dictated 
by the fact that below this height the Alfven velocity 
increases rapidly from values of order 300 km s-’ 
in the ionospheric F-layer to a maximum of order 
lo4 km s- ’ on the boundary involved, and decreases 
slowly above it. The dimensionless parameter 6 for 
the dayside ionosphere is rather small, 6 - lo-‘, 
while for the nightside ionosphere it is of the order of 
unity. 

To conclude this section, we wish to make one 
important remark concerning the self-consistency of 
the approximations made. For deriving equation (lo), 
we have used equations (3a) and (5) and have ignored 
equation (3b). The question arises as to whether the 
same equation (10) is obtained if equation (3b) is used. 
The relationship (4) and the equality (9) combine to 
give in the main order in K; ’ 

(12) 

If (9) and (12) are substituted into (3b), we obtain the 
equation 

which is, in fact, equation (10) but without the last 
term. There seems to be direct evidence of a con- 
tradiction; but it is easily resolvable, by considering 
that the approximations (9) and (12) are already 
insufficient for deriving the basic equation from (3b) 
and it is necessary to take account in these relation- 
ships of the next expansion terms in K; ‘. After that, 
simple but cumbersome calculations again lead to 
equation (10). In all the other respects the expressions 
(9) and (12) together with equation (10) are quite 
sufficient for determining the wave field of poloidal 
Alfven waves in the magnetosphere. 
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3. THE LONGITUDINAL SPATIAL STRUCTURE 

OF POLOIDAL ALFVEN OSCILLATIONS 

The method of solving equation (10) we are using 
here, is quite similar to that suggested by Leonovich 
and Mazur (1989a). It is based on perturbation theory 
relying on the presence of the small parameter rc,‘. 
More strictly, a dimensionless small parameter is rep- 
resented by (Iz,L)- ‘, where L is the field line length. 
Further, the parameter 6 characterizing the damping 
in the ionosphere will be considered small. 

An important role through the subsequent dis- 
cussion will be played by the solution of the following 
auxiliary problem for eigenvalues 

Here R(w) is a differential (in coordinate x3) operator : 

ii.(w) E $ $2 A2 & +m2. 

The variable x’ is involved in problem (13) as a par- 
ameter, on which the eigenvalues and the eigen- 
functions depend : 

w = c&(x’), H = HN(X’, x3), (14) 

where N = 1,2,3,. . . , is the harmonic number. Since 
this is a Hermitian problem, frequencies QN are real. 
From general considerations follows the completeness 
of the system of functions HN in the variable x3. They 
can be chosen real and orthonormalized with a cor- 
responding weight : 

Here the sign of the line integral denotes integration 
“forward and back” along the field line. 

The problem for eigenvalues (13) may be regarded 
as a zeroth-approximation of perturbation theory, 
when ICC ’ = 0 and 6, = 0. In other words, equations 
(13) describe the longitudinal structure of poloidal 
eigenmodes (Radoski and Carovillano, 1969). Their 
total spatial structure in the zeroth-approximation is 
defined by the relationship 

fi, = C&x’ -f’)HN(x’,x3), 

where C is an arbitrary constant, and x’ = X’ rep- 
resents a resonance magnetic surface. The frequency 
of the mode w = Q&Z’). This is the standing wave 
localized on the resonance surface which has been 
dealt with in the Introduction. 

For the fundamental harmonics (N - 1) the prob- 
lem (13) can only be solved numerically (Cummings 

et al., 1969); but for higher harmonics (N >> 1) the 
WKB approximation is applicable. In this case we 
have 

Q,(x’) = NQ(x’), Q(x’) = 2n/tA(x’), 

HN(x’,x3) = (&>,i’($’ 

Xcos(QJ*). (15) 

Here 

t,(x’) = P ,,& dx3 
~ 

A 

is the travel time along the field line with AlfvCn vel- 
ocity forward and back. Note that these formulae 
describe the solution qualitatively correctly even for 
N- 1. 

