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Abstract
We investigate the problem of the incidence and reflexion of a monochromatic
magnetosonic wave at the transition plasma layer with two resonant surfaces—
for the Alfven and slow magnetosonic oscillations. A qualitative analysis of
the solution to this problem is performed. It is shown that absorption of the
incident wave energy at the transition layer increases substantially when there
is a resonant surface for slow magnetosonic oscillations. In the neighbourhood
of this resonant surface, the energy of an incident wave is totally absorbed,
resulting in additional plasma heating. There is a range of frequencies and
wavelengths for which the absorption coefficient is 100%. Our numerical
calculations have shown that the energy absorption coefficient for an incident
fast magnetosonic wave in plasma with β ∼ 1 exceeds its counterpart in ‘cold’
plasma or in a plasma configuration with one resonant surface, for Alfven
waves only.

1. Introduction

MHD oscillations play an important part in many processes in various plasma media [1–3]. In
homogeneous plasma there are three independent branches of MHD oscillations—the Alfven
waves, the fast and slow magnetic sound (FMS and SMS). In an inhomogeneous plasma
these oscillations become inseparable and exist as a united field of MHD oscillations, whose
dispersion properties in some regions may be like those of one of the branches of MHD
oscillations in a homogeneous plasma. Separating them from each other is possible only for
a few special cases. In theoretical papers dealing with MHD oscillations in inhomogeneous
plasma, the transition between regions with oscillations with different dispersion is described in
terms of interaction of different MHD oscillation branches [4, 5]. This coupling has a resonant
nature and occurs at a small spatial scale.

The Alfven resonance is the best known of such processes [6, 7]. In this process a
monochromatic FMS wave propagating in an inhomogeneous plasma excites an Alfven wave
at a resonant shell where the local frequency of Alfven eigen oscillations coincides with the
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frequency of the FMS wave. Part of the energy transported by the FMS wave is absorbed by
the plasma in the neighbourhood of the resonant magnetic shell, leading to plasma heating.
An interesting feature of such a resonant interaction is that, for a small decrement of Alfven
waves, the FMS wave energy loss does not depend on the dissipation mechanism involved:
whether it is the local electrical resistance of the plasma [8] or the resistance at the ends of
magnetic field lines [9], or Alfven waves moving away from the resonant region across the
magnetic shells due to their small transverse dispersion [10]. The process of Alfven resonance
is applied to explaining some types of global magnetospheric oscillations [11], the heating of
solar coronal plasma [12, 13] and is also offered as a mechanism of plasma heating in nuclear
fusion devices [1, 14].

Another, lesser known, type of resonant interaction is the magnetosonic resonance, in
which a magnetosonic wave drives the SMS oscillations on the resonant shell [15, 16]. The
SMS, similar to Alfven waves, when propagating in inhomogeneous plasma, is easily canalized
in the direction along the magnetic field. This produces a possibility for their resonant
interaction with the FMS, the same as in the Alfven resonance case.

Generally, the above types of resonant interactions of MHD waves are studied separately
[19, 20]. However, a considerable part of real plasma configurations under study involves
both types of resonance and a correct understanding of the processes requires them to be
examined together. The problem of the two above-mentioned resonant Alfven and SMS
oscillations excited by a magnetosonic wave incident on the transition plasma layer is treated
in [15]. That work exhibits a correct qualitative approach to solving the energy absorption
problem for magnetosonic waves incident on the transition layer. The conclusion is that the
energy absorption coefficient increases substantially for the incident waves, in the presence
of a resonant surface for SMS oscillations. However, quantitative applicability of the results
obtained in that paper is restricted by a certain range of the background plasma ion and electron
temperatures. That paper used a method which takes into account local electrical resistance
in the plasma, in a narrow neighbourhood of resonant surfaces in order to pass through the
region of resonant coupling, both for the Alfven and SMS waves. The rank of the equations to
be solved increases, which allows a mathematically correct solution in the regions of resonant
interaction. The method is justified for the Alfven waves, since they usually experience a
weak decay. In this case, as was noted above, any physical processes resulting in the escape of
wave energy from the resonance region or its dissipation may be taken into account in order
to regularize the solution singularity in the neighbourhood of a resonant surface. As long as
these effects are small, they do not alter the integral energy absorption coefficient of resonant
oscillations.

The situation with SMS oscillations is different. In plasma with β � 1 at Te ∼ Ti or
Te < Ti (where Te, Ti are the temperatures of plasma electrons and ions, respectively) the
speed of SMS waves is close to that of the ion sound of the background plasma. This results in
strong dissipation of SMS waves due to their collisionless interaction with background plasma
ions (Landau’s damping [17]). The only exception is strongly nonisothermal plasma with
Te � Ti [18]. In such a plasma the speed at which the SMS waves travel is determined by the
plasma electron, rather than the ion temperature. This velocity is sufficiently far from the ion
sound velocity, allowing the SMS waves to propagate in such plasmas without experiencing
any substantial dissipation. As was noted above, the wave energy absorption coefficient in this
case is never altered by including whatever dissipation mechanism of resonant oscillations with
small decrements. In plasma with Te ∼ Ti or Te < Ti collisionless dissipation of oscillations
is high, therefore the absorption coefficient changes essentially. Therefore employing the
decrement for SMS waves with the Landau damping would be more correct in these cases for
calculating the energy dissipation near the resonant surfaces.
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There is one more feature related to the transition layer model used in [15]. The model
consists of two homogeneous half-spaces joined by the transition layer with a linear profile.
Constructing a complete solution for the field of waves incident on and reflected by the
transition layer consists of finding analytical solutions in each of the homogeneous half-spaces,
a numerical solution in the transition layer, followed by their matching. Using such a model,
as will be evident in the results of this paper, does not allow an essentially important result
to be obtained, namely, the existence of a particular range of frequencies and wave vectors
of magnetosonic waves incident on the transition layer, the energy of which is completely
absorbed in the neighbourhood of the resonance surface for SMS waves. This conclusion
follows from the analytical solution of the problem in a model with a smoothly varying
transition layer in which the reflected wave is absent. In the model in [15] the reflected
wave inevitably appears in matching the solutions obtained in the transition layer and in the
regions of propagation of the incident and reflected magnetosonic waves. This is an essential
property of any models with parameters the derivative of which has a sudden jump at one or
more points.

