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Abstract

The structure of magnetosonic eigenoscillations of an axisymmetric magnetosphere in the
direction across magnetic shells was determined within the WKB approximation. The spectrum
of their eigenfrequencies was investigated numerically. The model of the medium assumes a
dipole magnetic field and a two-dimensional Alfven velocity distribution in the meridional plane
which takes into account abrupt changes of the Alfven velocity at the plasmapause and
magnetopause. It is shown that eigenfrequencies are complex valued. The imaginary part of the
frequency is a damping decrement of the eigenoscillations associated with the escape of some of
their energy to the solar wind. It is shown that in a dipole-like geomagnetic field in which field
lines concentrated toward the origin of coordinates, the amplitude of magnetosonic oscillations
increases from the magnetopause to the ionosphere. While the oscillations penetrating deep into
the magnetosphere from the solar wind or generated at the magnetospheric boundary have near
the magnetopause a relatively small amplitude, as the Earth is approached, their amplitude can
reach a significant value for geometrical reasons.
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1. Introduction

There is a rather longstanding view of the magne-
tosphere as a natural cavity for MHD waves. As early
as the first publication of Dungey [1954] it was shown
that Alfven oscillations of the magnetosphere repre-
sent standing (along geomagnetic field lines) waves.
In succeeding years it is this branch of MHD oscil-
lations which was most thoroughly studied because
of their rather simple (nearly one-dimensional) spa-
tial structure accessible for analytical investigation.
The magnetosphere is also a cavity for magnetosonic
waves. These oscillations can penetrate to the mag-
netosphere’s interior through its boundary (magne-
topause) from the solar wind, or they can be gen-
erated on this very boundary through an instability
of its oscillations when the solar wind flows past the
magnetosphere [McKenzie, 1970]. A relatively sharp
boundary separating the solar wind and the magne-
tosphere, the magnetopause, is able to partly reflect
these oscillations, confining them inside the magneto-
spheric cavity [McClay, 1970].

This property of the magnetopause needs some
clarification. The chief point is that if the magne-
tosphere’s interior involves a transparent region for
magnetosonic waves, then the adjacent solar wind re-
gion, with not very high plasma velocities, also rep-
resents a transparent region for these waves [Mann
et al., 1999; Lee and Kim, 1999]. It will be recalled
that the transparent region is determined by the con-
dition of free propagation of waves inside of it in any
direction, or using the notion of the wave vector k
(structure of the wave, ∼exp (ikr)), which in an inho-
mogeneous plasma should, of course, be understood
in terms of the WKB approximation k = k(r), it is
the region inside of which k2 > 0. With sufficiently
large solar wind speeds, solar wind becomes a region
opaque to the waves under consideration (k2 < 0)
[Mann et al., 1999].

Thus the magnetosphere is rendered an ideal cav-
ity for magnetosonic oscillations which are entrapped
across magnetic shells inside the magnetosphere in
the region whose inner boundary is formed by turn-
ing points (where k2 = 0), the combination of which
produces the surface separating the transparent and
opaque regions, and whose outer boundary is repre-
sented by the magnetospheric boundary, the magne-
topause. The oscillations that are entrapped within
such a cavity form a set of standing (across magnetic
shells) magnetosonic waves which can be defined as
eigenoscillations of the magnetosphere. Such a sit-

uation can be realized at the flanks of the magneto-
tail where plasma velocities in the magnetosheath can
reach significant values [Mann et al., 1999].

On the other hand, in the sunward part of the mag-
netosphere where the velocity of plasma flow around it
is significantly lower, the solar wind remains a trans-
parent region for these waves. Even this case, how-
ever, leaves room for the formation of magnetosonic
eigenoscillations of the magnetosphere similar to the
above mentioned ones [Walker, 1998; Mann et al.,
1999]. As in the case considered above, the bound-
aries of their existence region are internal turning
points and the magnetopause. Furthermore, the abil-
ity of the magnetopause to reflect magnetosonic waves
can be understood only beyond the WKB approx-
imation. When the typical wavelength (λ ∼ k−1)
of the concerned oscillations is much larger than the
typical thickness ∆ of the transition region between
the magnetosphere and the solar wind (λ À ∆),
the magnetopause becomes a barrier capable of par-
tially reflecting these waves. The higher the differ-
ence of the values of plasma parameters at the tran-
sition through such a region, the more effective the
reflection. This phenomenon is known in quantum
mechanics as above-barrier reflection Landau and Lif-
shitz, [1963]. Since such reflection is not perfect, some
of the magnetospheric eigenoscillations penetrate the
solar wind and escape the magnetosphere. The eigen-
modes are damped ones in this case. This same effect
persists also in the case where a broad spectrum of
magnetospheric eigenoscillations are excited through,
for example, an impulsive disturbance of the magne-
topause [Freeman, 2000].

