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1. INTRODUCTION

Modern theoretical research on MHD oscillations in
the Earth’s magnetosphere is generally thought to begin
with a paper by Dungey [1], who derived equations
describing the structure and spectrum of poloidal and
toroidal Alfvén waves by using a magnetosphere model
with a dipole magnetic field. In an axisymmetric model
such as this one, arbitrary oscillations can be described
by a superposition of azimuthal modes of the form of

 

exp(

 

im

 

ϕ

 

)

 

, where 

 

m

 

 = 0, 1, 2, 3, … is the azimuthal
mode number and 

 

ϕ

 

 is the azimuthal angle. Oscillations
with 

 

m

 

 = 0 are called toroidally polarized, while oscil-
lations with 

 

m

 

  

 

∞

 

 are referred to as poloidally polar-
ized. In toroidal Alfvén waves, the magnetic field and
the plasma oscillate in the azimuthal direction and the
electric field oscillates across the magnetic shells. And
vice versa, in poloidal Alfvén waves, the magnetic field
and the plasma oscillate across the magnetic shells and
the electric field executes azimuthal oscillations.

A theory of Alfvén waves with 

 

m

 

 

 

�

 

 1

 

 in a magneto-
sphere with a dipole-like magnetic field was worked out
in [2]. Structurally, such oscillations along the mag-
netic field lines are standing Alfvén waves between the
magneto-conjugated ionospheres. In the transverse
direction, these oscillations are localized between two
resonant magnetic shells. In the vicinity of one of these
shells, the radial (transverse) wavelength of the oscilla-
tions is much less than their azimuthal wavelength and
the oscillations have almost poloidal polarization. In
[2], this shell was called the poloidal resonant surface.
It is near this shell that a monochromatic source (e.g.,

 

external currents in the Earth’s ionosphere) can gener-
ate the oscillations under study.

These oscillations propagate across the magnetic
shells toward another (toroidal) resonant surface. Dur-
ing propagation, their polarization changes from nearly
poloidal to nearly toroidal. In the vicinity of the toroidal
resonant surface, Alfvén waves with 

 

m

 

 

 

�

 

 1

 

 are almost
completely absorbed due to the Joule dissipation of
their energy in the ionosphere. Standing Alfvén waves
with toroidal polarization have somewhat different
eigenfrequencies than those with poloidal polarization.
The difference between these eigenfrequencies is
called the polarization splitting of the spectrum. Know-
ing this difference, one can determine the distance
between the toroidal and the poloidal resonant mag-
netic shells.

The amplitude of the oscillations between the poloi-
dal and the toroidal resonant surfaces is governed by
two competing effects—the dissipation of oscillations
in the ionosphere and their possible enhancement by
high-energy charged particle beams. It is known [3, 4]
that Alfvén waves can grow in their interaction with
high-energy particles present in the plasma. If the dissi-
pation of Alfvén waves in the ionosphere predominates
over their enhancement (the damping rate is larger than
the growth rate), their amplitude decreases from the
poloidal resonant surface toward the toroidal one. The
only exception may be in a narrow vicinity of the toroi-
dal resonant surface, where the singularity in the field
of oscillations is regularized by their damping. In the
opposite case (when the growth rate is larger than the
damping rate), the oscillation amplitude increases
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monotonically from the poloidal toward the toroidal
resonant surface.

In all earlier papers on the subject, the polarization
splitting of the spectrum of standing Alfvén waves was
determined by using magnetosphere models in which
the plasma was assumed to be immobile. However, the
actual magnetosphere is a dynamically equilibrium
plasma configuration. In other words, motion is an
inherent property of the magnetospheric plasma and, of
course, plays an important role in the formation of the
structure and spectrum of Alfvén waves in the magneto-
sphere. In the present paper, we make a first attempt to
investigate how the motion of the magnetospheric
plasma influences the longitudinal structure and spec-
trum of standing Alfvén waves with 

 

m

 

 

 

�

 

 1

 

 near the
poloidal and toroidal resonant surfaces.