The dissipation in the ionosphere can be included 
in the same, one-dimensional in coordinate x3, 
approach. For this purpose we employ perturbation 
theory in the parameters 6,. Formulas (14) give a 
zeroth-approximation. In the next order we put 
H = RN = HN+hN, where h, = h,(x’,x3) is the first- 
order correction. Linearization of the boundary con- 
dition (11) yields 

ah,_. q/z 
_s+16*- ax A HN 

= 0. 
x3=x; 

(16) 

We linearize equation (13) by taking into con- 
sideration that the difference (w2-Qi) is a quantity 
of the first order of smallness. By multiplying the 
obtained relationship by (h/g ,)HN and integrating 
along the field line, we obtain 

02-Q; ZZ - 
B 

Ji Z H,&R,)h, dx3. 

The last integral is easily calculated with the use of 
the relationship (16) : 

i 
$H I?@ iv )h dx3 = 2iwy N N N, (17) 

where it is designated 

These equalities yield 
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w = fR,-iy,, 

i.e. the quantity yN is the damping decrement of the 
poloidal mode. For N >> 1, when formula (15) is appli- 
cable, we have 

YN = y(x’) = 3C’[6+(x’)+&(x’)]R(x’). 

In this approximation the damping decrement does 
not actually depend on number N. 

4. THE EQUATION FOR RADIAL STRUCTURE 

OF POLOIDAL ALFVEN OSCILLATIONS 

The equation for radial structure is obtained in the 
next, first order of perturbation theory. Using the 
completeness of the system of functions J?N in the 
variable x3 (which is a consequence of the com- 
pleteness of the system HN), the desired solution will 
be represented as a series 

B,(X’,X3) = f FN(X’)A(X’,X3), (18) 
N=l 

whose coefficients are functions of the variable x’. 
Such a representation ensures in the first order the 
fulfilment of the boundary condition (11). 

Now, the problem is reduced to finding the equation 
for F,&x’). We substitute (18) into (11) and linearize 
it, assuming the last term in (1 l), the function h, and 
the difference (w’-0%) to be first-order quantities. 
We get 

1 9) a -i-GA25$($~)HN$+o. 
K2 VG 

We multiply this equality by (&/g ,)HN and integrate 
along the field line, by using relation (17). As a result, 
we obtain the equation for FN defining the radial struc- 
ture of the mode 

1 d2F.v 
__- 

rN dX12 
W+bdx’N2 _ 1 = o, 

Q%x’> 1 

(19) 

Here it is designated 

Equation (19) is quite similar to the equation for 
toroidal oscillations as obtained in a paper by Leono- 
vich and Mazur (1989a). The first differential term in 

(19) corresponds to the dispersion term of the toroidal 
mode ; therefore, it may be treated as being a trans- 
verse dispersion of poloidal Alfven oscillations. If the 
applicability of the WKB approximation in coor- 
dinate x’ is assumed, then from (19) one can obtain 
the equality 

from which it is immediately evident that the differ- 
ential term has a dispersion character. If the azimuthal 
number m is used as k2, then one may write 

From expression (20) it is evident that in a homo- 
geneous magnetic field with straight field lines, when 
g, and g2 are constant, the value of rN = 0. This sug- 
gests that the dispersion of poloidal modes is caused 
by the curvature of the field lines. Let us consider this 
issue in greater detail. 

5. THE DISPERSION CAUSED BY THE 

CURVATURE OF GEOMAGNETIC FIELD LINES 

On each given magnetic shell it is possible to use 
instead of the coordinate x3 the physical length of the 
field line 2, whose differentials are related by the 
relationship dl = & dx3. Relationship (20) can then 
be represented as 

c,$ = 2CjHN$ (HNA2p2$) dl, 

where the quantity 

is introduced. This quantity has a simple geometrical 
meaning. If we take a thin flux tube of a rectangular 
cross-section having in coordinates x’ and x2 the sizes 
dx’ and dx2, then its physical size will be, respectively, 
6 dx’ and & dx2, and the ratio of these latter is 

&dx= dx2 
p= 

&dx’ 
PG. 

