
Penetration to the Earth’s surface of standing Alfven
waves excited by external currents in the ionosphere

A.S. Leonovich and V.A. Mazur

Institute of Solar-Terrestrial Physics (ISTP), Russian Academy of Science, Siberian
Branch,

Irkutsk 33, P.O.Box 4026, 664033, Russia

Manuscript submitted to

Annales Geophysicae,V. 14, No 5, p. 545-556, 1996

Received: April 12, 1995/Revised: October 15, 1995/Accepted:



Annales Geophysicae, V. 14, No 5, p. 545-556, 1996 1

Abstract

The problem of boundary conditions for monochromatic Alfven waves, excited in the mag-

netosphere by external currents in the ionospheric E-layer, is solved analytically. Waves with

large azimuthal wave numbersm À 1 are considered. In our calculations, we used a model for

the horizontally-homogeneous ionosphere with an arbitrary inclination of geomagnetic field

lines and a realistic height distribution of Alfven velocity and conductivity tensor components.

A relationship of such Alfven waves on the upper ionospheric boundary with electromagnetic

oscillations on the ground was detected, and the spatial structure of these oscillations deter-

mined.
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1 Introduction

While penetrating from the magnetosphere to the ground through the ionosphere and atmosphere, the elec-

tromagnetic field of Alfven waves is subjected to substantial changes. A significant number of theoretical

and experimental publications have addressed the problem of ascertaining a relationship between the field of

these waves and electromagnetic oscillations on the ground. In this paper, we will confine ourselves to the-

oretical aspects of this problem. Therefore, we will not concern ourselves with questions relating to in-situ

observations of geomagnetic pulsations. We will briefly run through publications devoted to a theoretical

treatment of the penetration of the Alfven waves field from the magnetosphere to the ground. Ionospheric

effects in the Alfven wave penetration process in different frequency ranges manifests itself differently. A

central element of this process is the fact that they act to drive currents within the ionospheric conducting

layer. These currents are associated with magnetosound waves which make the main contribution to pulsa-

tions induced on the ground. For the highest-frequency pulsations out of these (f ∼ 10−1 − 1 Hz), the

ionospheric F2-layer includes a region where magnetosonic waves can propagate through waveguide along

the ionosphere. This waveguide and the pulsations induced on the ground were taken up inGreifinger and

Greifinger(1968),Greifinger(1972),Rudenko et al.(1985).

In the lower-frequency range (f ∼ 10−2 − 10−1Hz) in the ionospheric E-layer, conditions for exciting

a sort of ionospheric whistler are created. This phenomenon was for the first time investigated inSorokin

and Fedorovich(1082) and in greater detail inMazur(1987). In the same frequency range in the upper

ionosphere (F2-layer and higher), conditions for partial suppression of the Alfven waves can be produced

in the direction along geomagnetic field linesBelyaev et al.(1990).

The simplest situation applies for the lowest- frequency Alfven oscillations of the magnetosphere (f ∼
10−3 − 10−2Hz). The wavelength of such oscillations along geomagnetic field lines is much larger than

all typical scales of the ionosphere in that direction. In this connection, the ionosphere can be regarded

mathematically as a thin layer. This makes it possible to advance rather greatly in the analytical study of the

penetration process of the Alfven waves from the magnetosphere to the ground. One of publications that

pioneered the construction of such a theory isHughes(1974) which addresses the issue of the penetration

to the ground of waves withk⊥ ¿ k‖, wherek‖ andk⊥ are, respectively, the field-aligned (along the

geomagnetic field) and transverse components of the wave vector of the Alfven wave in the magnetosphere

(which was taken to be homogeneous).A further extension of the theory to the casek⊥ À k‖ was undertaken

in Hughes and Southwood(1976a),Hughes and Southwood(1976b). In this case the authors considered the

case when the geomagnetic field is normal to the terrestrial surface, unlikeHughes(1974) where it was

thought of as being oblique.