Our paper is organized as follows. In Section 2, we
briefly describe the magnetosphere model and derive
basic equations for the longitudinal (along the magnetic
field) structure and spectrum of nearly toroidal and
nearly poloidal standing Alfvén waves with 

 

m

 

 

 

�

 

 1

 

 in
the vicinities of the corresponding resonant surfaces. In
Section 3, the equation for standing Alfvén waves near
the toroidal resonant surface is solved in the Wentzel–
Kramers–Brillouin (WKB) approximation. In Sec-
tion 4, we perform a similar analysis for standing
Alfvén waves near the poloidal resonant surface and
obtain an exact expression for the polarization splitting
of the Alfvén wave spectrum. In Section 5, we derive
analytic expressions for the polarization splitting of the
waves under consideration and determine the character-
istic spatial scale on which they are localized across the
magnetic shells. In Section 6, the results of numerical
calculations carried out for the first several modes of
the standing Alfvén waves are presented and discussed.

Finally, in the Conclusions, we summarize the main
results of our work.

2. MODEL OF THE MEDIUM
AND BASIC EQUATIONS

In order to take into account the motion of the
medium, we use a magnetosphere model with a dipole
magnetic field and with a plasma rotating in the azi-
muthal direction. The geometry of the model under
analysis is shown in Fig. 1. We introduce an orthogonal
curvilinear coordinate system (

 

x

 

1

 

, 

 

x

 

2

 

, 

 

x

 

3

 

) associated
with the magnetic field lines (see Fig. 1). The 

 

x

 

3

 

 coor-
dinate is directed along a field line, the 

 

x

 

1

 

 coordinate is
orthogonal to the magnetic shells, and the 

 

x

 

2

 

 coordinate
points in the azimuthal direction so as to complete a
right-handed system. In these coordinates, 

 

B

 

0

 

 = (0, 0,

)

 

 is the unperturbed magnetic field vector, 

 

v

 

0

 

 = (0,
, 0)

 

 is the unperturbed plasma velocity vector (the

notation  and  corresponds to the physical com-
ponents of the vectors), and the square of the length ele-
ment has the form

where 

 

g

 

i

 

 (

 

i

 

 = 1, 2, 3)

 

 are the metric tensor components.
If the role of the azimuthal coordinate 

 

x

 

2

 

 is played by

the azimuthal angle 

 

ϕ

 

, we have 

 

 

 

≡

 

 v

 

ϕ

 

 = 

 

,
where 

 

Ω

 

 is the angular velocity of the plasma.
A detailed analytic self-consistent model of such a

magnetosphere was presented in [5]. A rotating plasma
configuration is maintained in equilibrium by the gas-
kinetic plasma pressure gradient. The direction of the
plasma rotation is chosen to agree with the symmetry of
the problem. The plasma medium is assumed to be
homogeneous in the azimuthal direction, and the azi-
muthal plasma motion is such that it does not influence
the geometry of the magnetic shells. This is why it is
possible to choose an arbitrary axisymmetric magnetic
field configuration, e.g., a dipole configuration. It is the
dipole magnetic field component that dominates the
inner part of the Earth’s magnetosphere. It can be
shown [5] that, in this case, the angular plasma velocity
is constant along each magnetic shell and is a function
of the transverse coordinate solely, 

 

Ω ≡ Ω

 

(

 

x

 

1

 

)

 

. Since the
problem is symmetric with respect to the azimuthal
coordinate 

 

x

 

2

 

, the metric tensor components depend
only on the transverse, 

 

x

 

1

 

, and longitudinal, 

 

x

 

3

 

, coordi-
nates: 

 

g

 

i

 

 

 

≡ 

 

g

 

i

 

(

 

x

 

1

 

, 

 

x

 

3

 

)

 

.
Note that an equilibrium magnetosphere model with

a rotating plasma can be constructed in other ways. For
instance, in [6, 7], axisymmetric models were consid-
ered in which the plasma was assumed to be held in
equilibrium by the Earth’s gravitational field and by the
self-consistent generation of currents in a differentially
rotating plasmasphere. In those two papers, it was
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Fig. 1.

 

 Geometry of a magnetosphere model with a dipole
magnetic field and with a plasma rotating in the azimuthal
direction, 

 

v

 

 = (0, 

 

v

 

ϕ

 

, 0)

 

. The coordinate systems associated
with the magnetic field lines are shown: the curvilinear
orthogonal coordinate system (

 

x

 

1

 

, 

 

x

 

2

 

, 

 

x

 

3

 

) and the nonor-
thogonal coordinate system (

 

a

 

, 

 

ϕ

 

, 

 

θ

 

) used in numerical sim-
ulations.
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shown that, with such axisymmetric models, it is possi-
ble to explain the main characteristic features of the
generation of electric fields and currents in the near-
Earth plasma and in the Earth’s ionosphere. The models
also make it possible to calculate the distribution of
magnetospheric plasma in the meridional plane. Our
further analysis, however, will be carried out with a
simpler model developed in [5] because it makes the
calculations easier. In particular, this model yields a
rather simple analytic expression for the Alfvén veloc-
ity distribution 

 

A

 

(

 

x

 

1

 

, 

 

x

 

3

 

)

 

 in the magnetic meridian plane.
A particular expression for the distribution 

 

A

 

 will be
given in Section 5, where we will present the results of
numerical simulations.