All the above cited references employed simple
plasma models in the form of two plane layers, the
boundary between which represents a tangential dis-
continuity. In terms of such a model of the medium,
it is possible to study the structure of magnetosonic
eigenoscillations of the magnetosphere only in the di-
rection across the magnetic shells. Their structure in
the other two directions then represents plane waves
of the form exp (ikyy + ikzz). Also, the values of
the wave vector components can be arbitrary both
in the direction along the magnetic field (kz) and in
the azimuthal direction (ky). Since the frequencies
of eigenoscillations depend on all wave vector com-
ponents, it is impossible to solve (in terms of this
model of the medium) the problem of the spectrum
of magnetospheric eigenoscillations. Using models of
the medium that have boundaries in these two direc-
tions as well (box models) leads to the fact that in
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these directions the eigenoscillations turn out to have
the form of standing waves [Kivelson and Southwood,
1986; Southwood and Kivelson, 1986].

A limitation shared by all of the above mentioned
efforts is that they use models of the medium with a
magnetic field having straight field lines. The Earth’s
magnetic field is a magnetic dipole-like field that is
deformed by solar wind plasma flow. Therefore the
problem of the structure and spectrum of magneto-
spheric magnetosonic eigenmodes can be solved in
a more adequate setting by using the model of the
medium with curved geomagnetic field lines. The
problems of MHD oscillations of the magnetosphere,
based on such models of the medium, were solved by
Allan et al. [1986] with a semicylinder model and by
Lee and Lysak [1989, 1991,1994] and Lee [1996] with
a dipole model.

The cited references employed numerical simula-
tion techniques by which it was possible to investigate
a total field of MHD oscillations in terms of a partic-
ular magnetospheric model. It was shown that the
amplitude distribution of magnetosonic oscillations
essentially differs from what is taking place in mag-
netospheric models with straight field lines. It was
found that the energy of these oscillations is local-
ized near the equatorial plane. Leonovich and Mazur
[2000b] showed that such an amplitude distribution is
caused by a corresponding boundary configuration of
transparent regions of the magnetosonic eigenmodes.
Unlike previous work based on a similar model of
the medium, this paper considers magnetosonic os-
cillations in a model which includes both the mag-
netosphere and the solar wind region and a leaky
magnetopause. Transparent regions of these oscilla-
tions near the equatorial plane are open to the solar
wind. Hence magnetosonic oscillations of the solar
wind can penetrate deep into the magnetosphere and
vice versa some of the magnetosonic eigenoscillations
of the magnetosphere can escape to the solar wind.

However, the study reported by Leonovich and
Mazur [2000b] remains, in a sense, incomplete. They
solved the problem of the longitudinal (along geomag-
netic field lines) structure of the field of magnetosonic
eigenoscillations and determined the configuration of
their transparent regions in the meridional plane. The
radial structure of the wave field of the oscillations
and the spectrum of their eigenfrequencies remain un-
certain. These characteristics depend on the form of
boundary conditions for the waves under considera-
tion in the direction across the magnetic shells. Such
an investigation will be carried out in this paper. This

paper consists of the following sections. In section 2,
we obtain the WKB solution describing the structure
of magnetosonic eigenoscillations of an axisymmetric
magnetosphere across geomagnetic field lines. In sec-
tion 3, we determine the structure and the frequency
spectrum of global modes confined within the magne-
tosphere by a sharp plasma density gradient on the
magnetopause. Damping decrements are determined,
which are associated with the escape of some of the
oscillation energy to the solar wind. In section 4,
we solve the problem of the transverse structure and
spectrum of magnetosonic eigenoscillations of the cav-
ity under the plasmapause. The main results of this
study are discussed in section 5.

2. Transverse Structure of
Magnetosonic Eigenmodes Within the
WKB Approximation

We shall use a curvilinear orthogonal coordinate
system (x1, x2, x3) tied to geomagnetic field lines.
The coordinates x1, x2, and x3 determine the mag-
netic shell, a field line on this shell, and a point on
this field line, respectively. The square of the length
element in this coordinate system is given by

ds2 = g1(dx1)2 + g2(dx2)2 + g3(dx3)2,

where gi(i = 1, 2, 3) are diagonal components of the
metric tensor. Leonovich and Mazur [2000b] ob-
tained the equations for the vortical (ψ) and poten-
tial (ϕ) components of the MHD oscillation field of
the axisymmetric magnetosphere. They form a two-
dimensional vector

E⊥ = −∇⊥ϕ + [∇⊥ ×ψ],

where E⊥ ≡ (E1, E2) is the normal part of the electric
field of the oscillations (E3 = 0) and ∇⊥ ≡ (∇1,∇2).
The components of the magnetic field of MHD oscil-
lations are related to the components of this vector
by the following relations:

B1 = i
c

ω

p−1

√
g3
∇3E2, B2 = −i

c

ω

p√
g3
∇3E1,

B3 = −i
c

ω

g3√
g

[∇1E2 −∇2E1] ,

where ∇i ≡ ∂/∂xi (i = 1, 2, 3), g = g1g2g3, and
p = (g2/g1)1/2. Klimushkin [1994] and Fedorov et
al. [1998] showed that the potential field component
ϕ describes Alfven oscillations of the magnetosphere,
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and the vortical component ψ describes magnetosonic
oscillations. The equation describing magnetosonic
eigenoscillations of the axisymmetric magnetosphere,
obtained by Leonovich and Mazur [2000b], is of the
form

∇1
g2√
g
∇1ψ − k2

2

g1√
g
ψ +

√
g

g3
L̂T

g1√
g
ψ = 0, (1)

where

L̂T =
1√
g3
∇3

p√
g3
∇3 +

pω2

A2

is the longitudinal toroidal operator [see Leonovich
and Mazur, 1993] and A is the Alfven velocity. Note
that the right-hand side of equation (1) describing
the influence of Alfven oscillations generated by the
magnetosonic wave in the FLR on this same wave
is taken to be zero. Thus the back influence of the
Alfven waves on magnetosonic waves is neglected in
this case. As is shown by Leonovich and Mazur [1989],
at the transition through the region of resonance the
amplitude of the magnetosonic wave changes little.
This means that to some (zero-order) approximation,
the back influence of the Alfven wave on the structure
of magnetosonic oscillations of the magnetosphere can
indeed be neglected.

To describe the structure of magnetosonic oscilla-
tions across magnetic shells, we have resorted to the
WKB approximation. Of course, in the strict sense,
this approximation can be used for oscillations whose
wavelength in this direction is much smaller than the
typical scale of a magnetospheric plasma irregularity.
Yet it is known that the application of this approxima-
tion to oscillations whose wavelength is comparable
with the irregularity scale yields qualitatively correct
results, and even qualitatively they differ from true
ones by no more than a few percent [see Cummings
et al., 1969]. This is true of both the structure of the
oscillations under consideration and the spectrum of
their eigenfrequencies. The solution can be sought in
the form

ψ = u(x1) exp [Φ̃(x1)][H(x1, x3) + h(x1, x3)]
× exp [ik2x

2 − ωt], (2)

where Φ̃ is a large quasi-classical phase, the func-
tion u(x1) describes a slow variation of the oscillation
amplitude across magnetic shells, H describes their
structure along geomagnetic field lines in the main
order, and h is a small correction to H in higher or-
ders. Substitution of (2) into (1) in the main order of

perturbation theory gives the equation for the func-
tion H(x1, x3):

∇3
p√
g3
∇3

g1√
g
H +

(
ω2

A2
− k2

⊥

)
H = 0,

where k2
⊥ = (k2

1/g1 + k2
2/g2); k1 = ∇1Φ̃ is a quasi-

classical wave number. The solution of this equation
is the eigenmodes Hn, satisfying the boundary condi-
tions specified on the ionosphere, and corresponding
eigenvalues of a quasi-classical transverse wave num-
ber k2

1n. Leonovich and Mazur [2000b] carried out a
thorough investigation of the solutions of this equa-
tion by specifying a model of the axisymmetric mag-
netosphere. In this paper we investigate the ampli-
tude distribution of magnetosonic oscillations in the
same model of the magnetosphere across magnetic
shells. In the first order of perturbation theory, from
equation (1) we obtain the following equation for the
function u(x1):

√
g3unL̂T

g1√
g
hn − k2

⊥nunhn

+i

(
k1n

g1
∇1unHn +

g3√
g
∇1

g2√
g
k1nunHn

)
= 0.

Upon multiplying this equation by g1unHn/
√

g and
integrating along a field line between magnetoconju-
gate ionospheres “there and back,” we get

∮
∇1

(
g2√
g
k1nu2

nH2
n

)
dx3

g2
= 0. (3)

Here it is taken into consideration that the integral
of terms proportional to hn becomes zero because of
the Hermitian nature of the operator L̂T . Equation
(3) may be rewritten as

a1n∇1(k1nu2
n) = a2nk1nu2

n, (4)

where

a1n =
∮

H2
n√
g
dx3, a2n =

∮
∇1

(
g2H

2
n√

g

)
dx3

g2
.

By normalizing the function Hn in such a way that
a1n = 1 and designating k̃1n ≡ a2n(x1)/2, we write
the solution (4) as

un(x1) =
C√
|k1n|

exp
(
−

∫
k̃1ndx1

)
,

where C is an arbitrary constant. Hence a general
solution of (1) may be represented as

Ψ =
C√
|k1n|

exp
[
i

∫
(k1n + ik̃1n)dx1 + ik2x

2 − iωt

]

×Hn(x1, x3). (5)
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The particular form of this solution depends on bound-
ary conditions in coordinate x1. In the next two sec-
tions we shall consider two problems corresponding to
different boundary conditions.