Subsequently, the theory was further developed by workers who considered the propagation of Alfven

waves through the horizontally- inhomogeneous ionosphere. The inhomogeneous ionosphere was modelled

in Maltsev et al.(1984),Ellis and Southwood(1983),Polyakov(1988) as a plane on which lies a bounded

region, whose conductivity differs from the conductivity of the remainder of the ionosphere. Also, the

conductivity both inside and outside that region was considered homogeneous. An alternative type of
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inhomogeneous ionosphere was examined inGlassmeier(1983),Glassmeier(1984), with its conductivity

changing continuously. It was shown that in the case of the penetration from the magnetosphere to the

ground the rotation of the polarization ellipse of the electromagnetic oscillation field can differ greatly from

π/4, as it followed from the horizontally-homogeneous ionospheric model.

A further step forward in the study of the penetration of the Alfven oscillation field to the ground through

the horizontally- homogeneous ionosphere was made inLeonovich and Mazur(1991) (hereinafter referred

to as Paper 1). Paper 1 addressed the passage of the waves withk⊥ À k‖ in the case of an arbitrary

inclination of the geomagnetic field lines to the terrestrial surface and an arbitrary height distribution of the

Alfven velocity and the conductivity tensor components. On the around, using harmonics with different

kt (t being an arbitrary direction in the horizontal plane) this made it possible to compose analytically a

complete packet of oscillations, corresponding to the field of a monochromatic Alfven wave on the upper

boundary of the ionosphere.

Almost in all of the cited papers, the ionosphere was treated as a region that distorts the field of Alfven

waves incident from the magnetosphere. Also, the various physical processes occurring both inside and out-

side the magnetosphere, are regarded as sources for the waves (see reviewsYumoto(1988),Pilipenko(1994)).

The sole exception is a paperMaltsev et al.(1976) (see also a monographLyatsky and Maltsev(1983)) where

the source for Alfven waves is taken to be a modulation of ionospheric conductivity in the presence of an

external electric field. And use was made of a model of an optically-thin ionosphere with a vertical geo-

magnetic field.

In a paperLeonovich and Mazur(1993) (hereinafter referred to as Paper 2), a theory of transversally-

small-scale standing Alfven waves (in the homogeneous magnetosphere, the analog to them is provided

by the casek⊥ À k‖) was constructed for a model of the axisymmetric magnetosphere. It was assumed

that the source for these waves is provided by external currents in the ionosphere that are driven by the

neutral component in motion. These motions can be associated with, for example, internal gravity and

acoustic-gravity waves or with neutral winds in the lower ionosphere.

Paper 2 employed, without the derivation, a boundary condition for Alfven waves on the upper boundary

of the ionosphere, including external currents in the ionosphere. In this paper, this boundary condition

is obtained analytically by generalizing the findings reported in Paper 1 to the case of the existence of

external currents in the ionosphere. In addition, here we have investigated the spatial structure of the field

of monochromatic electromagnetic oscillations in the ionosphere and atmosphere which are associated with

Alfven waves in the magnetosphere driven by these external currents. The same model as used in Paper

1 was used in modelling the ionosphere. This paper is organized as follows. Section 2 presents a model

of the medium, the coordinate systems used and the input equations. Section 3 gives a description of

the oscillation field in isotropically- conducting layers: the Earth and the atmosphere. In Section 4, we

describe the oscillation field in anisotropically-conducting layers: the ionosphere and the magnetosphere.

In Section 5, we will obtain boundary conditions on the upper boundary of the ionosphere for Alfven waves

that are driven in the magnetosphere by external currents in the ionosphere. In Section 6, for the case of
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the terrestrial surface, Fourier-harmonics with different values ofkt will be used to compose analytically

a packet of oscillations, corresponding to the field of a standing Alfven wave withm À 1 on the upper

boundary of the ionosphere. In Section 7, we discuss the results obtained from general formulas. And the

main results of this study are formulated in the Conclusions.

2 A model of the medium, and input equations

The height distribution of the Alfven velocity and the conductivity tensor components in our chosen model

of the medium are described in detail in Paper 1. Fig.1b shows their typical height profiles. Note that the

upper boundary of the ionosphere, as shown in Paper 1, should be considered to be represented by the height

(1.5÷ 2) · 103km where the height behavior of the Alfven velocity varies from a rapid growth in the upper

ionosphere to a slow decline in the magnetosphere. Note that such a choice of the upper boundary of the

ionosphere is justified only for harmonics of standing Alfven waves withN ∼ 1.