In the magnetosphere model used here, we describe
Alfvén waves by the set of ideal MHD equations

 

(1‡)

(1b)

(1c)

(1d)

 

where B and v are the magnetic field and plasma veloc-
ity vectors, P and ρ are the plasma pressure and plasma
mass density, and γ is the adiabatic index. In Eqs. (1a)
and (1d), d/dt = ∂/∂t + v · — is the time derivative in the
frame of reference of a moving plasma element. The
time-independent set of Eqs. (1) describes the distribu-
tions of the equilibrium parameters B0, v0, P0, and ρ0 in
a steady state (see [5]). The parameters perturbed by

Alfvén waves will be denoted by , , , and .

Let us consider monochromatic waves of the form
exp(–iωt + ik2x2), where ω is the wave frequency and
k2 is the azimuthal wavenumber (for x2 = ϕ, we have
k2 ≡ m = 0, 1, 2, …). We linearize Eqs. (1) in the small
perturbations introduced by Alfvén waves. From
Eqs. (1a) and (1b) we obtain

(2‡)

(2b)

ρdv
dt
------ –∇P

1
4π
------ ∇ B×( ) B,×+=

∂B
∂t
------- ∇ v B×( ),×=

∂ρ
∂t
------ ∇ ρv( )+ 0,=

d
dt
----- P

ργ----- 0,=

B̃ ṽ P̃ ρ̃

ρ0 iωv 1 v 2Ω∇1 g2ln+( )–
ρ̃Ω2

2
----------∇1g2–

=  –∇1P̃
B0

4π
------ 1

g3

--------- ∇3B1 ∇1B3–( ),+

ρ0 –iωv 2 v 1

∇1 g2Ω( )
g1

---------------------
v 3Ω

g3
-----------∇3g2+ +⎝ ⎠

⎛ ⎞

=  –ik2P̃
B0

4π
------ 1

g3

--------- ik2B3 ∇3B2–( ),+

where ∇i ≡ ∂/∂xi (i = 1, 2, 3), vi and Bi are the covariant

components of the vectors  and ,  = ω –  is
the wave frequency in a moving plasma with allowance

for the Doppler effect, and  is the contravariant com-
ponent of the unperturbed plasma velocity (for k2 = m,

we have  = Ω).

It is convenient to investigate Alfvén waves by
expressing the components of their electromagnetic
and velocity fields in terms of potentials. According to
the Helmholtz decomposition theorem [8], any differ-
entiable vector field can be represented as the sum of an
irrotational and a solenoidal field. We represent the per-
turbed electric field as

where Φ and Y = (ψ1, ψ2, ψ3) are the scalar and vector

potentials, respectively. Obviously, the field  is
invariant with respect to adding an arbitrary constant to
Φ, so, without loss of generality, the constant can be set

equal to zero. The field  is also invariant with respect
to adding the gradient of an arbitrary function to the
vector potential, Y + ∇χ. Choosing the function χ to
satisfy the equation ψ1 + ∇1χ = 0, we can write

where ξ = ψ2 + ∇2χ and ψ = ψ3 + ∇3χ. In the linear

approximation, the components of the electric field 

are related to the components of the magnetic field 
and velocity field  by the drift equation

From this equation, together with Eq. (1b), we can

express the components of  and  through the poten-
tials Φ, ξ, and ψ. Using Eqs. (1c) and (1d), we can also
express the perturbed plasma density and pressure, 

and , in terms of these potentials.
Deriving equations for the total field of MHD oscil-

lations, including both Alfvén and magnetosonic
waves, is a rather complicated procedure. In what fol-
lows, we will be interested in the spectrum and in the
longitudinal (along the magnetic field lines) structure
of standing Alfvén waves with m � 1 near the poloidal
and toroidal resonant surfaces. In the absence of dissi-
pation or other scattering mechanisms, there is a singu-
larity in the amplitude distribution of Alfvén waves on
the toroidal resonant magnetic surfaces, at which the
source frequency coincides with the local Alfvén fre-
quency. In this case, the potentials Φ, ξ, and ψ have dif-
ferent types of singularities associated with the Alfvén
wave. The scalar potential Φ has the highest order sin-
gularity [9–11]. The problem of the structure of Alfvén

ṽ B̃ ω k2v 0
2

v 0
2

v 0
2

Ẽ –∇Φ ∇ Y,×+=

Ẽ

Ẽ

Y 0 ξ ψ, ,( ),=

Ẽ

B̃
ṽ

Ẽ
1
c
--- ṽ B0 v0 B̃×+×( ).=
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waves near resonant surfaces can be formulated by
retaining only the highest order terms in the equations.