3. Global Modes

Let us consider the problem of the magnetosonic
wave incident on the magnetosphere from the solar
wind (x1 > x1

mp, where x1
mp is the radial coordinate of

the magnetopause). It will be recalled that in our ac-
cepted model of the medium we neglect the solar wind
plasma motion which we intend to take into account
in our future work. Thus a linear setting of the prob-
lem is a perfect two-dimensional analog for the prob-
lem which was solved in Walker’s one-dimensional
problem [Walker, 1998]. The distribution of magne-
tospheric plasma parameters across magnetic shells in
the model of the medium used in this paper is pre-
sented in Figure 1. Such a distribution is character-Figure 1
istic for the dayside part of a moderately disturbed
magnetosphere. Outside the magnetosphere, the so-
lution (5) may be represented as

Ψn = Ψ̄nHn(x1, x3) exp (imφ− iωt) ,

where m is the azimuthal wave number, φ is the az-
imuthal angle, and

Ψ̄n = k
−1/2
1n exp

(
−

∫
k̃1ndx1

)
(6)

×
[
C1n exp

(
−i

∫
k1ndx1

)
+ C2n exp

(
i

∫
k1ndx1

)]
,

where C1n and C2n are the amplitudes of the inci-
dent and reflected waves, respectively. Note that the
generic exponential term in (6) represents a geomet-
rical factor describing the variation in amplitude of
the concerned waves as they propagate in a magnetic
field with field lines that are concentrated toward
the origin of coordinates. As is shown by Leonovich
and Mazur [2000b], inside the magnetosphere there
is a magnetic shell (x1 = x1

n) which separates the
transparent region (x1 > x1

n) and the opaque region
(x1 < x1

n) for the longitudinal eigenmode with num-
ber n and with fixed values of the azimuthal wave
number m and the oscillation frequency ω.
Let the solution in the opaque region be represented

as

Ψ̄n =
C√
|k1n|

exp

[∫ x1

x1
n

(|k1n| − k̃1n)dx1′
]

(x1 < x1
n).

Using the Swan method [see Landau and Lifshitz,
1963], we bypass the turning point x1 = x1

n in the
plane of a complex x1 and obtain in the transparent
region the solution of the form

Ψ̄n =
C√
|k1n|

exp

(∫ x1

x1
n

k̃1ndx1′
)

× sin

(∫ x1

x1
n

k1ndx1′ +
π

4

)
(x1 > x1

n).(7)

In a dipole-like geomagnetic field, the geometrical fac-
tor in (7) is (x1

n/x1); i.e., it varies according to a sim-
ple power law. The boundary condition on the mag-
netopause can be obtained immediately from equa-
tion (1). Since the problem of our interest neglects
the motion of plasma in the solar wind region, this
equation describes magnetospheric oscillations both
inside the magnetosphere and in the solar wind. Upon
integrating it across the magnetopause over an in-
finitely small interval, we obtain the matching con-
dition (∇1Ψn)+ = (∇1Ψn)−. A double integration
over this same interval yields a second matching con-
dition (Ψn)+ = (Ψn)−. Here the plus and minus signs
imply that these quantities are taken at the magne-
topause, on the side of the solar wind (plus sign) and
the magnetosphere (minus sign). Matching logarith-
mic derivatives of the solutions (6) and (7) on the
magnetospheric boundary x1 = x1

mp yields

k−1n cot

(∫ x1
mp

x1
n

k1ndx1 +
π

4

)
= −ik+

1n

C1n − C2n

C1n + C2n
,

(8)
where k±1n ≡ k1n(x1

±) stand for the values of the trans-
verse wave number to the right and to the left of the
boundary (x1

± = lim
ε→0

(x1
mp ± ε)). In this problem the

magnetopause represents a boundary on which the
Alfven velocity changes abruptly from the values typ-
ical of the magnetosphere to those characteristic for
the solar wind.

Figure 2 presents the wave field structure of magne- Figure 2
tosonic oscillations across magnetic shells calculated
for the following values of the problem parameters
m = 1, n = 3, and ω = 0.024Hz. In the neigh-
borhood of the turning point where the WKB ap-
proximation is inapplicable, the oscillation structure
is described by the Airy function Ai[(x1

n − x1)/λn],
where λn = (∇1k

2
1n)−1/3|x1=x1

n
is the typical trans-

verse scale of the oscillations near the turning point.
In this example, the oscillations under consideration
are remote from any eigenoscillations of the magneto-
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sphere. In the transparent region inside the magneto-
sphere (between two vertical dashed lines) the wave
field produces no harmonic structure. An interesting
feature of this plot is the fact that the oscillation am-
plitude inside the magnetosphere turns out to be sig-
nificantly larger in comparison with the solar wind,
and because of the geometrical factor, it increases
from the magnetopause to the ionosphere. Further-
more, in the solar wind the wave field is produced by
the combination of the incident and reflected waves
of equal amplitude (shown by the arrows).