In this paper we will consider a plasma configuration in the form of a transition layer with
an Alfven speed profile of the form tanh(x) where both types of resonances exist. Besides,
we consider a nonisothermal plasma, where temperatures of ions and electrons can differ
considerably. The problem is reduced to inspecting the process of incidence and reflexion
from such a transition layer of the monochromatic magnetosonic wave. Part of the incident
wave energy is absorbed in the neighbourhood of resonant shells, resulting in plasma heating.

It is necessary to note that a theoretical description of the resonant interaction of MHD
oscillations usually involves a set of ideal MHD equations. In the frame of this approach, it
is impossible to consider the MHD oscillation dissipation due to resonant interaction between
waves and plasma particles. Such interaction is described adequately in the kinetic approach.
Unfortunately, it is difficult enough for this approach to describe the interaction of different
branches of MHD waves in an inhomogeneous plasma. This paper suggests a mixed scheme
for calculating the MHD oscillation field to be applied in the following manner. The structure
of the field of low-frequency MHD oscillations far from the resonant surfaces is described by
a set of two-fluid MHD equations.

To regularize the singularities in the resulting solution near the resonant surfaces, an
effective decrement is introduced as an imaginary additive to the oscillation frequency. The
decrement of Alfven waves is assumed to be small enough in the neighbourhood of the resonant
surface, so that the form of the resulting solution is practically unaffected by the specific way
it is expressed. Unlike the Alfven oscillations, the decrement of resonant SMS oscillations can
be comparable to their frequency. Its specific form determines the structure of the solution not
only in the neighbourhood of but also far from the resonant surface. We determine the value of
the decrement by solving the local kinetic equation for homogeneous plasmas with parameters
corresponding to the resonant surface for SMS waves. At the same time, the decrement is
introduced into MHD equations taking into account the SMS oscillation field localization on
the scale defined by the solution of these equations.

This paper is structured as follows. The model of the medium is presented and the basic
equations obtained describing the field of MHD oscillations in section 2. In the first part of
section 3 the solution of the problem is investigated qualitatively. In order to find a solution
in the neighbourhood of resonant surfaces and turning points the coefficients of the equation
describing the MHD oscillations are linearized. Far from these surfaces the thus-found solution
coincides with the WKB one. In the second part of section 3 the local damping decrement
of SMS waves in homogeneous nonisothermal plasma is obtained. In numerical calculations
the decrement is formally introduced into the equations as an imaginary part of the frequency
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Figure 1. Profiles of Alfven speed A(x), velocity of SMS waves Cs(x) and square of the wave
vector WKB component k2

x(x) across the transition layer.

of oscillations under study with regard to their localization near the magnetosonic resonant
surface. In section 4 the solution is numerically investigated for oscillations to which the WKB
approximation is inapplicable. The main results of the paper are summarized in the section 5.

2. Model of the medium and basic equations

We introduce a system of Cartesian coordinates (x, y, z) for solving the problem we wish to
solve. We consider a plasma configuration in which the magnetic field is directed along the z

axis, and the plasma parameters vary in the x direction. The y axis completes a right-hand set.
Figure 1 presents the characteristic distribution of the Alfven speed and the velocity of SMS
waves in the plasma configuration in question.

To describe the MHD oscillation field we will use the system of MHD equations of the
form

ρ
dv̄

dt
= −∇P̄ +

1

4π
[curl B̄ × B̄], (1a)

∂B̄

∂t
= curl[v̄ × B̄], (1b)

∂ρ̄

∂t
+ ∇(ρv̄) = 0, (1c)

d

dt

P̄

ρ̄γ
= 0, (1d)

where B̄, v̄ are the vectors of the magnetic field and velocity of plasma motion, ρ̄ = n̄(me +mi),
P̄ = n̄(Te +Ti) are the density and pressure (n̄ is the concentration) of a two-component plasma,
γ = 5/3 is the adiabatic constant. We will assume that the wave-related disturbance is weak
enough to permit the initial set of equations to be linearized. We use subscripts zero for the
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parameters of the unperturbed plasma, while the wave-related parameters will have no indices
(B̄ = B0 + B, v̄ = v0 + v, ρ̄ = ρ0 + ρ, P̄ = P0 + P ). We will assume the background
plasma to be immobile (v0 = 0). In the zero approximation the x component of (1a) gives the
equilibrium condition of a plasma configuration in steady state (∂/∂t = 0):

P0 +
B2

0

8π
= const. (2)

Denote by vx = ∂ζ/∂t the x component of the plasma velocity vector in the wave, where
ζ is the displacement of the plasma element. We will consider a simple harmonic wave, which
in the y and z directions is a plane wave of the form exp(ikyy + ikzz− iωt), where ky , kz are the
corresponding components of the wave vector, ω is the wave frequency. Linearizing the set of
equations (1a) and (1d) and expressing the other components of the oscillation field through
ζ , we obtain

vx = −iωζ, vy = −ky

ω

1

K2
s

(
A2 +

K2
AS2

χ2
S

)
∂ζ

∂x
, vz = −kzK

2
AS2

ωχ2
S

∂ζ

∂x
, (3a)

Bx = −ikzB0ζ, By = −kzB0

ω
vy, Bz − K2

AB0

χ2
s

(
1 − k2

z S
2

ω2

)
∂ζ

∂x
, (3b)

P = −γP0
K2

A

χ2
S

∂ζ

∂x
, (3c)

where

K2
A = 1 − k2

zA
2

ω2
, K2

s = K2
A − k2

yA
2

ω2
,

χ2
S = 1 − k2

y + k2
z

ω2

(
A2 + S2 − k2

zA
2S2

ω2

)
.