In the leading order of the perturbation theory, the
field components of the resonant Alfvén waves can be
expressed in terms of the potential Φ:

(3)

where we have introduced the notation g = g1g2g3 and

p = . In deriving the expression for the velocity

component v3, perturbed density , and perturbed

pressure , we used the smallness of two parameters,
namely, the ratios S/A and /A � 1, where S =

 is the speed of sound and A = B0/  is the
Alfvén velocity in the plasma. For the Earth’s magneto-
sphere, the characteristic values are , S ≤ 50 km/s
and A ~ 103 km/s.

The equation for Alfvén waves is derived by acting
by the operator ∇1B0/ρ0 upon Eq. (2b) from the left and
by taking the difference between the resulting equation
and Eq. (2a) multiplied by ik2B0/ρ0. For a region just
around the toroidal resonant surface (where |∇1Φ/Φ| �
m � 1), we retain only the leading-order terms, propor-

tional to ~ , to arrive at the following longitudinal
equation for the toroidal Alfvén waves:

(4)

Here,

(5)

is the toroidal longitudinal operator, in which

is a zero-order toroidal operator and

is a small correction introduced by the rotation of the
plasma and by its finite pressure.

E1 ∇1Φ, E2– ik2Φ, E3–
k2Ω
ω
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ω
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p
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B0
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ω
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p

g3
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A
2

------+=

βT p
Ω2

A
2

------
∇3g2

g2g3

--------------⎝ ⎠
⎛ ⎞ 2

=

For a region just around the poloidal resonant sur-
face (where |∇1Φ/Φ| � m), we retain only the leading-
order terms, proportional to ~m2, in the equation
obtained and arrive at the following longitudinal equa-
tion for the nearly poloidal Alfvén waves:

(6)

Here,

(7)

is the poloidal longitudinal operator, in which

is a zero-order poloidal operator and

is a correction introduced by the rotation of the plasma
and by its finite pressure. We restrict ourselves to con-
sidering only such values m � 1 for which the term βP

in the operator  makes a small correction to the zero-
order operator.

3. STRUCTURE AND SPECTRUM 
OF THE TOROIDAL ALFVÉN WAVES

IN THE MAGNETOSPHERE

Equation (4) for the toroidal Alfvén waves can be
rewritten as

(8)

where dl =  is an element of length along the
magnetic field line. This equation should be supple-
mented with the boundary conditions at the ionosphere.
These conditions play an important role in the genera-
tion of Alfvén waves and in their absorption. Thus,
external currents can generate standing Alfvén waves
with m � 1 in the ionosphere, which are then dissipated
due to the finite plasma conductivity [12]. However, in
solving the problem of the spectrum and longitudinal
structure of the main modes of the standing Alfvén
waves under examination here, there is no need to
account for the finite conductivity of the ionospheric
plasma. In order to describe such large-scale low-fre-
quency oscillations, it is sufficient to use an approxima-
tion in which the ionosphere is modeled as a perfectly
conducting spherical shell. The finite conductivity of
the ionospheric plasma gives rise to small corrections to
the longitudinal structure of the main modes and to the
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spectrum of their eigenfrequencies. In the subsequent
analysis, these corrections will be ignored. Considering
the ionosphere as a perfectly conducting boundary, we
set E⊥ = –∇⊥Φ = 0 at it to obtain the boundary condi-
tions for the potential Φ:

(9)

where l± are the footpoints of a magnetic field line in the
ionospheres of the northern (plus sign) and southern
(minus sign) hemispheres. Equation (8) with boundary
conditions (9) constitutes an eigenvalue problem for
toroidal Alfvén waves.