If the reflection factor is now represented by the
relation Rn = C2n/C1n, then from (8) we obtain for
this factor

Rn =

1 + i(k−1n/k+
1n) cot

(∫ x1
mp

x1
n

k1ndx1 +
π

4

)

1− i(k−1n/k+
1n) cot

(∫ x1
mp

x1
n

k1ndx1 +
π

4

) . (9)

In a one-dimensional inhomogeneous model of the me-
dium, this factor goes entirely into a similar factor
obtained by Walker [1998]. It is known that if the
frequency of the incident wave coincides with one of
the cavity’s eigenfrequencies (with the frequency of
the global modes in this case), then the reflection
factor, thus introduced, becomes infinite because the
resonance denominator becomes zero. This should be
regarded as the presence of eigensolutions for (1) in
the absence of a magnetosonic wave incident on the
magnetosphere (C1n = 0, C2n 6= 0). Or, within the
framework of the problem formulated above, this can
be given the following physical explanation. If the
frequency of the incident magnetosonic wave on the
magnetosphere coincides with one of the resonance
eigenfrequencies of the magnetosphere, then in or-
der for the amplitude of the magnetosonic eigenmode
in the magnetosphere to be finite, the amplitude of
the incident wave must be infinitely small. Other-
wise the incident wave with a finite amplitude will ex-
cite over an infinite time interval (the oscillations be-
ing monochromatic) magnetosonic oscillations of the
magnetosphere to an infinitely large amplitude. This
picture is true, of course, until the linear approxi-
mation is applicable for the waves under considera-
tion. It is these solutions which correspond to global
modes, magnetosonic eigenoscillations of the magne-
tosphere. Since in this case C2n 6= 0, the magneto-
sphere is not a perfect cavity, and some of the energy
of these eigenoscillations escapes to the solar wind.
By setting the denominator of (9) to zero, we obtain

the following quantization condition:
∫ x1

mp

x1
n

k1ndx1 = π(j − 1
4
) +

i

2
ln

k+
1n + k−1n

k+
1n − k−1n

, (10)

where j = 1, 2, ... is the transverse quantum num-
ber. Since k1n ≡ k1n(ω), equation (10) represents an
equation for oscillation eigenfrequencies ωmnj which
are determined by three quantum numbers: m, az-
imuthal; n, longitudinal; and j, transverse.

Figure 3 presents the wave field structure of the Figure 3
eigenharmonic of magnetosonic oscillations of the
magnetosphere corresponding to the following set of
wave numbers: m = 1, n = 1, j = 3. It is evi-
dent that the transparent region develops a harmonic
structure of wave field. The wave field outside the
magnetosphere represents an escaping magnetosonic
wave (only the real part of the field is shown as a
matter of convenience). In order for the amplitude of
magnetosonic eigenoscillations of the magnetosphere
to be finite, the incident wave amplitude in the set-
ting of the problem presented above should be consid-
ered infinitely small. In this case, the more adequate
setting of the problem is, of course, the one involv-
ing the structure of magnetosonic eigenoscillations
of the magnetosphere, in which the incident wave
on the magnetosphere is lacking altogether. How-
ever, the final result, the structure, and the spec-
trum of eigenoscillations in each of such problems
are identical. An interesting property of this plot
is the fact that the turning point of these oscilla-
tions lies sufficiently close to the ionosphere, and be-
cause of the geometrical factor, the oscillation ampli-
tude near the ionosphere turns out to be much larger
than that in the solar wind. One would therefore
expect that magnetosonic oscillations of a significant
amplitude can be recorded on the ground in near-
equatorial regions. From the form of equation (10) it
follows that the eigenfrequencies are complex-valued
ωmnj = Re(ωmnj) + iIm(ωmnj), where Re(ωmnj) is
the real part of the frequency, and Im(ωmnj) is the
damping decrement associated with the escape of
some of the oscillation energy to the solar wind. If
the jump of parameters on the magnetopause is very
large (k+

1n À k−1n), then the logarithm in (10) becomes
zero and the magnetosphere becomes a perfect cavity
(Im(ωmnj) = 0).

Let us solve numerically equation (10) for eigen-
frequencies ωmnj by using a model distribution of pa-
rameters for the moderately disturbed dayside mag-
netosphere. This model was detailed by Leonovich
and Mazur [2000b], and Figure 1 presents the corre-
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sponding dependencies of the equatorial distribution
of the Alfven velocity A(L) and of the main period of
Alfven eigenoscillations of the magnetosphere tA(L)
on the parameter of the magnetic shell L (MacIlwain
parameter). Table 1 presents the frequencies of mag-Table 1
netosonic eigenoscillations of the magnetosphere for
the first three values of quantum numbers m,n, j.