That is, the function p describes a variation of this 
ratio during the movement along the tube. It is clear 
that this ratio is able to vary only in a magnetic field 
with curved field lines. 

Integration of the expression for a% by parts yields 

A’p2$ % dl. (22) 
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For calculating this quantity when N >> 1, one can use 
the formula of WKB approximation (15) and the thus 
obtained value may be used as an order-of-magnitude 
estimate for N - 1 as well. We rewrite the expression 

(15) as 

The second term on the right-hand side of formula 
(22) in the WKB approximation is zero because the 
integrand involves a rapidly oscillating term aHi/.jal. 
On substituting into (22) the expression (23), we 
obtain 

(24) 

In order to represent the behaviour of the function 
let us consider, as an example, a model of the geo- 
magnetic field, whose field lines in the polar co- 
ordinate system (in a given meridional plane) are 
specified by the equation 

r=Lcos”Q. (25) 

Here r is the distance from the origin of coordinates, 
Q is the polar angle measured from the equator 
(-n/2 < 0 < 7c/2), L is the equatorial radius of a field 
line which can be used as the coordinate x’, and p is 
a constant. p = 2 corresponds to the case of a dipole 
field. When p = 1, the field lines are circles making 
contact at the origin of coordinates. When p < 0, the 
field lines go into infinity along the symmetry axis ; 
in particular, when p = - 1, they are straight lines 
perpendicular to the equatorial plane (see Fig. 2). 

FIG. 2. PLOTS OF FIELD LINES SIMULATED BY THE FUNCTION 

r=Lcos~B: I-p=2; 11-p = 1; 111-p = 0; 
IV-p= -l;V-p< -1. 

If the azimuthal angle cp is chosen as the coordinate 
x2 and the quantity L is taken to represent the coor- 
dinate x’, then for model (25) we have 

p = LJI + (p’ - 1) sin* 8. 

From this expression it is evident that, when 1 p) > 1, 
the value of p increases from the equator to the iono- 
sphere and, consequently, 0; > 0, for 1~1 < 1, the 
value of p decreases and CJ$, < 0. Curiously, the value 
of p is constant not only for straight field lines- 
p = - 1, but also for field lines in the form of 
circles-p = 1. Taking account of the relationship 

dl= Lcos? fI~J1+(~*-1)sin2BdB 

we obtain 

w 2L(p2 - 1) sin 0 

al= cos”_ ’ 9 * Jl + (p’- 1) sin’ 6 

In particular, for an important case of a dipole field, 
we have 

apz 6L sin 0 
-= 
ar .jGGG’ 

For this last case formula (24) yields 

LA 
n; = 242 

J 

L-RE 

tA L - (3/4)R, ’ 
(26) 

where R, is the Earth’s radius (from the centre to the 
upper boundary of the ionosphere), and A, = A(1,) is 
the AlfvCn velocity at the ionosphere-magnetosphere 
interface. On the order of magnitude CJ,$ is estimated 

by 

where A is a mean (along the field line) value of Alfven 
velocity, and the rather large numerical factor in (26) 
must not confuse because the path traversed by a wave 
along the field line is about 6L. On substituting (26) 
into the expression (21) for RL in the same WKB 
approximation, we get 

R; = 6 LA*tA J L-R, 

rc* N2m2 L - (3/4)R, ’ (27) 

of the order of magnitude 

It should be noted that the dispersion parameter r, 
for poloidal oscillations turns out to be much greater 
as compared with toroidal oscillations. For these 
latter, it is equal to the Larmor radius of ions pi or to 
the skin length (c/w,,), whose typical value is of order 
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1 km. By confining ourselves to not too large harmon- 
ics, N = 1-5, and assuming L - lo4 km, one can see 
that the dispersion parameters for poloidal and toroi- 
da1 modes compare only for extremely large values of 
m - 104. Therefore, the dispersion-induced properties 
are able to manifest themselves much more clearly 
for poloidal modes than those for toroidal modes. It 
should further be pointed out that if in the initial 
equations account is taken of effects beyond the scope 
of ideal magnetohydrodynamics which determine the 
dispersion of toroidal modes, then for poloidal modes 
the expression for ri will incorporate a quantity of 
order ~2 or (c/oPJ2, i.e. rX will virtually remain 
unchanged. 