In order to qualitatively understand the structure and
spectrum of these waves, we solve the problem given
by Eq. (8) with boundary conditions (9) in the WKB
approximation with respect to the l coordinate. The
WKB approximation is valid for waves with wave-
lengths much shorter than the characteristic scale of the
plasma inhomogeneity in the magnetosphere. We seek
a solution to Eq. (8) in the form

where s(l) is the large quasiclassical phase, which will
be represented as the series s = s0 + s1 + s2 + … (|s0 | �
|s1 | � |s2 | …). We assume that βT is a second-order cor-
rection in perturbation theory. In the zeroth and first
orders of the WKB approximation, we then obtain from
Eq. (8) the relationships

The solution to Eq. (8) that satisfies boundary condi-
tions (9) has the form

(10)

Here, CTN is an arbitrary constant; ΩN = πN/tA, (N = 1,
2, …) is the wave frequency, which plays the role of the
eigenvalue in the problem given by Eq. (8) with bound-
ary conditions (9); and

is the time required for a wave to propagate with the
Alfvén velocity along a magnetic field line between the
magneto-conjugated ionospheres. For each N value,
solution (10) describes a standing Alfvén mode with
N – 1 nodes along a magnetic field line. In the second

Φ l±( ) 0,=

Φ is l( )( ),exp=

s0 ω l '/A, s1d∫± i
2
--- p/A( ).ln= =

ΦTN CTN
A
p
--- ΩN

l 'd
A
------

l–

l

∫⎝ ⎠
⎜ ⎟
⎛ ⎞

.sin=

tA
l 'd

A
------

l–

l+

∫=

order of the WKB approximation, we obtain the follow-
ing correction to the quasiclassical phase:

The general expression for the frequency of toroidal
Alfvén eigenmodes can then be written as

(11)

The solution obtained is applicable only to modes
with N � 1. For the main modes, whose wavelengths
are comparable to the characteristic scale of the plasma
inhomogeneity, the problem given by Eq. (8) with
boundary conditions (9) can be solved numerically. The
wave structure of the first three modes is shown in
Fig. 2, and the dependence of their frequencies on the
position of the magnetic shell in the magnetosphere is
illustrated in Figs. 3 and 4. The results of numerical simu-
lations will be discussed in more detail in Section 6.
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Fig. 2. Structures of standing Alfvén waves with toroidal
(solid curves) and with poloidal (dashed curves) polariza-
tion: the poloidal, PN, and toroidal, TN, eigenfunctions of
unit amplitude for the first three longitudinal modes (N = 1,
2, 3).
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4. STRUCTURE AND SPECTRUM 
OF THE POLOIDAL ALFVÉN WAVES

IN THE MAGNETOSPHERE

Equation (6), which describes the structure of poloi-
dal Alfvén waves, can be represented as

(12)

For poloidal Alfvén waves, the boundary conditions
at the perfectly conducting ionosphere has the same
form as boundary conditions (9) for the toroidal waves.
In the zeroth and first orders of the WKB approxima-
tion, the solution to Eq. (12) with boundary conditions
(9) has the form

(13)

Solution (13) differs from solution (10) for toroidal
Alfvén waves only in the preexponential factor.

∂
∂l
---- p

1– ∂
∂l
----Φ p

1– ω2

A
2

------ βP–⎝ ⎠
⎛ ⎞ Φ+ 0.=

ΦPN CPN Ap ΩN
l 'd

A
------

l–

l

∫⎝ ⎠
⎜ ⎟
⎛ ⎞

.sin=

In the second order of the WKB approximation, the
eigenfrequencies of the poloidal Alfvén waves are
given by the expression

(14)

which differs from the analogous expression (11) for
the eigenfrequencies of the toroidal waves only in the
corresponding two terms in the integrand.

5. LOCALIZATION OF STANDING 
ALFVÉN WAVES WITH m � 1 

ACROSS THE MAGNETIC SHELLS

The quantity ∆ΩN = ΩTN – ΩPN, which is called the
polarization splitting of the spectrum, plays an impor-
tant role in determining the structure of the standing
Alfvén waves with m � 1 and their localization across
the magnetic shells [2]. In [13], the following model
equation was derived in order to describe the wave
structures across the shells:

where ky ~ m is the azimuthal wavenumber. In the WKB
approximation with respect to the x1 coordinate, one