The upper part of each cell presents the values
of eigenfrequencies calculated numerically from the
model outlined above. The under part of the cell (ex-
cept for m = 0) presents the frequencies calculated
by the asymptotic formula

ωmnj ' A0

[
m

r0
+

ξjm
1/3

2a
2/3
0 r

1/3
0

+
(2n + 1)

2L0

]
− i

2
A0A1

a0

√
A2

0 −A2
1

(11)

obtained by Leonovich and Mazur [2000a] for large
values of the azimuthal wave number m À n, j. Here
A0 ≈ 500 km/s is a minimum equatorial value of
the Alfven velocity inside the magnetosphere ahead
of the magnetopause; A1 ≈ 50 km/s is the value of
the Alfven velocity in the solar wind immediately
behind the magnetopause; r0 ≈ 10 RE is the ra-
dial coordinate of the magnetopause; a0 is a typi-
cal transverse (L0, longitudinal) scale of variation of
A inside the magnetosphere (a0 ∼ L0 ∼ r0/3); and
ξj ≈ [3π(j−1/4)/2]2/3 is the jth zero of the Airy func-
tion Ai(ξ) (ξ1 ' 2.3, ξ2 ' 4, ξ3 ' 5.6, ...). To avoid
misunderstanding, we wish to note that what formula
(11) describes are magnetosonic (compressional) oscil-
lations of the magnetosphere. The wavelength of such
oscillations in an azimuthal direction is significantly
smaller than the typical wavelength of these oscilla-
tions in the direction along field lines and across the
magnetic shells. However, these oscillations should
not be confused with the poloidal Alfvenic oscillations
of the magnetosphere with m À 1 which were inves-
tigated by Radoski [1967] and Leonovich and Mazur
[1993]. They are described by equations of a different
form and have quite different properties.

The eigenfrequency values presented in Table 1
make it possible to determine the validity range of
the estimating formula (11) for leading harmonics of
magnetosonic oscillations of the magnetosphere. It
is evident that the frequencies calculated numerically
and obtained by formula (11) can differ more than
two times. The eigenfrequency of the oscillations
under consideration increases with increasing quan-
tum numbers both in the numerical solution and in

the estimating formula (11). Formula (11) can be
used in a qualitative estimate of the global modes
frequencies when m >∼ n, j. Note that the Q factor
of the oscillations under consideration is sufficiently
high (Re(ωmnj) À Im(ωmnj)), which gives grounds
to expect that these oscillations can be recorded in
the magnetosphere with a sufficient amplitude.

Note that the frequency of the lowest-frequency
eigenoscillations is considerably above that of the os-
cillations which are observed by geostationary satel-
lites in the dayside magnetosphere ω ∼ 10−3(rad/s)
[see Harrold and Samson, 1992; Samson and Rankin,
1994; Lessard et al., 1999]. Hence global modes in
the dayside magnetosphere calculated in terms of the
model stated above obviously cannot be such low-
frequency oscillations. To estimate the frequency
of the lowest-frequency harmonic of magnetosonic
eigenoscillations of the magnetosphere, one can use
the expression f ∼ Ā/L, where Ā is the mean
value of the Alfven velocity in the magnetosphere
and L is the typical scale of the magnetospheric cav-
ity. In the model of the medium used in this study,
Ā ≈ 500 km/s, and L = 10 RE ≈ 6.4 × 103 km
which gives f ∼ 8 mHz (∼ 4.8 × 10−2 rad/s). The
lowest-frequency oscillations with a stable spectrum,
observed in the magnetosphere, have the frequency
f ∼ 1mHz. If the typical scale of the magnetosphere
is represented by the largest possible transverse scale
of the magnetosphere L ∼ 15 RE , then to ensure the
observed frequency f ∼ 1 mHz, it is necessary that
Ā ≈ 100 km/s. Such low values of the mean Alfven
velocity in the magnetosphere are unlikely.

4. Cavity Under the Plasmapause

Guglielmi [1970, 1972] for the first time showed
that near the plasmapause there is a transparent re-
gion for magnetosonic oscillations bounded across the
magnetic shells on two sides by turning points. Hence
there are conditions for the existence of magnetosonic
eigenoscillations confined inside such a cavity. Subse-
quently, the structure of these eigenmodes was stud-
ied in different models of magnetospheric plasma dis-
tribution by Zhu and Kivelson [1989], Lee [1996], Fe-
dorov et al. [1998], and Leonovich and Mazur [2000b].
Let us determine the transverse structure and the fre-
quency spectrum of the eigenoscillations of this cavity
in terms of the magnetospheric model described in the
preceding section.

Let x1
n1 denote the coordinate of the magnetic shell

separating the cavity’s transparent region under the
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plasmapause and the inner (nearer to the ionosphere)
opaque region, and let x1

n2 refer to the coordinate of
the shell separating the transparent region and the
outer opaque region. The solution inside the trans-
parent region satisfying the boundary condition when
x1 > x1

n1 is given by (7), where we must substitute
x1

n → x1
n1. A similar formula for the solution sat-

isfying the boundary condition when x1 < x1
n2 may

be written by substituting in (7) the lower and up-
per limits of integration for x1 and x1

n2, respectively,
and by adding π/2 to the phase. For the oscillation
eigenmode these solutions must both coincide, which
is possible only when the quantization condition is
satisfied: ∫ x1

n2

x1
n1

k1ndx1 = π(j − 1
2
), (12)

where j = 1, 2, .... This equation determines the cav-
ity’s eigenfrequencies ωmnj in the zero-order approxi-
mation when the opaque regions bounding the cavity
across the magnetic shells can be considered infinitely
extended.