A = B0/
√

4πρ0 is the Alfven speed, S = √
γP0/ρ0 is the sound speed in plasma. For the

displacement ζ we have the equation

∂

∂x

ρ0	
2

k2
x

∂ζ

∂x
+ ρ0	

2ζ = 0, (4)

where 	2 = ω2 − k2
zA

2,

k2
x = −k2

y − k2
z +

ω4

ω2(A2 + S2) − k2
zA

2S2
. (5)

It is evident from (4) that k2
x is the square of the wave vector x-component in the WKB

approximation when the solution may be represented as ζ ∼ exp(i
∫

kx dx).
The behaviour of the k2

x(x) function is important for a correct statement of the problem. We
wish to explore a process of the incidence and reflexion of a magnetosonic wave on a smoothly
varying transition layer in which there are two resonant surfaces—for the Alfven and SMS
waves. The solution of the problem should be the solution of (4), which is a superposition of
incident and reflected finite-amplitude waves as x → ±∞. The magnitude of A+ ≡ A(∞)

should be chosen such that k2
x(∞) > 0 for the chosen magnitude of ω. In this case there is a

region of transparency for magnetosonic waves as x → ∞. Two variants of distribution of the
k2
x(x) function are possible, labelled as 1 and 2 in figure 1. Analysis of (5) reveals that for a

monotonic increase in A(x) when the x coordinate varies from +∞ to −∞ the k2
x(x) function

passes through zero twice at the points we will denote as x01, x02, between which the opacity
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region (where k2
x(x) < 0) is located. Such a behaviour of k2

x(x) is illustrated by curve 1 in
figure 1 and corresponds to the case of an FMS wave incident on the transition layer.

There are also two singular points in equation (4) in which the coefficient attached to the
higher derivative tends to zero. One of them—the point of the Alfven resonance xA, defined
by the equality 	2(xA) = 0—is located in the opacity region in the interval (x01, x02). The
second one is the point of magnetosonic resonance xS , where the denominator in the expression
(5) tends to zero, which yields the local dispersion equation for SMS waves as |k2

x | → ∞:
ω2 = k2

zC
2
s (xS), where C2

s = A2S2/(A2 + S2). Point xS is left of the turning point x01, and the
region of transparency for SMS waves is located between them. To the left of xS is the opacity
region reaching −∞ in the x direction.

The behaviour of k2
x(x) is qualitatively shown in figure 1. The value of A− ≡ A(−∞)

should be such that there exist a point of magnetosonic resonance xS . Part of the energy of the
incident wave is absorbed in the neighbourhood of two resonant surfaces x = xA and x = xS ,
therefore the reflected wave has a smaller amplitude than has the incident wave. The difference
between the energy of the incident and reflected waves is spent on heating the plasma in the
neighbourhoods of the resonant surfaces. The absorption coefficient, defined as the ratio of
this difference to the energy of the incident wave, depends on the plasma parameters on the
resonant surfaces. In the following sections we explore in detail the structure of the field of
MHD oscillations under study and the dependence of the absorption coefficient on the values
of the wave vector components ky, kz, the ratio of the plasma electron to ion temperature Te/Ti

and the β parameter. Note that the exact expression for the β = 8πP0/B
2
0 parameter, which

is the ratio of gas-kinetic pressure of plasma to magnetic pressure, accurate to the factor close
to unity, coincides with the squared plasma sound velocity to squared Alfven speed ratio. In
the subsequent calculations, this ratio will be denoted as β∗ = S2/A2 = 4πγP0/B

2
0 .

Curve 2 in figure 1 corresponds to the case when the region of transparency for SMS
waves extends up to ∞, and the resonant surface for the Alfven wave is absent. By analysing
expression (5) it is possible to define the two ranges of wave field and plasma parameters
corresponding to curves 1 and 2 in figure 1, for which k2

x(∞) > 0:

ω2

k2
zA

2
+

> ω2
A1,

β∗

1 + β∗ <
ω2

k2
zA

2
+

< ω2
A2,

where ω2
A1, ω

2
A2 are the two roots of the biquadratic equation

ω4
A − (1 + k2

y/k2
z )[ω

2
A(1 + β∗) − β∗] = 0,

corresponding to solutions with the plus and minus signs before the radical. The first of these
describes an FMS wave, and the second an SMS wave incident on the transition layer. Note

that the second range is rather narrow. We have ω2
A2 ≈ [β∗/(1+β∗)+kzβ

∗2/(1+β∗)3
√

k2
y + k2

z ]

as β∗ → 0 or k2
y/k2

z → ∞. As k2
y/k2

z → 0 we have ω2
A2 ≈ β∗. Besides, there is another

limitation on the parameters of the SMS wave incident on the transition layer, determined
by the form of curve 2 in figure 1. For this curve the condition (k2

x)
′ < 0 is satisfied in the

regions x > xS , which gives the limitation ω2/k2
zA

2(x) < 2β∗/(1 + β∗). A variant of the
k2
x(x) distribution is also possible when a resonant surface is present for the Alfven wave, but

is absent for SMS waves.