ΩPN ΩN
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8πN
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Fig. 3. Eigenfrequencies Ω(T, P)1 of the fundamental longi-
tudinal modes of toroidal (curve 1) and poloidal (curves 2–
9) Alfvén waves vs. magnetic shell parameter L (the family
of the lower curves, referring to the left ordinate). The
numerals 2–9 correspond to the poloidal eigenfrequencies
(2) in a cold plasma at rest (P0 = 0, Ω = 0), (3) in a plasma
with a finite gas-kinetic pressure (P0 ≠ 0) and with Ω = 0,
and in a finite-pressure rotating plasma (P0 ≠ 0, Ω ≠ 0) for
different azimuthal mode numbers m = (4) –20, (5) –50,
(6) –100, (7) 20, (8) 50, and (9) 100. The upper curve, refer-
ring to the right ordinate, shows the spectral splitting of the

eigenfrequencies,  =  – , vs. magnetic shell

parameter L for m = –50.
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Fig. 4. Eigenfrequencies Ω(T, P)N of the first five modes
(N = 1, …, 5) of toroidal (heavy curves) and poloidal (solid
and dashed light curves) Alfvén waves with the azimuthal
mode numbers m = 50 (solid curves) and m = –50 (dashed
curves) as functions of the magnetic shell parameter L.
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can obtain the following expression for the quasiclassi-
cal wavenumber:

For most of the magnetosphere, the functions ΩPN(x1)
and ΩTN(x1) decrease monotonically with increasing
coordinate x1 (see Fig. 4). In the vicinity of closely

spaced resonant surfaces x1 =  and x1 = , these
functions can be approximated by the linear expres-
sions

where L is the characteristic scale on which the func-
tions vary near resonant surfaces. In this case, the qua-
siclassical wave vector is described by the expression

We can see that the transparency interval for the

waves under study,  < x1 <  (in which  > 0),

lies between two turning points, a usual point, x1 = 

(at which  = 0) and a singular one, x1  =  (at

which  = ∞). The region outside this interval
between the magnetic shells is opaque to the waves.

Hence, the interval ∆N =  –  determines the
characteristic spatial scale on which the waves are
localized across the magnetic shells. It is related to the
polarization splitting of the spectrum by the relation-
ship ∆N = L∆ΩN/ΩTN � L.

In the WKB approximation, the quantity ∆ΩN is
described by the expression

(15)

From Eqs. (4) and (6) for the toroidal and poloidal
Alfvén waves, we can obtain an exact expression for
the polarization splitting of the spectrum. We multiply
Eq. (4) with  = ΩPN by p–1ΦPN and Eq. (6) with  =
ΩTN by pΦTN, take the difference of the two equations
obtained, and integrate the resulting equation along a
magnetic field line between the ionospheres of the
northern and southern hemispheres. As a result, making
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use of the Hermitian nature of the operators  and ,
we obtain

(16)

Expression (16) describes the polarization splitting
of the spectrum of any mode of the standing Alfvén
waves.

Expressions (15) and (16) differ from analogous
expressions in the models with plasma at rest in that the
value of ∆ΩN depends explicitly on the azimuthal wave-
number k2. This implies that, when rotation of the mag-
netosphere plasma is taken into account, each azi-
muthal mode of the poloidal Alfvén waves corresponds
to “its own” resonant magnetic shell. Or, in other
words, at each magnetic shell, poloidal oscillations
with different azimuthal mode numbers have different
eigenfrequencies ΩPN ≡ ΩPN(x1, k2).

6. NUMERICAL RESULTS AND DISCUSSIONS

It is convenient to solve Eqs. (4) and (6) numerically
by passing from the orthogonal coordinate system
(x1, x2, x3) to the coordinate system (a, ϕ, θ) shown in
Fig. 1. The equatorial radius of the magnetic shell, a,
plays the role of the x1 coordinate, the azimuthal angle
ϕ is an analogue of the x2 coordinate, and the latitude θ
corresponds to the longitudinal coordinate x3. Of
course, the coordinate system (a, ϕ, θ) is nonorthogo-
nal. In this system, the strength of the dipole magnetic
field is given by the expression

The magnetic field line equation has the form

where r is the position vector of a point on the field line,
and the element of length in the longitudinal direction
is equal to

Two of the three components of the metric tensor, g1
and g2, are expressed as

Unfortunately, the expression for the component g3 is
more difficult to derive than those for g1 and g2. We can,
however, find the ratio of the components g3(a, θ) at the
intersections of a magnetic surface x3 = const with two
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neighboring magnetic shells a and a0 at the latitudes θ
and θ0:

In the self-consistent magnetosphere model used
here, the Alfvén velocity distribution A(a, θ) is deter-
mined by the condition for the rotating plasma to be in
equilibrium. The equilibrium problem for such a
plasma configuration was solved in [5], in which the
following expression for the Alfvén velocity distribu-
tion in the geomagnetic meridian plane was obtained:

where ρ = acos3θ is the radial distance from a point (a,
θ) on a magnetic field line to the symmetry axis, Ω(a)
is the angular plasma velocity at a magnetic shell with
the equatorial radius a, and

The function A(ρ, 0), which describes the Alfvén veloc-
ity distribution in the equatorial plane of the magneto-
sphere, can be specified based on the data from numer-
ous satellite observations.