However, this statement is not universally true un-
der real magnetospheric conditions. The point is that
the outer opaque region separating the cavity from
the outer magnetosphere represents a barrier of a fi-
nite height and width. This leads to a partial escape
of the energy from the cavity to the outer magneto-
sphere; i.e., the eigenoscillation frequencies of such
a cavity are complex valued. The imaginary part
of the frequency represents a damping decrement of
the oscillations associated with the escape of some of
their energy through the barrier. As was shown by
Leonovich and Mazur [2000a], the value of this decre-
ment depends on the values of the quantum numbers
m, n, and j which determine the spectrum of eigenfre-
quencies ωmnj . At large values of the azimuthal wave
number m À 1 this decrement is small (Im(ωmnj) ¿
Re(ωmnj)). In this case, the potential well in which
the cavity’s eigenmode is localized is deep and the es-
cape of energy from it is small. When m ∼ 1, the
value of the decrement becomes comparable with the
eigenfrequency of the mode (Im(ωmnj)∼Re(ωmnj)),
which implies a decrease in the depth of the potential
well and an increase in the escape of the oscillation
energy to the outer magnetosphere.

Figure 4 presents the structure of eigenoscillationsFigure 4
of the cavity under the plasmapause for the following
values of quantum numbers: m = 1, n = 3, j = 1.
It is evident that the wave field decreases to zero in-
side the opaque region adjacent to the ionosphere.
Inside the second opaque region (between the second

and third vertical dashed lines in Figure 4), an ex-
ponential decrease proceeds only to a certain finite
value. This is due to the finiteness of the width and
height of the barrier. Farther away is the outer trans-
parent region propagating to the magnetopause and
further out to the solar wind. For comparison, the fig-
ure presents the structure of the magnetosonic wave,
for which the transparent region (cavity) under the
magnetopause is absent. Thus a total structure of
wave field is determined by the structure of the so-
lution in the cavity and in the outer magnetospheric
region. Therefore a total spectrum of eigenfrequen-
cies of magnetosonic oscillations of the magnetosphere
will represent a combination of the eigenfrequencies
of the outer magnetosphere and of the cavity under
the plasmapause [see Lee and Kim, 1999]. In this pa-
per we confine ourselves to investigating the frequency
spectrum of the eigenoscillations of such a cavity by
neglecting their damping associated with the escape
through the barrier.

Let us solve numerically equation (12) for the cav-
ity’s eigenfrequencies. The frequency spectrum of
several leading harmonics of the eigenoscillations is
presented in Table 2. Note that not all of the cells Table 2
in this table are filled, since at fixed values of the
quantum numbers n and j the potential well becomes
deep enough for the existence of the eigenmode, be-
ginning with a certain value of m = m̄nj . For in-
stance, we have m̄00 = 2, m̄10 = 7, m̄20 = 13, ....
When m < m̄nj the external points for the oscilla-
tions under consideration disappear, and the cavity
for them is absent. As in Table 1, the upper part
of each cell presents the eigenfrequencies ωmnj calcu-
lated numerically by formula (12), and the lower part
presents the frequencies obtained by the asymptotic
formula (11), in which A0 ≈ 400 km/s, r0 ≈ 4 RE ,
a0 ∼ L0 ∼ RE .

As here, m >∼ n, j; the frequencies calculated nu-
merically and obtained by the asymptotic formula do
not differ by more than a 30%. Formula (11) can
be used for quantitative estimation of the eigenoscil-
lation frequencies of the cavity located under the
plasmapause. Note that at the same values of the
azimuthal m, longitudinal n, and transverse j wave
numbers, the structure of the eigenoscillations in the
cavity under the plasmapause and of the global modes
is different because they are localized in regions hav-
ing a different size. This leads to the fact that the
eigenfrequencies of such oscillations ωmnj are essen-
tially different.
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5. Conclusion

The main results of this study may be summarized
as follows:

1. We have obtained equations (5)-(7) describing
the field structure of magnetosonic eigenoscillations
of the axisymmetric magnetosphere across magnetic
shells in the WKB approximation.

2. It has been shown that the amplitude of magne-
tosonic oscillations in a dipole-like magnetic field, in
which the field lines are concentrated toward the ori-
gin of coordinates, increases in the direction from the
magnetopause to the ionosphere because of geomet-
rical factor. This furnishes a means of observing, in
near-equatorial regions on the ground, magnetosonic
oscillations of a significant amplitude, even if near the
magnetopause they have only a moderate amplitude.