3. A qualitative investigation of the MHD oscillation field structure

To understand qualitatively the wave field structure we will solve the problem of the incidence
and reflexion of a magnetosonic wave the parameters of which permit us to apply the WKB
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approximation far from the turning points and resonant surfaces. We will use the linearization
of coefficients in (4) to study the solutions in the neighbourhood of these points, subsequently
matching these solutions to the WKB ones. Let us consider, as a more common case, the
incidence of the FMS wave on the transition layer having resonant surfaces for both the Alfven
and SMS oscillations. In the process, we will note especially the features of a solution for the
case of an SMS wave incident on the transition layer.

3.1. Solution near and between the singular and the turning points

3.1.1. Solution for x → −∞. In the opacity region left of xS the WKB solution of (4)
satisfying the boundary conditions has the form

ζ = C1

√
|kx |
ρ0	2

exp

(∫ x

xS

|kx | dx ′
)

, (6)

where C1 is an arbitrary constant.

3.1.2. Solution near the resonant surface x = xS . We linearize the coefficient attached to the
higher derivative in (4), representing k−2

x ≈ a2
s ξs , where ξs = (x−xS)/as , as = (∂k−2

x /∂x)x=xS

is the characteristic scale of the k−2
x variation near x = xS . Equation (4) may then be rewritten as

∂

∂ξs

ξs

∂ζ

∂ξs

+ ζ = 0. (7)

near x = xS . Its solution matched to (6) is

ζ = C2K0(2
√

−ξs), (8)

where K0(z) is the modified Bessel function. Using its asymptotic representation as ξs → −∞,
we find a relation between the integration constants: C2 = 2C1/(	s

√
πρ0sas), where the

subscript s indicates that the values of parameters are taken at x = xS . In order to pass to
the region ξs > 0 the singularity in solution (8) should be regularized. To this effect we will
formally introduce a damping decrement γs for SMS waves near the resonant surface x = xS ,
making a substitution, ω → ω − iγs , in the denominator of (5). A specific expression for γs

will be obtained in section 3.2. Then solution (8) undergoes the substitution ξs → ξs − iεs

where εs = γs/ω, and for ξs > 0 it has the form

ζ = −i
C2π

2
H

(2)
0 (2

√
ξs + iεs), (9)

where H
(2)
0 (z) is the Hankel function of the second kind, which, as ξs → ∞, has an asymptotic

representation, H
(2)
0 (2

√
ξs) ≈ π−1/2ξ

−1/4
s exp (−i2

√
ξs + iπ/4). When ξs → 0 the solution

(8) and (9) is

ζ = −C2

2
ln (−ξs + iεs).

3.1.3. A WKB solution in the region of transparency xS < x < x01. This may be
represented as

ζ = C3

√
kx

ρ0	2
exp

(
−i

∫ x

x01

kx dx ′
)

, (10)

where the constant C3 = C2	s

√
πρ0sas exp (−i

∫ xS

x01
kx dx − iπ/4) is determined by matching

with (9). It is interesting to note that the solution (10) describes the wave impinging on

7
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the resonant surface x = xS , but the reflected wave is absent. This means that the incident
wave is absorbed completely in the neighbourhood of the resonant surface, irrespective of the
dissipation mechanism. A similar effect takes place for the Alfven waves in a plasma with a
curvilinear magnetic field [21, 22].

Note that if the region of transparency for SMS waves extends up to ∞ (which corresponds
to curve 2 for k2

x(x) in figure 1), the SMS wave impinging on the transition layer is absorbed
completely in the neighbourhood of the resonant shell. A numerical solution of the equations
describing this process in [15] has shown that in this case the absorption coefficient of the
waves impinging on the transition layer is maximum (∼90%). However, the model medium
used in that work, consisting of three regions with different distributions of plasma parameters
along the x coordinate, has not allowed the conclusion about a 100% absorption of the incident
wave. When matching the solutions obtained with this model in different regions the reflected
wave is inevitable.

3.1.4. Solution in the neighbourhood of the turning point x = x01. Differentiating (4) with
respect to x, we will enter the designation u = (1/k2

x)∂ζ/∂x and, linearizing k2
x ≈ −ξ1/a

2
1

close to x = x01 (where a−3
1 = −(∂k2

x/∂x)x=x01 , ξ1 = (x − x01)/a1), we obtain the equation

∂2u

∂ξ 2
1

− ξ1u = 0. (11)

Its solution matched with (10) has the form

u = C4(Ai(ξ1) + iBi(ξ1)), (12)

where Ai(z), Bi(z) are Airy’s functions. Matching this solution with (10) gives a relation of

the constants C4 = C3

√
πa1/ρ01	

2
1.

3.1.5. WKB solution in the opacity region x01 < x < xA. We will present it in the form

ζ = C5

√
|kx |
ρ0	2

exp

(∫ x

x01

|kx | dx ′
)

. (13)

Matching it with (12) relates the constants of the solution C5 = iC3.

3.1.6. Solution near the resonant surface x = xA. As x → xA we have k2
x ≈ −k2

y .
We linearize 	2 ≈ k2

zA
2(xA)[(x − xA)/aA − 2iγA/kzA(xA)] close to x = xA, where

aA = (∂ ln(A2)/∂x)−1
x=xA

is the characteristic scale of variation of A(x), γA is the formally
introduced decrement of the Alfven waves (ω → ω − iγA). We have the equation

∂

∂ξA

(ξA − iεA)
∂ζ

∂ξA

− (ξA − iεA)ζ = 0, (14)

where ξA = ky(x − xA), εA = kyaAγA/kzA(xA) � 1. The solution of (14) matched with
(13) is

ζ = C6K0(−ξA + iεA), (15)

where K0(z) is the modified Bessel function. When x → xA we have

ζ = −C6 ln (−ξA + iεA).