Figure 2 shows the longitudinal (along a magnetic
field line) structure of the first three modes of the poloi-
dal and toroidal standing Alfvén waves at the magnetic
shell L = 3 (here, L = a/RE, with RE being the Earth’s
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-----------------------
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⎛ ⎞ 6 θcos
θ0cos

--------------⎝ ⎠
⎛ ⎞ 121 3 θ0sin

2
+

1 3 θsin
2

+
---------------------------.=

A a θ,( ) A ρ 0,( ) Ω a( )
Ω ρ( ) β θ( )
-----------------------------,=

β θ( ) θcos( )6
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radius, is the dimensionless parameter labeling the
magnetic shells). The oscillation amplitudes are nor-
malized to unity. It should be noted that identical modes
(i.e., those with the same number N) of the poloidal and
toroidal standing Alfvén waves have very similar struc-
tures.

Figure 3 shows the eigenfrequencies of the funda-
mental mode of the poloidal and toroidal standing
Alfvén waves. Curve 1 corresponds to toroidal waves
with the azimuthal mode numbers m = ±20, 50, and
100, while curves 2–9 correspond to poloidal waves
with the same azimuthal mode numbers. Strictly speak-
ing, curves 2 and 3 are merely of methodological inter-
est. Curve 2 illustrates how the poloidal eigenfrequency
would behave in an immobile cold magnetosphere with
the same Alfvén velocity distribution as that in the
model under consideration. In this case, the inequality
ΩT1 > ΩP1 is satisfied for the entire magnetosphere.
Curve 3 illustrates how the poloidal eigenfrequency
ΩP1(L) would behave in an immobile magnetosphere
with a plasma having a finite pressure and obeying the
same distribution as that in our model. The main differ-
ence from the cold plasma model is as follows: the plots
of the functions ΩT1(L) and ΩP1(L) intersect one
another in the outer magnetosphere; consequently, the
inequality ΩT1 < ΩP1 is satisfied in a region adjacent to
the magnetosphere boundary. In these two cases, the
poloidal eigenfrequency ΩP1 is independent of the azi-
muthal mode number m. Note that, for modes with arbi-
trary numbers N, the plot of the function ΩT1 is essen-
tially the same as that in the immobile cold plasma
model.

The eigenfrequencies ΩP1(L) of the azimuthal
modes with the numbers m = –20, 50, and 100 are
shown graphically by curves 4–6 in Fig. 3. We can see
that, in the transition region between the magneto-
spheric and solar wind plasmas, where the gradient of
the angular velocity Ω is steepest, the eigenfrequencies
of poloidal modes with different numbers m are split to
a great extent. For m < 0, the functions ΩP1(L) have
local maxima in this region. It is known [14] that, in
such regions, a resonant cavity can form for the poloi-
dal Alfvén waves. Curves 7–9 correspond to the funda-
mental mode of poloidal standing Alfvén waves with
the azimuthal mode numbers m = 20, 50 and 100. The
main feature of these waves is that they are cut off at a
certain magnetic shell L = Lc, whose position depends
on the m value, and do not reach the magnetosphere
boundary. The reason for this is that, for L > Lc, Eq. (6)
has no solutions satisfying prescribed boundary condi-
tions (9). This, in turn, is attributed to the fact that, for
m > 0, the potential (the coefficient by the term free of
derivatives) in Eq. (6) has a local minimum in the
parameter . As a result, there is no eigenvalue  that
satisfies the boundary conditions.

The upper curve in Fig. 3 shows the polarization
splitting of the spectrum, ∆Ω1 = ΩT1 – ΩP1, for the fun-
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Fig. 5. Distribution of the polarization splitting of the spec-

trum, , for longitudinal modes with N = 2, 3, 4, and 5

and with the azimuthal mode number m = –50 across the
magnetic shells.

∆ΩN
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damental mode of standing Alfvén waves with m = –50.
The function ∆Ω1(L) changes its sign at the point of
intersection of the functions ΩT1(L) and ΩP1(L). It
should also be noted that the absolute value of ∆Ω1 is
one to two orders of magnitude larger than that for other
modes with N = 2, 3, … (see Figs. 4, 5).