Electromagnetic monochromatic oscillations with frequencyω in the presence of external currents in the

medium obey Maxwell’s equations of the form

curl E = ik0B,

(1)

curl B = −ik0E +
4π

c

[
j + jext

]
,

wherek0 = ω/c, E andB are, respectively, the disturbed electric and the magnetic fields; andjext is exter-

nal current unassociated with oscillations. For the low-frequency oscillations of our interest, conductivity

current is representable as

j = σ‖E‖ + σ⊥E⊥ + σH

[
B0

B0
E⊥

]
,

whereB0 is the geomagnetic field vector;E‖ andE⊥ are, respectively, the longitudinal (alongB0) and the

transverse components of a disturbed electric field; andσ‖, σ⊥ andσH are, respectively, the longitudinal,

transverse and Hall conductivities of the medium. Note that currentj includes a frequency-dependent

displacement current.

For solving the system of equations (1), we choose the following coordinate systems. In the ground

region, when investigating the electromagnetic field of our interest, the terrestrial surface can to the desired

accuracy be considered plane. Let us introduce a Cartesian coordinate system(x, y, z), in which we let the

x axis be directed along the magnetic meridian from south- to northward, they axis - along the parallel from

west- to eastward, and the axisz - upward along the normal toward the terrestrial surface (see Fig. 1a). The

components of a perturbed electromagnetic field are functions of coordinates and time (say, the component

Bx = Bx(x, y, z, t)). Presuming the medium to be stationary these components are representable as a

Fourier-series expansion in terms of harmonics with a certain frequencyω :

Bx(x, y, z, t) =

∞∫

−∞
B̃x(x, y, z, ω) exp(−iωt) dω.



Annales Geophysicae, V. 14, No 5, p. 545-556, 1996 5

Taking into account the horizontal homogeneity of the medium it is possible to carry out a similar Fourier-

series expansion in terms of spatial harmonics with specified values oz the components of the wave vector

kt = (kx, ky):

B̃x(x, y, z, ω) = (2)
∞∫

−∞
dkx

∞∫

−∞
dky B̄x(kx, ky, z, ω) exp(ikxx + ikyy).

It is these Fourier-harmonics which we will be using in subsequent calculations; for brevity sake, we will

not write out their dependence on the argumentskx, ky andω.

When solving equations (1) in isotropic media, namely in the Earth and in the atmosphere, we take

advantage of the coordinate system(t, b, z) rotated with respect to the system(x, y, z) about thez axis.

In this case we let thet axis be directed along the horizontal wave vectorkt, and theb axis in the same

horizontal plane normal to thet axis. The relationships

B̄t = (kx/kt)B̄x + (ky/kt)B̄y,

B̄b = −(ky/kt)B̄x + (kx/kt)B̄y

occur between the horizontal components of the wave’s perturbed magnetic field vector, as well as similar

relationships for the components of a perturbed electric field.

For anisotropic media (the ionosphere and the magnetosphere), use is made of the coordinate system

(n, y, l) rotated with respect to the system(x, y, z) about they axis by an angleχ so that thel axis is

directed alongB0 (see Fig.1a). Then axis lies in the meridional plane and is directed normal to the axesl

andy. In this coordinate system

Bn = Bx cos χ + Bz sin χ, Bl = −Bx sin χ + Bz cosχ

and similarly for the components of the electric field.

The difference of the problem to be solved in this paper from that solved in Paper 1 is the presence

of external currents in the ionospheric conducting layer. In this connection, where such differences are

unimportant, we will be making use of the Paper 1 results.

3 The electromagnetic oscillation field in the Earth and in the atmosphere

Since in isotropic media (the Earth any the atmosphere), with our statement of the problem, no external

currents are present, we employ the solutions obtained in Paper 1. Within the Earth’s thickness, solutions

for the components of a perturbed electromagnetic field have the form

Ēb(z) = Ēb(0) exp(kgz), B̄b(z) = B̄b(0) exp(kgz),

where the pointz = 0 corresponds to the Earth-atmosphere boundary, whilekg =
√

k2
t − ik0κg, κg =

4πσg/c andσg is the Earth’s conductivity. The other components of the electromagnetic field in isotropic
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layers are expressable as

Ēt = − 1
κ− ik0

∂B̄b

∂z
, Ēz = i

kt

κ− ik0
B̄b,

B̄t =
i

k0

∂Ēb

∂z
, B̄z =

kt

k0
Ēb. (3)

For solutions in the Earth, here one should putκ = κg. For reasons of the Earth’s high conductivity

(k0kg À k2
t À k2

0), for the sake of simplicity in subsequent calculations we will be using the limitκ →∞
which yieldsEt(0) = Eb(0) = 0. Results for finite values ofκg were reported in Paper 1. In this case it is

supposed that within the Earth there are no external telluric currents capable generate oscillations with an

amplitude comparable with the oscillation amplitude excited by external currents in the ionosphere.