Matching (15) with solution (13) gives a relation of the constants C6 =
iC5eψ2

√
2ky/πρ0Ak2

zA
2(xA) where ψ2 = ∫ xA

x01
|kx | dx, and the subscript A denotes the

parameters at x = xA.

8
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3.1.7. The WKB solution in the opacity regions xA < x < x02. This has the form

ζ = C7

√
|kx |
ρ0	2

exp

(∫ x

x02

|kx | dx ′
)

. (16)

Matching it with (15) gives C7 = −C5eψ2 .

3.1.8. Solution in the neighbourhood of turning point x = x02. For the function u =
(1/k2

x)∂ζ/∂x we have an equation similar to (11) where it is necessary to replace ξ1 by −ξ2

(where ξ2 = (x − x02)/a2, a−3
2 = (∂k2

x/∂x)x=x02 ). Its solution matched with (16) is

u = C8Ai(−ξ2), (17)

where C8 = 2C7

√
πa2/ρ02	

2
2.

3.1.9. WKB solution in the region of transparency x > x02. We represent it in the form

ζ =
√

kx

ρ0	2

[
Ci exp

(
−i

∫ x

x02

kx dx ′
)

+ Cr exp

(
i
∫ x

x02

kx dx ′
)]

, (18)

where Ci is the amplitude of the incident magnetosonic wave and Cr is the amplitude of the
reflected magnetosonic wave. Matching (18) with (17) gives Cr = −Ci = −2C7. Note that
in the orders of WKB approximation in question the corrections related to absorption of the
oscillation energy near the resonant surfaces are not taken into account, therefore the amplitude
of the incident wave is equal to the amplitude of the reflected wave. As we will see in the
following section, if the characteristic value of the wave vector is such that ky; kz ∼ 1, this
approximation becomes too rough and the field of MHD oscillations can only be computed
correctly by numerical methods.

3.2. The local decrement of SMS waves

Let us consider a homogeneous plasma the parameters of which are equal to the parameters of
the transition layer under consideration at the point of magnetosonic resonance x = xS . The
dispersion equation for low-frequency oscillations of plasma with a Maxwellian distribution
of particles over velocities (see [18]) is

1 +
∑
α=i,e

ω2
pα

k2v2
α

[
1 + i

√
πzα

0 exα

∞∑
n=−∞

In(xα)w(zα
n)

]
= 0, (19)

where summation is with respect to the kind of the particles (the α index denotes the ions and
electrons of plasma) and to the cyclotron harmonics (the n index). The notation here are k is
the wave vector module, xα = k2

⊥ρ2
α , ρα = vα/ωα is the Larmor radius, ωα = eB0/mαc is the

cyclotron frequency, ωpα =
√

4πnαe2/mα is the plasma frequency and vα = √
Tα/mα is the

thermal velocity of particles of the α kind, zα
n = (ω − nωα)/

√
2kzvα . The modified Bessel

function In(xα) with small values of the argument (we will assume the condition |k⊥ρα| << 1
to be satisfied) is approximately represented as In(xα) ≈ (xα/2)n/n!. Function w(z) is the
probability integral having the following asymptotic representations (see [23]):

w(z) = e−z2

(
1 +

2i√
π

∫ z

0
et2

dt

)
≈

{
1 − z2 + 2iz/

√
π, |z| � 1,

exp(−z2) + i/
√

πz, |z| � 1.
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Figure 2. Ratio of the decrement of SMS oscillations γ̄s ≡ Im ω to their frequency Re ω versus
the plasma nonisothermality parameter (log Te/Ti).

In the known extreme case (see [18]) vi � |ω/kz| � ve, it is possible to confine ourselves to
the zero harmonics in the sum with respect to n in (19) and write down the dispersion equation
approximately as

ω2
pi

k2

(
1

v2
s

(1 + i
√

πz0
e) − k2

z

ω2

)
≈ 0,

where ω2
pi/v

2
s = ω2

pe/v
2
e , vs = √

Te/mi. In the zero-order perturbation theory the solution of
this equation gives, for the extreme case Te � Ti, the dispersion equation for SMS waves:
ω2 = k2

z v
2
s . Taking into account the next order of the perturbation theory, we obtain the

dispersion equation including the oscillation energy absorption

ω2 = k2
z v

2
s

(
1 − i

√
πme

2mi

)
.

In this extreme case (Te/Ti → ∞) the value of interest is ε̄s = γ̄s/Re(ω) ≡ ε̄s∞ =
−√

πme/2mi/2 ≈ −0.015. The total solution of (19) calculated numerically in the range
10−2 < Te/Ti < 102 is presented in figure 2. The calculated curve ε̄s(Te/Ti) has a universal
form in a wide enough range of variation of the plasma parameters (1 nT � B0 � 10 T;
1 km s−1 � A � 104 km s−1; 10−2 � β � 1).