6. THE RADIAL STRUCTURE OF 

POLOIDAL ALFVEN OSCILLATIONS 

By virtue of the smallness of the parameter rfi, the 
solution of equation (19) is concentrated near the 
resonance surface defined by the equality o2 = 
C$&x’), on a scale much smaller than a typical scale 
of variation of magnetospheric parameters. The form 
of the solution depends substantially on the behaviour 
of the function 0,(x’) in the neighbourhood 
of the resonance surface. Two different cases are 
possible here, namely the function C&(x’) varies 
monotonically in this neighbourhood or has an 
extremum there. 

To begin with, we consider the first case. Let x’ = 8’ 
be a coordinate of the resonance surface. In its vicin- 

ity, we put 

C&(x’) = zi,(l _X/ZN), x = x’ ---xl. (28) 

Here I, is the scale of variation of the function C&(x’). 
It is assumed that the function decreases with x’, as 
is the case in most of the magnetosphere. Using this 
expansion we bring equation (19) to the form 

It has the following (bounded at all values of x) solu- 
tion : 

where Ai(2) is the Eyre function (see, for example, 
Antosevich, 1979), and c is an arbitrary constant. 
This solution decreases exponentially into a region of 
negative x and has the form of a standing wave (i.e. 
of a superposition of an arriving and escaping wave) 
at positive x. 

2rL - 

me 

FIG. 3. THE FINE TRANSVERSE STRUCTURE OF THE POLOLDAL 
MODE. 

The figure gives a schematic representation of the equatorial 
cross-section of oscillating flux tubes. The wavy curve shows 
the amount of displacements with respect to the magnetic 

shell considered. 

in coordinate x is bN = ry’Z,!/‘. On the order of 
magnitude bN - (A,/~)“3(L2’3Z~3/N2’3(~~213). The 

estimate obtained permits us to resolve the key ques- 
tion as to whether the mode considered is, indeed, 
a poloidal one. As we know, this requires that the 
inequality Iz, << 12* be satisfied. Bearing in mind 
that 12, - b; ’ and zZ2 - m/L, we bring the required 
inequality to the form 

Iml >> mmin, mm,” = $4N2, (29) 
* N 

Since A is substantially less than A, and in most of 
the magnetosphere IN - L, it is evident that for small 
values of N the inequality (29) is essentially reduced 
to the condition m >> 1, whose fulfilment has been 
assumed from the very beginning. Thus, it is possible 
to draw a fundamentally important conclusion that 
an investigation of the fine transverse structure (see 
Fig. 3) proves a fundamental possibility of existence 
of poloidal Alfvitn oscillations. 

The damping of a mode in the ionosphere has a 
minor effect on its spatial structure if (lN/rN)“‘(yN/C&) 
<< 1. This inequality can be reduced to the form 

A typical scale of variation of the obtained solution 
14 << ($J2t$e)ill (30) 
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For daytime conditions in the magnetosphere, 

Y‘?J/% N 1O-2 and the condition (30) (when N - 1) 
implies m << 103, i.e. is not a too limiting one. 

Let us now examine the second possibility that the 
resonance surface is located near the extremum of 
the function Q&v’) ; in this case we consider a more 
interesting case of the maximum. In the dayside mag- 
netosphere the maxima R,(x’) occur on the shells 
L % 1,3 and on the outer edge of the plasmapause. 
Near the maximum one may put 

Q,$(x’) = sz‘$(l -x2/&), x = x’ -XL, 

where XL is a coordinate of the maximum, and uN is 
the inhomogeneity scale. Assuming 

5 = x/b, b = (u,,J~)“~, 

L = (~,l~~)[~ -(w+b.J2/W, (31) 

we bring equation (19) to the form 

d2F, 
de’+(l-<2)F, = 0. 