Atmospheric conductivityσa is much less than the Earth’s conductivityσg; hence throughout the atmo-

spheric thickness(0 < z < H) the inequalityk2
t À k0κa holds, whereκa = 4πσa/c. As a result, the

solutions for the componentsEt andEb are of the form

B̄t(z) = Bt(0) cosh(ktz), Ēb(z) = −i
k0

kt
Bt(0) sinh(ktz).

Thus, whenz = H, we have

B̄t(H) = i
kt

k0
Eb(H) coth(ktH). (4)

This equation is used as a boundary condition for solving the problem in the ionosphere. Expressions

resulting for the field componentsEt andBb are more unwieldy (see Paper 1). Since they do not play any

special role in the penetration of the oscillation field from the ionosphere to the Earth, we will not write

them out. Note, however, that to an accuracy of our interest, whenz = H, it may be assumed that

B̄b(H) = 0.

This equation is used as a second boundary condition for solving the problem in the ionosphere.

4 The electromagnetic oscillation field in the ionosphere

The system of equations (1) in the ionosphere is written in the simplest form in the coordinate system

(n, y, l). If we introduce a four-component column-vector

α =




Ēn

Ēy

B̄y

B̄n




,

then the system of equations (1) is representable as

−i
∂α

∂z
= Q̂α + q̂α + ig. (5)
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Here the matrixQ̂ is composed of the components of a horizontal wave vectorkt = (kx, ky), and the matrix

q̂ consists of the componentsκP,H = 4πσP,H/c. These matrices have the same form as in Paper1, and the

components of the matrix̂Q are much larger than those of the matrixq̂. The system of equations (5) differs

from that investigated in Paper 1 by the presence of a column-vector of extraneous currents

g =
4π

c cos χ




0

0

jext
n

−jext
y




.

As will be evident from subsequent calculations, the components of this vector are much smaller compared

to the vectorQ̂ ·α. It is therefore possible to seek the solution of the system (5) by the perturbation method.

To a zero-order approximation, we have a system of equations

−i
∂α(0)

∂z
= Q̂α(0) (6)

whose solutions have the form

α(0)(z) = ψ exp(ikzz). (7)

Substituting (7) into (6) gives a system of algebraic equations forkz, whose solutions have the form

k(1)
z = k(2)

z = kx tan χ ≡ kzA, k(3)
z = ikt ≡ kzF ,

k(4)
z = −ikt ≡ k∗zF .

The rootsk(1)
z andk

(2)
z correspond to the Alfven wave, andk(3)

z andk
(4)
z correspond to the magnetosonic

wave with frequencyω = 0. In calculations to follow, it will also be necessary to have transverse compo-

nents of the wave vector constituents for the Alfven

knA ≡ kx/ cosχ, k⊥A =
√

k2
nA + k2

y

and magnetosonic

knF = kx cos χ + ikt sin χ, k⊥F = kt cosχ + ikx sin χ,

waves.

To each rootk(i)
z (i = 1, 2, 3, 4) there corresponds a columnvector of the coefficientsψi, defined by

equations (6), which relate amplitudes of different components of the electric field in each of the waves.

The complete solution of the system (6) is a an arbitrary combination of linearly-independent vectors

ψi exp(ik(i)
z z). Since in the space of 4-vectors the setψi forms a complete system, the solution of equations

(7) may be sought in the form

α(z) = ψiFi(z) ≡ ψ̂F (z), (8)

whereF (z) is a column-vector of the desired coefficients, and the matrixψ̂ is composed of the column-

vectorsψj (see Paper 1).
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On substituting the solution (8) and multiplying it from the left byψ̂−1, a matrix inverse tôψ we obtain

a system of equations for the coefficientsF (z):

−∂F

∂z
= Λ̂F + P̂ + r. (9)

The expressions for the matricesΛ̂ andP̂ may be found in Paper 1, and the column-vectorr has the form

r =
4πω

c2




−i(jn tan χ)/(k⊥A cosχ)

i(knAjn + kyjy)/(k2
⊥A cosχ)

−(kyjn − knF jy)/(2k⊥F kt)

(kyjn − k∗nF jy)/(2k∗⊥F kt)




.