It is necessary, however, to note that unlike the Alfven oscillations, the damping decrement
of SMS oscillations for Te/Ti � 1 is rather large (|ε̄s | ∼ 1). Therefore the regularizing factor
εs in the denominator of (5), should be localized near x = xS on such a scale where the
oscillations in question can be treated as SMS waves. Obviously, this scale is specified by the
size of the transparency region for the SMS waves s = xS − x01. If the linear expansion
for the Alfven speed of the form A2(x) ≈ A2

S[1 − (x − xS)/as] is applicable near xS, x01, we
have s ≈ k2

z asβ
∗/[(k2

z + k2
y)(1 + β∗)2 − 2k2

zβ
∗]. For small magnitudes β∗ � 1 this scale

10
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s ≈ asβ
∗k2

z /(k
2
z + k2

y) is much smaller than the scale as = (∂ ln(A2(x))/∂x)−1
x=xS

, and when
β∗ ∼ 1 they are comparable. To localize the decrement of SMS oscillations near x = xS we
will make a substitution ω → ω − iγs in the denominator of (5), where the model expression

γs = −γ̄s exp[−(x − xS)
2/2

s ] (20)

will be chosen for the decrement γs , or, similarly, εs = −ε̄s exp(−(x − xS)
2/2

s ) used in
the subsequent numerical calculations. Obviously, such an approach cannot be used for the
case of SMS waves incident on the transition layer. These waves will decay strongly in their
entire region of existence. This problem requires a special statement for being solved, which
is beyond the scope of this research.

4. Numerical calculation results and their discussion

Let us describe the Alfven speed profile A(x) as a function of the form

A(x) = 1

2

[
A− + A+ + (A− − A+) tanh

( x



)]
, (21)

where A± is the Alfven speed as x → ±∞,  is the typical thickness of the transition layer. In
the chosen model of the Alfven speed A+ = 1 and  = 1 (see figure 1). The ratio A−/A+ = 30
is chosen large enough for both types—Alfven and SMS waves—to be able to exist in such
a system of resonant surfaces under a considerable spread of the plasma temperature values
(from β∗ = 0.01 to β∗ ∼ 1).

In numerical calculations below, the x coordinate is measured in units of thickness of
the transition layer . Accordingly, the values of the wave vector components are measured
in units of 2π/. The magnetic field is supposed to be homogeneous, B0 = const, which
according to (2) means β = 8πP0/B

2
0 = const. The values of frequency ω and the wave vector

parallel component kz were chosen such that the resonant surfaces for the Alfven and SMS
waves exist simultaneously in the system, in accordance with (2), and the transparency region
for the FMS exists when x → ∞: A+ < ω/kz < Cs(−∞). In the following calculations
the value ω/kz = A(xA) = 2.5A+ is fixed, which means an invariable position of the Alfven
resonant point xA.

The structure of the derivative ∂ζ/∂x for β∗ = 0.5 and rather small values of the Alfven
and SMS wave absorption coefficients εA = 0.01, εs = 0.01 is presented in figure 3. The
resonant structure of oscillations near the resonant surfaces x = xA and x = xS is well
pronounced. Decomposition of the oscillation field into the incident and reflected waves in the
WKB approximation, in accordance with (18), is also presented in the region x > x02. Note
that the amplitude of the incident and reflected waves in this calculation differs noticeably, due
to absorption of the oscillation energy near the resonant surfaces. The oscillation amplitude is
normalized to the amplitude of the incident wave as x → ∞.

The distribution of the magnetic field components of oscillations having an average unit
amplitude when x → ∞ are given in figure 4. The same values of the calculated parameters
are used here as in figure 3. The main component of the wave magnetic field on the resonant
surface for Alfven waves x = xA is By , and on the resonant surface for SMS waves x = xS

is Bz. Similar relations are also valid for the velocity field components. Thus, the resonant
SMS oscillations are often referred to as longitudinal (relative to magnetic field direction
B0), the resonant Alfven oscillations as azimuthal (or toroidal). This terminology has arisen
from axisymmetric model investigations where the y coordinate corresponds to the azimuthal
coordinate (for example to the azimuthal angle).

A distinctive feature of resonant Alfven oscillations is the change of the hodograph rotation
direction of the transverse magnetic field vector B⊥ = (By, Bx) as we pass through the resonant

11
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Figure 3. Numerical solution of equation (4) (bold line) and its decomposition into the incident
(curve 1) and reflected (curve 2) waves in the WKB approximation (18) when x > x02.
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Figure 4. Distribution of magnetic field components of MHD oscillations B = (Bx, By, Bz)

across the transition layer; corresponds to the solution shown in figure 3.

surface. It follows from the sign change of ∂ζ/∂x. In a case with small decrements γA, γs � ω

this rule is valid when we pass through each resonant surface x = xA and x = xS . We will
look, however, at what happens when decrements γA and γs are not too small. Figure 5
demonstrates the distribution of ∂ζ/∂x, calculated for εA = γA/ω = 0.1 and three values of

12
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Figure 5. Rotation of the polarization hodograph of resonant MHD oscillations in the
neighbourhood of resonant surfaces xA and xS for different dissipation levels in the Alfven
(εA = 0.1) and SMS oscillations. Numbers 1, 2 and 3 correspond to different dissipation rates of
the SMS oscillations: 1—|ε̄s | = 0.01, 2—|ε̄s | = 0.1, 3—|ε̄s | = 1.

εs = γs/ω = 0.01, 0.1, 1. Here the behaviour of the hodographs is conventionally presented
in the plane (By, Bx). For small εs = 0.01 (Te/Ti � 1) the behaviour of the hodograph is
as expected. When εs increases to 0.1 (Te ∼ Ti) the points where the hodograph rotation
direction changes shift away from the resonant surfaces about as far as the distance between
them. With εs increasing further to 1 (Te/Ti ≈ 0.1) the hodograph rotation direction does not
change at all. This example demonstrates that the presence of strongly damped resonant SMS
oscillations in the system can change the behaviour of the field components essentially, even
in the neighbourhood of the resonant surface for the Alfven waves.

Let us consider the dependence of the absorption coefficient for the FMS waves incident
on the transition layer, defined as

D = 1 − C2
r

C2
i

,

on the characteristic values of the wave vector components ky, kz, and the β∗ and εs parameters
(or, which is the same, on the ratio Te/Ti).