This is the quantum-oscillator equation. It has the 
following eigenvalues and eigenfunctions 

1, = 2n+ 1, yn = eeS”2H,(<), (32) 

where n=0,1,2,... are non-negative integer 
numbers, and H,(l) represents Hermitian poly- 
nomials (Hochstrasser, 1979). 

Thus, near the maximum of the function !&(x1) 
there exist localized (in coordinate x’) eigenmodes 
FN(x’) = cy,(x/b). Such a phenomenon was called in 
our previous paper (Leonovich and Mazur, 1989a) 
the Alfven resonator. The spatial scale of eigenmodes 
b = b,/lm( ‘I*, where 

b, = (&RN)“2 - (y (g!)y 

The requirement r?, << rZZ in this case leads to the 
inequality 

Iml >> mmin 9 
AL 

mmin z--N, 
A, aN 

(33) 

i.e. is virtually also satisfied when [ml >> 1. 
Eigenfrequencies of the Alfven resonator are speci- 

fied by the relationship ensuing from (31) and (32) 

In order for resonator properties to manifest themselves, 
the damping decrement yN must be much smaller than 
the splitting of eigenfrequencies, fii,(r,/aN). This con- 
dition leads to the inequality 

which in the dayside magnetosphere means /ml << lo“, 
i.e. is satisfied in a wide range of values of m. In 
this lies the essential difference between the Alfven 
resonator for poloidal and toroidal modes. As far as 
the latter ones are concerned, owing to the far smaller 
dispersion, resonator properties in the real mag- 
netosphere cannot be manifested (Leonovich and 
Mazur, 1989a). 

7. THE AZIMUTHAL STRUCTURE OF POLOIDAL 

ALFVEN OSCILLATIONS 

So far we have limited our attention to considering 
separate Fourier-harmonics in azimuthal angle rp. By 
adding such harmonics together, one can get quite 
different dependences on 

FN(x’, cp) = 2 c(m)t$‘)(x’) eimrp, (35) 
m 

where c(m) is the weight of the mth harmonic, and 
Fp)(x’) represents the radial solutions obtained above 
for a given value of m. For the mode to have a 
poloidal character, the sum (35) must involve har- 
monics whose azimuthal numbers satisfy the con- 
ditions such as (29) or (33). In other words, the func- 
tion c(m) must be zero for 1rnl 5 mmln. Since the 
allowable values of Irnj >> 1, in the relationship (35) 
without sacrificing accuracy, one may switch over 
from the summation to integration with respect to m. 
Let us show that by a suitable choice of the weighting 
function c(m), it is possible to construct localized (in 
coordinate cp) solutions. 

It is particularly easy to illustrate this, by con- 
sidering an example of eigenmodes of the Alfven res- 
onator. By confining ourselves to the fundamental, 
zero-order eigenfunction, from (32) we have 

F(Nm)(x’) = exp ( -x2/2b2) = exp (- lmlx2/2b$ 

We choose the weighting function in the form 

c(m)=c[exp(-g)-exP(-z)]. 

This function is virtually zero when Jml << mmin and 

I4 >> mmax. The value of mmax can be chosen based on 
the inequality (34) and the damping in the ionosphere 
may then be neglected. As a result, by calculating the 
integral, we obtain 
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(&+&)(&+&>-~2 
x [(&+&?I +vq*[(;;;lm,x+&J+a2]. 

This solution decreases rapidly in both of the co- 
ordinates x and cp and can be considered as being 
localized near the chosen field line x = 0, rp = 0. 
Thus, this lends support to the widely accepted view 
that poloidal Alfven oscillations are oscillations of 
separate field lines. 