Because in a zero-order approximationFi(z) satisfy (8), we will seek them in the form

Fi(z) = fi(z) exp(ik(i)
z (z −H)),

where, for the sake of convenience, the phase is reckoned from the boundaryz = H. Equations (9) should

be supplemented with boundary conditions on the lower boundary of the ionosphere(z = H). Boundary

conditions for the functionsfi(z) obtainable from (3) and (4) have the form

f2(H) = 0, (10)

(1 + cot(ktH))f1(H) + (11)

(1− cot(ktH))f4(H) = 0.

In the upper ionosphere and in the magnetosphere, a natural condition is the absence of solutions, whose

amplitude grows whenz →∞. This leads to a boundary condition on the upper boundary of the ionosphere

f4(zA) = 0. (12)

It will become evident from subsequent calculations that the inequality

|f1| À |f2| , |f3| , |f4| .

is satisfied throughout the ionospheric thickness. This makes it possible, in the first order of perturbation

theory, to leave on the right-hand side of equations (10) only the terms proportional tof1. As a result, the

first pair of equations (9) splits off from the other two and has the form

f ′1 = i
k⊥A

cos χ
f2 − (13)

i
k2 tanχ

k⊥A cos χ

(
knA

k⊥A
κP H − ky

k⊥A
κH

)
f1+

4πk0 tan χ

ck⊥A cos χ
jn exp(−ikzA(z −H)),
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f ′2 = − k0

k⊥A cos χ
κP Hf1 − (14)

4πk1

ck2
⊥A cos χ

(knAjn + kyjy) exp(−ikzA(z −H)),

where the prime denotes the derivatived/dz. As will be shown, the functionf1(z) changes little within the

intervalH ≤ z ≤ zA , so we may put

f ≡ f1(z) ≈ f1(H). (15)

Let us introduce the designations

XP,H(z) =
4π

c

∫ z

H

σP,H(z′)dz′,

KP,H ≡ XP,H(H + ∆),

J̄n,y(z) =
4π

c

∫ z

H

j̄n,y(z′) exp(−ikzA(z′ −H))dz′,

Īn,y ≡ J̄n,y(H + ∆),

where∆ is the ionospheric conductive layer thickness.

Upon integrating equation (14) with the boundary condition (10), we obtain

f2(z) = −f
k0

k⊥A cosχ
XP (z)−

k0

k2
⊥A cos χ

(knAJ̄n(z) + kyJ̄y(z)).

In the upper ionosphere(z →∞), we have

f2 = −f
k0

k⊥A cos χ
KN − (16)

k0

k2
⊥A cos χ

(knAĪn + ky Īl).

In order for the condition|f2| ¿ |f1| to be satisfied, it is necessary that each of the terms on the right-hand

side of (16) should be much smaller than|f |. As far as the terms proportional to currents in the ionosphere

are concerned, the condition for their smallness will be formulated in the next Section. For the smallness of

the first term, it is essential that the inequality

k0KP

k⊥A
¿ 1. (17)

is satisfied. It permits the term proportional tof1 to be omitted in equation (13). After that, upon integrating

(13), we obtain

f1(z) = f

[
1− y

k0

cos2 χ

∫ z

H

XP (z′)dz′
]
− (18)

k0 sin χ

k⊥A cos2 χ
J̄n(z).
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As will be evident from the next Section’s results, the last term in this equation is small. Hence, in order for

the condition (15) to be satisfied, it is necessary that

k0KP ∆ ¿ 1. (19)

In Paper 1 it was shown that the conditions (17) and (19) are equivalent to the requirement for the smallness

of the frequency of the oscillations involved,ω , compared to the whistler frequency in the ionosphere

ωP H = c2/4πΣP ∆. It was also shown that for the transverse conductivity to be totally neglected in the

upper ionosphere (as done in the present study), it is necessary that the frequencyω should be much lower

than the eigen-frequency of an ionospheric Alfven cavity

ω

∫ zA

H+∆

dz

A(z)
¿ 1.