Figure 6 displays the distribution of D(λ), where λ = ky[2/(k
2
z + k2

y)]
1/3 is a

dimensionless parameter, 2 = |∂ ln(A2)/∂x|x=x02 is the characteristic scale of variation of
A2(x) at the turning point x02. The Alfven wave dissipation was chosen to be extremely small
(εA = 10−6) in these calculations so that coefficient D would not depend on its magnitude.
Grey colour represents the distribution D(λ) in a cold plasma for kz = 1, as well as for
kz → ∞. The last case is the maximum extreme case for a cold plasma. All other
distributions D(λ) at finite magnitudes of parameter kz in models with a smooth transition
layer in a cold plasma lie below this curve.

Also presented is the distribution of D(λ) for plasma with finite β∗ for kz = 1 in the
presence of two resonant surfaces—for the Alfven and SMS waves—in the system. For each of

13
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Figure 6. Energy absorption coefficient of FMS wave incident on the transition layer (21) against
dimensionless parameter λ = ky [2/(k

2
z + k2

y)]1/3. Curves D(λ) corresponding to a ‘cold’ plasma
model (β∗ = 0) for kz = ∞ and kz = 1 are labelled as 1 and 1′, respectively. For plasma
configurations with β∗ = 0.01, 0.1, 1 curves D(λ) are constructed for kz = 1 and two rates of
SMS oscillation damping: numbers 2, 3, 4 (for εs = 0.01) and 2′, 3′, 4′ (for εs = 1).

β∗ = 0.01, 0.3, 1 two curves D(λ) corresponding to two limiting levels of the SMS oscillation
dissipation studied in this paper (εs = 10−2 and εs = 1) are calculated.

The main difference between the oscillation energy absorption in plasma with finite β∗

and in cold plasmas is that D(0) is nonzero. It is explained by the onset of the dissipation
mechanism of resonant SMS oscillations, which, unlike the Alfven, do not disappear when
ky = 0. The efficiency of this dissipation grows with β∗, which may be explained as follows.
The higher the β∗, the further the turning point x01 is located from the resonant surface xS , and
the closer to the Alfven resonant surface xA. As a result the amplitude and, hence, the energy of
the oscillations which have passed through the opacity region x01 < x < xA increases. As we
saw in the previous section, all this energy is absorbed in the neighbourhood of the resonant
surface xS , which causes the absorption coefficient D to increase. In the above examples
the value of D also increases when the dissipation level εs increases, which is explained by
expansion of the region of existence of resonant SMS oscillations, where they are absorbed.

Figure 7 shows a similar calculation for plasma with finite β∗ = 0.3, 1 and different values
of parameter kz = 0.1, 1, 3.5. The upper and lower magnitude of the last parameter are close
to the extremes for which both resonant surfaces xA and xS are present in the system. The
value of D(0) increases considerably with kz. Notably, the maximum of D can considerably
exceed its limit in a cold plasma. This conclusion may be essential for problems related to
plasma heating in the solar corona and nuclear fusion devices. The presence of a resonant
surface for SMS waves leads to total absorption of the oscillation energy that reaches it, and
the absorption maximum shifts towards small values of the azimuthal wave vector component
ky and, on the contrary, large values of the parallel component kz. It is interesting to note that
for β∗ = 1 and kz = 3.5, unlike all the other cases we considered, the value of D is greater
for a smaller value of SMS oscillation dissipation (for εs = 0.01, instead of εs = 1). This
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Figure 7. Absorption coefficient D as a function of λ for plasma configurations with β∗ = 0.3 for
kz = 0.1, 1, 3.5 (curves 1, 2, 3 for εs = 0.01 and curves 1′, 2′, 3′ for εs = 1) and with β∗ = 1
for kz = 0.1, 1, 3.5 (curves 4, 5, 6 for εs = 0.01 and curves 4′, 5′, 6′ for εs = 1).

may be explained by the fact that the effect of the earlier-introduced localization of decrement
γs comes into play (see (20)), restricting the integral growth of absorbed energy due to the
resonant region expansion.

4.1. Possible application fields

Let us discuss briefly the possible application fields for the theory developed in this paper.
Since the resonant interaction of MHD oscillations considered herein is characterized by very
high values of the dissipation coefficients, the most obvious applications are those related to
plasma heating.

The problem of coronal heating by MHD waves excited at the photospheric level has
been discussed widely enough [24]. MHD waves propagating from the photosphere to the
solar corona are observable in reality [25]. The main problem relating to coronal heating by
MHD waves consists of determining an effective energy dissipation mechanism for these
oscillations. For this purpose, the mechanisms of viscous interaction or finite electrical
resistance are generally used [26]. The characteristic scales of the dissipation region may be
considerable, while heating power is usually insufficient to explain the observable temperature
in the corona (∼2 × 106 K). Plasma flowing out of the photosphere is heated most intensely
in the narrow enough (∼103 km) transition layer [27], the same layer where a strong plasma
density (hence Alfven speed) gradient takes place. This means that the density of resonant
surfaces, where such a broadband source of MHD waves as the photosphere excites localized
resonant Alfven and SMS oscillations, is extremely high in the transition layer. Almost all
energy of these oscillations is spent on plasma heating, which can explain the strong gradient of
plasma temperature in the transition layer. Such a mechanism of resonant heating of the corona
by MHD waves was suggested in [15]. However, since photospheric plasma is collisional, the
ion and electron velocity distributions are close to the Boltzmann distribution with Te ∼ Ti.
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This means that it is necessary to use a dissipation mechanism linked to collisionless Landau
damping on plasma ions, as is done in this paper, in order to correctly describe the resonant
SMS waves. Detailed calculation is required of the thermal balance in a specific plasma
configuration corresponding to the corona. It should be kept in mind that when the Sun
gravitation is included, a cutoff frequency appears below which the SMS waves have reflexion
surfaces that are below the transition layer, which prevents these waves from reaching the
corona [25]. There are no such limitations for FMS waves capable of exciting the resonant
Alfven and SMS oscillations in the transition layer.