A similar result, through more cumbersome cal- 
culations, however, is obtained also for poloidal oscil- 
lations localized in the region of monotonic variation 
of the function C&(x’). 

To conclude this section, we shall derive a differ- 
ential equation in partial derivatives, describing a two- 
dimensional transverse structure of a poloidal Alfven 
oscillation. To accomplish this, we multiply equation 
(19) by rc:Qi and perform an inverse Fourier-trans- 
form in rc2. As a result, we obtain 

a’F, 
fJ.gX’) __ 

a2F, 
ax,2 +[(~+iYN(x'))2-R:(X')I~ = 0. 

(36) 

If the mode is concentrated in the region of monotonic 
variation of the function C&,(x’), where expansion 
(28) is applicable, then by introducing the dimen- 
sionless coordinates 5 = x/d and r = x2/d, where 
d = l,(a$/21ik), equation (36) can be reduced to the 

form 

2 

g+g= 0. 

This is the Tricomi equation known in mathematical 
physics. 

8. CONCLUSIONS 

The main results of this study may be summarized 
as follows. 

(1) On the basis of equations of ideal magnetic 
hydrodynamics we have obtained the equation for 
poloidal Alfven oscillations in the axisymmetric mag- 
netosphere which makes it possible to investigate both 
the longitudinal and radial structure of a perturbation 
field [equation (lo)]. 

(2) The equation for longitudinal structure ensuing 
from it is well known. It represents a one-dimensional 

(in coordinate x3) problem for eigenvalues which 
defines the frequency spectrum and the longitudinal 
dependence of the field in the form of standing waves 
[problem (13)]. 

(3) The radial structure of the field is described 
by the one-dimensional (in coordinate x’) differential 
equation, whose coefficients are integral charac- 
teristics of magnetic shells [equation (19)]. The differ- 
ential term of this equation may be treated as the 
transverse dispersion of poloidal Alfven oscillations 
caused by the curvature of geomagnetic field lines. 
The solution of the radial equation is localized near 
the resonance magnetic surface defined by the equa- 
tion w = C&(x’). The localization scale, though being 
small compared with a typical scale of variation 
of magnetospheric parameters is, nevertheless, suffi- 
ciently large for fulfilment of the condition 2, CC 12* 
which is required for the poloidal character of the 
oscillations involved. Thus, an investigation of the 
fine transverse structure of the mode proves the 
very fact of the existence of poloidal AlfvCn oscilla- 
tions. 

(4) The solution of the radial equation has been 
found for two essentially different possibilities of the 
resonance surface location, namely in the region of 
monotonic variation of the function C&,(x’) and in the 
vicinity of its extremum. In the first case the oscillation 
is a superposition of a wave running across the mag- 
netic shells towards the resonance surface and of a 
wave reflected from it. On the other side of the 
resonance surface there is an opacity region, where 
the wave field decreases exponentially. Near the 
maximum of the function C&(x’) there exist solutions 
enclosed between near-lying magnetic shells ; this 
phenomenon was called the AlfvCn resonator. 

(5) By summing the Fourier-harmonics with differ- 
ent values of the azimuthal wave number m, we have 
demonstrated the existence of poloidal Alfven oscil- 
lations localized in both transverse coordinates. They 
may be treated as oscillations of separate geomagnetic 
field lines. 

The question of sources of poloidal Alfven oscil- 
lations of the magnetosphere is beyond the scope of 
this paper. From the above-said (see Section 2) it 
follows that such a source, unlike toroidal oscillations, 
cannot be provided by a fast magnetosound wave of 
non-magnetospheric origin. It might be suggested that 
a triggering disturbance of poloidal oscillations can 
be produced by ionospheric currents of a suitable 
spectral composition, say, by those which are gen- 
erated by internal gravity waves in the ionospheric 
Hall layer. After that, the triggering disturbance can 
be intensified to reach significant amplitudes through 
various magnetospheric instabilities. 
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