With a knowledge of the expression forf1(z), it is easy to integrate the second pair of equations (9), too.

We will not write them here because it turns out that terms related to external currents in the ionosphere

can be totally neglected in them. In this connection, corresponding solutions are fully equivalent to those

obtained in Paper 1. In addition, is follows from Paper 1, in the upper ionosphere only the solutions of

F1(z) andF2(z) are essentially nonzero, and the complete solution of the system (5) has the form

α = ψ1F1 + ψ2F2 =




F1 knA/k⊥A

F1 ky/k⊥A

F2 knA/k0

−F2 ky/k0




. (20)

This solution involves only components related to the Alfven wave in the magnetosphere. The magnetosonic

wave’s electromagnetic field generated in the E-layer, does not penetrate the upper ionosphere because the

ionosphere is an opacity region for it. To an accuracy of our interest, the solutions ofF1(z) andF2(z) are

representable as

F1(z) =
[
f − i

k0(z −H)
cos2 χ

(fKP + Ī⊥)
]
× (21)

exp(ikx(z −H) tan χ),

F2(z) = − k0

k⊥A cosχ

[
(fKP + Ī⊥)

]× (22)

exp(ikx(z −H) tan χ),

where

Ī⊥ =
knAĪn + ky Īy

k⊥A
.
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Using the closure condition for currents divj = 0 we find:

Ī⊥ =
4π

ck⊥A
j∗‖ ,

wherej∗‖ is the field-aligned current density on the upper boundary of the ionospheric conducting layer

(z = H + ∆).

It follows from solutions (20-22) that transverse components of a disturbed magnetic field may be written

as

B̄y(z) = BA
knA

k⊥A
exp(ikx(z −H) tanχ),

(23)

B̄n(z) = −BA
ky

k⊥A
exp(ikx(z −H) tan χ),

where

BA = −fKP + Ī⊥
cos χ

is the Alfven oscillation amplitude in the upper ionosphere. The last equality may be rewritten as

f = −BA cos χ + Ī⊥
KP

. (24)

5 Boundary conditions for magnetospheric Alfven waves on the ionosphere

Using solutions (23) it is possible to obtain boundary conditions for Alfven waves on the upper boundary

of the ionosphere(z = zA). Note that the derivative of the wave’s field components along a field line, once

written in the coordinate system(x, y, z), has the form

∂

∂l
= cos χ

∂

∂z
+ ikx sin χ.

Using for the derivatives with respect toz of equations (13,14), in view of the expressions (16), (18) and

(24), to an accuracy of our interest we obtain

[
∂B̄n,y

∂l
+ i

ω

A2

c

4πΣP

(
B̄n,y cosχ± (25)

4π

c

ky,nA

k2
⊥A

j̄‖ exp(ikx(z −H) tan χ)
)]

z=zA

= 0,

where the upper and lower signs correspond, respectively, to the indicesn andy. Note that terms which

are larger in magnitude than those left in parentheses, are omitted in (25) because they do not describe

any new physical effects but give only a small correction to the frequency of a standing Alfven wave in

the magnetosphere. The terms that are retained, describe the source of Alfven waves (external currents)
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and their dissipation in the ionosphere. Using Maxwell’s equations (1) we now write analogous boundary

conditions for transverse components of the wave’s electric field
[
Ēn,y + i

c2 cosχ

4πωΣP

∂Ēn,y

∂l
− (26)

i
knA,y

k2
⊥A

j̄‖
ΣP

exp(ikx(z −H) tan χ)
]

z=zA

= 0,

By application of the inverse Fourier-transform (2) it is possible in (35) and (22) to switch to boundary

conditions for a monochromatic Alfven wave in the magnetosphere

∂B̃n,y

∂l

∣∣∣∣∣
l=l∗

= i
v∗ω
A2∗

[
B̃n,y ∓ 4π

c
∇y,nJ̃‖

]

l=l∗

, (27)

Ẽn,y

∣∣∣
l=l∗

=

[
−i

v∗
ω

∂Ẽn,y

∂l
+
∇n,yJ̃‖

V

]

l=l∗

. (28)

Here the index∗ stands for quantities taken on the upper boundary of the ionosphere(z = zA), with the

designations

∇y,n ≡ ∂

∂n
,

∂

∂y
; v =

c2 cosχ

4πΣP
; V =

ΣP

cosχ
.