The resonant mechanism of plasma heating may be of use in research involving plasma
heating in laboratory appliances. Such a mechanism, related to resonant Alfven waves, was
suggested in [8]. It is peculiar in that it appears only for oscillations with ky = 0. For an
axisymmetric plasma tube this means that excitation must necessarily involve the asymmetric
mode of oscillations. Disturbing a plasma configuration by such modes may result in lost
stability. In the above problem, with two resonant surfaces, or with one resonant surface
for SMS oscillations only, oscillation absorption in the symmetric mode (ky = 0) is most
effective for β∗ ∼ 1. Moreover, total energy absorption of oscillations by plasma ions may be
expected for certain values of frequencies and parallel wave numbers, when SMS oscillations
can propagate freely up to the resonant surface.

As to the Earth’s magnetosphere, the mechanism of plasma heating discussed here may
be invoked for explaining the strong difference between the plasma temperature in the internal
(∼103 K) and external (∼105 K) magnetosphere [28]. The resonant surfaces for Alfven and
SMS waves are concentrated in the external magnetosphere adjoining the magnetopause [16].
The mechanism of magnetosonic resonance may be employed to try to solve yet another
problem. Even though the magnetospheric plasma is clearly separated from the solar wind
plasma by the magnetopause, energy and impulsive moment transfer is known to exist from
the solar wind into the magnetosphere. Plasma moves inside the magnetosphere, forming two
convective cells in geomagnetic tail lobes [28]. The mechanism of ‘quasi-viscous coupling’
is generally used for explaining this motion, understood as momentum transfer from the solar
wind into the magnetosphere. The mechanism of this coupling is not quite clear. It is known,
however, that there is a rather intensive flux of FMS waves penetrating from the solar wind into
the magnetosphere [29]. The problem is in ‘utilizing’, at least partially, the energy and impulse
transferred by these waves. For each FMS wave there is a turning surface in the magnetosphere.
If the FMS wave propagating in the magnetosphere interacts weakly with the magnetospheric
plasma, the wave energy is reflected back into the solar wind almost completely. Fortunately
plasma in the external magnetosphere is hot enough (β∗ ∼ 1) and strongly nonisothermal
(Ti � Te). As we have seen from the results of this work, this creates conditions for the
existence of strongly dissipative resonant SMS oscillations in the magnetosphere. This allows
one to hope that a considerable portion of the energy and impulse of magnetosonic waves
penetrating into the magnetosphere is transferred to background plasma ions, providing a high
temperature in the external magnetosphere and magnetospheric convection.

5. Conclusion

Let us formulate the main results of this paper.

1. The problem about the incidence and reflexion of magnetosonic waves from the plasma
transition layer is solved. A qualitative analysis of the solution obtained by linearizing
the coefficients in equation (4) near its singular points and turning points, and by the
WKB method between these points has been carried out. To regularize the singularities
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near the resonant surfaces, effective decrements are introduced for the Alfven and SMS
waves as imaginary additives to the oscillation frequency. The dissipation of the Alfven
oscillations is assumed to be small enough for the value of the oscillation energy absorbed
in the neighbourhood of the Alfven resonant surface not to depend on the decrement. In
contrast, the decrement of the SMS oscillations can be rather large. Its value is determined
by the ratio of the plasma ion to electron temperatures near the resonant surface for
the SMS.

2. It is shown that dissipation of the oscillation energy due to Landau’s collisionless
dissipation increases considerably when two types of resonant surfaces—for the Alfven
and SMS waves—are present in the system under consideration. The oscillations reaching
the resonant surface for SMS waves are absorbed completely in its neighbourhood, leading
to increased plasma heating.

3. Numerical integration of equation (4) was carried out for the oscillations whose wavelength
in the (y, z) plane is comparable to the thickness of the transition layer  and for which the
WKB approximation is inapplicable. It was shown that, if the dissipation of oscillations
near the resonant surfaces is not too small, the presence in the system of strongly decaying
resonant SMS oscillations changes the wave field substantially. When εs = γs/ω ∼ 1
this influence extends up to the resonant surface for the Alfven waves. Specifically, the
hodograph rotation direction is not reversed for monochromatic oscillations when we pass
through the resonant surface, the phenomenon which is generally employed to identify
the presence of such a surface in a specific plasma configuration.

4. We have studied the influence of various wave field and plasma layer parameters on the
incident FMS wave absorption. It was shown that, with increasing β∗, the value of the
absorbed oscillation energy increases considerably in the regions with small azimuthal
wave numbers (ky → 0). This is caused by a growing amplitude of oscillations reaching
the resonant surface for SMS waves, in the neighbourhood of which they are completely
absorbed. The higher the magnitude of the wave vector parallel component kz, the higher
the maximum value of the absorption coefficient D. The maximum energy absorption of
oscillations impinging on the transition layer can considerably exceed that which takes
place in a plasma configuration with a single resonant surface—for the Alfven waves.

5. It is shown that when the plasma layer and incident magnetosonic wave parameters are
such that the transparency region for SMS waves extends up to ∞ the incident wave
energy is totally absorbed in the neighbourhood of the resonant surface. However, the
origin of SMS waves in this case must be at a finite distance from the transition layer
since they dissipate strongly in the entire region of their existence. The amplitude of
the SMS oscillations reaching the resonance surface should be sufficient for the resonant
oscillations to stand out against the background.
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