3. The expression (9) was obtained for the reflec-
tion factor of the magnetosonic wave incident from
the solar wind on the axisymmetric magnetosphere.

4. We have determined the frequency spectrum of
magnetosonic eigenoscillations of the axisymmetric
magnetosphere (global modes) with proper account
of the escape of some of their energy to the solar
wind. It has been demonstrated that the eigenoscilla-
tion frequencies calculated numerically and obtained
by the asymptotic formula (11) can differ by more
than a factor of 2. In both cases the dependence of
the eigenfrequencies on the values of quantum num-
bers (azimuthal m, longitudinal n, and transverse j)
is qualitatively similar.

5. We have solved the problem of the frequency
spectrum of magnetosonic eigenoscillations within the
cavity under the plasmapause. It has been shown
that the spectrum of these oscillations, calculated nu-
merically for the axisymmetric model of the magneto-
sphere, is in qualitative agreement with that obtained
by the asymptotic formula (11). The existence condi-
tions of such oscillations depend heavily on the values
of the quantum numbers m,n, and j. At fixed values
of n and j, the cavity can accommodate only oscilla-
tions with m ≥ m̄nj , where m̄nj is a minimum value
of the azimuthal wave number at which the eigenmode
exists in the cavity.
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Figure 1. Equatorial dependence of the Alfven velocity A(L, 0) and of the main period of Alfven eigenoscillations
tA(L) on the parameter of the magnetic shell L in the axisymmetric magnetospheric model used in numerical
calculations.
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Figure 2. Structure of the magnetosonic oscillation field when the wave is incident from the solar wind and
is reflected from the magnetosphere in the case where the wave frequency is far away from the eigenoscillation
frequency of the magnetosphere. Arrows in the figure intimate that the magnetosonic oscillation field outside the
magnetosphere is caused by the combination of the incident and reflected waves. Vertical dashed lines show the
position of the turning point (L = 8.2) and of the magnetopause (L = 10).
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Figure 3. Field structure of magnetosonic eigenoscillations of the magnetosphere for the eigenmode with the
following set of wave numbers: m = 1, n = 1, j = 3. The arrow intimates that the field outside the magnetosphere
is caused by the field of the escaping magnetosonic wave (only the real part of the field is shown). Vertical dashed
lines show the position of the turning point (L = 2.1) and of the magnetopause (L = 10).
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Figure 4. Wave field structure of magnetosonic eigenoscillations of the cavity under the plasmapause for the
eigenmode with the following set of wave numbers: m = 1, n = 3, j = 1 (solid line). For comparison, the short-
dashed line shows the wave structure of magnetosonic waves with no cavity under the plasmapause for them.
Vertical dashed lines show the position of the turning points (L = 2.8, 3.8, 5.6) and of the magnetopause (L = 10).
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Table 1. Frequencies of Global Modes
[Re(ωmnj)(rad/s), Im(ωmnj)(s−1)]×10−2

n

m 0 1 2

j=1

0 (4.58,−0.12) (9.41,−0.12) (13.76,−0.14)

1
(4.99,−0.16)
(3.88,−0.12)

(9.66,−0.16)
(6.28,−0.12)

(14.0,−0.15)
(8.68,−0.12)

2
(5.68,−0.17)
(6.19,−0.12)

(10.15,−0.17)
(8.59,−0.12)

(14.4,−0.15)
(11.0,−0.12)

j=2

0 (9.1,−0.1) (17.4,−0.14) (23,−0.12)

1
(10.8,−0.15)
(5.3,−0.12)

(17.6,−0.15)
(7.7,−0.12)

(23.1,−0.15)
(10.1,−0.12)

2
(11.8,−0.16)
(7.0,−0.12)

(18,−0.16)
(9.4,−0.12)

(23.4,−0.14)
11.8,−0.12)

j=3

0 (13.3,−0.13) (23.3,−0.14) (30.2,−0.16)

1
(13.5,−0.15)
(6.6,−0.12)

(24.0,−0.15)
(9.0,−0.12)

(30.3,−0.16)
(11.4,−0.12)

2
(14.1,−0.18)
(8.5,−0.12)

(24.6,−0.16)
(10.9,−0.12)

(30.7,−0.15)
(13.3,−0.12)
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Table 2. Frequencies of the Cavity’s Magnetosonic
Eigenmodes Under the Plasmapause: ωmnj(rad/s)

n

m 0 1 2

j=1

0 · · · · · · 0.32

1
· · ·
· · ·

0.23
0.124

0.327
0.231

2
0.136
0.155

0.238
0.261

0.334
0.353

j=2

3 · · · · · · 0.473

5
· · ·
· · ·

0.39
0.305

0.5
0.41

7
0.317
0.343

0.42
0.456

0.527
0.558

j=3

9 · · · · · · 0.662

11
· · ·
· · ·

0.586
0.637

0.694
0.733

13
0.523
0.583

0.623
0.677

0.728
0.774