The functionJ̃‖ represents the solution of the equation

4⊥J̃‖ = j̃‖(x− xA, y, zA, ω),

where4⊥ = ∇2
n +∇2

y is the transverse Laplacian operator,xA = (zA −H −∆) tan χ.

Boundary conditions of the form (28) were used in Paper 2 in solving the problem of the spatial structure

of a transversally-small-scale(m À 1) monochromatic Alfven wave in the magnetosphere. Solutions

obtained permit us to write the amplitude of such a pave excited by external currents in the E-layer, on the

upper boundary of the ionosphere

Ba =
2c

ωtAA0

kylN

λP N

J̃∗‖
V

, (29)

whereA0 is a value of the Alfven velocity on the magnetic shells under consideration in the equatorial plane,

andtA is the transit time with the Alfven velocity along a field line between the magnetically-conjugate

ionospheres. In addition, two intrinsic scales are involved in (29):lN - a typical transverse scale of the

ionospheric plasma inhomogeneity, andλP N - a typical transverse Alfven wavelength in the neighborhood

of a resonance magnetic shell where it is generated. Explicit expressions for these parameters may be found

in Paper 2. In regards to order-of-magnitude estimations, we wish to note that

kylN ∼ m,

wherem À 1 is azimuthal wave number,

ωtA ∼ N,



Annales Geophysicae, V. 14, No 5, p. 545-556, 1996 13

whereN is the harmonic number of standing Alfven waves in the magnetosphere (for the fundamental

harmonics of our interest,N ∼ 1), and

λP N ∼ l
1/3
N /k2/3

y .

Substituting (29) into (24) and then into (16) and (18) we find that the terms of these equations that are

proportional to currents, are small if

m2/3

N

c2

A0ΣP
À 1. (30)

For typical values of the parametersA0 ∼ 103km/s andΣP ∼ 10S ∼ 108km/s the condition (30) reduces

to the requirement thatm2/3 À N which is satisfied according to the condition of the problem.

6 Electromagnetic oscillations, induced on the terrestrial surface by standing Alfven waves in the

magnetosphere

The condition (30) permits neglecting a direct effect of external currents in the ionosphere on electromag-

netic oscillations on the terrestrial surface. This is because the Alfven waves are ”tied” to a particular

magnetic resonance shell. As time progresses, the wave ”accumulate” on it an amplitude such that the

amplitude of electromagnetic oscillations induced by them on the terrestrial surface becomes considerably

larger compared to oscillations directly associated with currents. As a result, on the terrestrial surface it

becomes possible to use the formulas obtained in Paper 1:

B̄x(0) = B̄y(zA)R̄(kx, ky) cos χ,

(31)

B̄y(0) = −B̄n(zA)R̄(kx, ky),

where

R̄(kx, ky) =
1

ΣP

∞∫

0

(
σH(z)− i

ky

kt
σP (z) sin χ

)
×

exp(−ktz + ikx(z − zA) tan χ)dz.

Formulas (31) establish a link between the Alfven oscillation field on the upper boundary of the ionosphere

(z = zA) and electromagnetic oscillations on the terrestrial surface(z = 0). Expressions for the other

components of the field may be found in Paper 1. It follows from the results reported in Paper 2 that a

transversally-small-scale Alfven wave is localized across magnetic shells in the interval∆xN ≡ xT N −
xP N ¿ lN . HerexT N andxP N are coordinates of the magnetic resonance shells, on which the wave’s

frequencyω coincides, respectively, with the poloidalω = ΩPN (xP N) and toroidalω = ΩPN (xP N) eigen-

frequencies of magnetospheric Alfven oscillations. The wave is excited in the neighborhood of the poloidal

magnetic shell(x = xP N) and propagates toward the toroidal shell(x = xT N) where it is totally absorbed



Annales Geophysicae, V. 14, No 5, p. 545-556, 1996 14

dup to Joule dissipation in the ionosphere. Note that both poloidal (nearx = xPN ) and toroidal (near

x = xTN ) oscillations are present in the standing Alfven waves withm À 1 under consideration. The

correlation of their amplitudes and their spatial structure are quite definite and are given in what follows.