Figure 4 presents the eigenfrequencies ΩTN(L) and
ΩPN(L) with N = 1, 2, 3, 4, and 5 for standing Alfvén
waves with the azimuthal mode numbers m = ±50. Fig-
ure 5 displays the corresponding polarization splittings
of the spectrum, ∆ΩN(L) with N = 2, 3, 4, and 5 for
modes with m = –50. From Fig. 4 we can see that the
value of ∆Ω1 for the N = 1 fundamental mode is
uniquely large. Figure 6 shows the corresponding func-
tions ∆N, which determine the characteristic equatorial
dimensions of the regions where the waves under con-
sideration are localized across the magnetic shells. The
change in the signs of the functions ∆N in the range
3.5 � L � 4.5 is related to the change in the relative
positions of the toroidal and poloidal surfaces. We see
that the localization region of the fundamental mode of
the standing Alfvén waves is one order of magnitude
greater than those of their other modes.

The plots of the functions  = ΩPN + mΩ and

 = ΩTN + mΩ in Fig. 7 show what the wave fre-
quencies in a frame of reference in which the source is
at rest should be in order for the Alfvén waves excited
in the magnetosphere to have the frequencies ΩPN and

Ω̃PN

Ω̃TN

ΩTN. Remember that the role of the source can be
played by external currents in the ionosphere. The plots
shown in Fig. 7 were calculated for the same azimuthal
mode numbers, m = ±50, as those in Fig. 4. It is obvious
that, the higher the plasma rotation velocity in the outer
magnetosphere, the larger the difference in the frequen-
cies of the source that excites eigenmodes with differ-
ent azimuthal mode numbers m. In turn, the higher the
number m, the greater this difference.

7. CONCLUSIONS

The main results of our study can be summarized as
follows.

(i) We have derived equations (namely, Eqs. (4) and
(6)) that describe the longitudinal (along the magnetic
field lines) structure and spectrum of toroidally and
poloidally polarized Alfvén waves in a dipole magneto-
sphere with a rotating plasma. We have solved these
equations both analytically (in the WKB approxima-
tion) and numerically. The analytic solutions in the
WKB approximation make it possible to describe the
structure and spectrum of standing Alfvén waves with
the mode numbers N � 1. For the first several modes
(N ~ 1), Eqs. (4) and (6) were solved numerically.

(ii) We have constructed the spectra of the first five
modes of the poloidal and toroidal standing Alfvén
waves with different azimuthal mode numbers m. We
have shown that plasma rotation results in an additional
splitting of the spectrum of Alfvén eigenmodes. On
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Fig. 6. Characteristic spatial scale ∆N on which the first five
(N = 1, 2, 3, 4, 5) standing Alfvén modes with the azimuthal
mode number m = 50 are localized across the magnetic
shells in the equatorial plane. The right ordinate corre-
sponds to the N = 1 fundamental mode, while the left ordi-
nate refers to the modes with N = 2, 3, 4, and 5.

102 4 6
L

0

0.25

0.50

0.75

1.00

1.25
Ω(T, P)N, rad/s
~

1
2 3

4 5

8

Fig. 7. Distribution of the toroidal and poloidal eigenfre-

quencies  = Ω(T, P)N + mΩ of the first five modes
(N = 1, 2, 3, 4, 5) across the magnetic shells in a frame of
reference in which the source is at rest.

Ω̃ T P,( )N



774

PLASMA PHYSICS REPORTS      Vol. 32      No. 9      2006

KOZLOV, LEONOVICH

each magnetic shell, not only do the toroidal and the
poloidal waves have different eigenfrequencies but also
the frequencies of poloidal waves with different azi-
muthal mode numbers m are different.

(iii) We have examined how the polarization split-
tings of the spectrum, ∆ΩN = ΩTN – ΩPN are related to
the spatial scales on which the first several modes of the
standing Alfvén waves are localized across the mag-
netic shells, ∆N. We have shown that the value of ∆Ω1
for the N = 1 fundamental mode is uniquely large: it is
one to two orders of magnitude greater than the values
of ∆ΩN for the next modes (those with N = 2, 3, …). The
polarization splitting is greatest in regions where the
velocity gradient of the plasma rotation is maximum. In
the Earth’s magnetosphere, such regions are in the
vicinities of the plasmapause and the magnetopause.
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