The spatial structure of the transverse components of the field of the given Alfven wave on the upper

boundary of the ionosphere(z = zA, or l = l∗) is representable as (see Paper 2):

when|x− xP N | ¿ ∆xN

B̃nN (x, ky, l∗, ω) = BAG(ξP N(x, ω)),

(32)

B̃yN (x, ky, l∗, ω) = i
BA

kyλP N cosχ
G′(ξP N(x, ω)),

whenx− xP N À λP N andxT N − x À λT N

B̃nN (x, ky, l∗, ω) =

−√πBA

(
v∗P N

v∗N

k2
y cos2 χ

k2
xN + k2

y cos2 χ

)1/2

×

exp(iΨN (x)− ΓN (x) + iπ/4), (33)

B̃yN (x, ky, l∗, ω) = − kxN

ky cos χ
B̃nN (x, ky, l∗, ω),

and when|x− xT N | ¿ ∆xN

B̃nN (x, ry, l∗, ω) =

−2ikyλP N cos χBA g(ξT N(x, ω))×
exp(iΨ̄N − Γ̄N ),

(34)

B̃yN (x, ky, l∗, ω) = 2
λP N

λT N

BA g′(ξT N(x, ω))×
exp(iΨ̄N − Γ̄N ).

Not that in these expressions the overscribed tilde denotes a separate Fourier-harmonic in the expansion of

the oscillations not only in terms of frequenciesω but also azimuthal wave numbersky . In the expressions

(32-34),λP N andλT N stand for a typical wavelength across magnetic shells, respectively, near the poloidal

and toroidal resonance shells. The functionsG(ξ) andG′(ξ), andg(ξ) andg′(ξ) describe the wave’s field

structure in coordinatex near these shells and have the following integral representations

G(ξ) = −
∞∫

0

exp(isξ − is3/3)ds, G′(ξ) =
∂G

∂ξ
,

(35)

g(ξ) =
1
2

∞∫

0

s−1 exp(isξ − i/s)ds, g′(ξ) =
∂g

∂ξ
.
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The arguments of these functions in (32) and (34) have the form

ξP N(x, ω) =
x− xP N(ω)

λP N

+ iεP N ,

ξT N(x, ω) =
x− xT N(ω)

λT N

+ iεT N ,

whereε(P,T )N = γ(P,T )N lN/Ω(P,T )Nλ(P,T )N , andγ(P,T )N are values of the damping decrement of the waves

on the ionosphere near corresponding resonance surfaces (the decrement is thought of being small:γ(P,T )N ¿
Ω(P,T ),N , see Paper 2).

The expressions (33) describe the wave’s field in the region between the resonance surfaces. In these

formulas,kx,N (x, ω) is the component of the horizontal wave vector in coordinatex in the WKB ap-

proximation. The functionkx,N (x, ω) is defined by a considerably complicated expression (see Paper 2);

however, its behavior is quite well simulated by the expression

kx,N (x, ω) = ky

(
x− xP N(ω)
xT N(ω)− x

)1/2

. (36)

The functionvx
N(x, ω) is a component of the group velocity on coordinatex and is defined as

vx
N(x, ω) =

∂kxN (x, ω)
∂ω

,

andvx
P N is a typical value ofvx

N(x, ω) near the poloidal resonance surface where we may write

vx
N(x, ω) ≈ vx

P N

√
x− xP N(ω)

λP N

.

The function

ΨN (x) =
∫ x

xP N

kxN (x′, ω)dx′

is phase run-up, and the function

ΓN (x) =
∫ x

xP N

γN(x′, ω)
vx

N(x′, ω)
dx′

is an integral decrement, both of which are acquired by the wave as it propagates across the magnetic shells

from the poloidal resonance surface to the pointx inside the interval∆xN . Accordingly,Ψ̄ = Ψ(xT N) is

a total phase run-up on the interval∆xN , andΓ̄ = Γ(x̄) is an integral decrement as the wave travels from

x = xP N to x = x̄ , an arbitrary point located near the toroidal surface:|x̄− xT N | ¿ ∆xN .

To determine the structure of the oscillation field on the ground, it is necessary to Fourier-expand the

expressions (32-34) in terms of wave numberskx . Next, using coupling formulas (31) it is essential to

carry out an inverse Fourier-transform of the form (2) of the oscillation field on the terrestrial surface.

Through integral representations (35), we find the Fourier-transforms of the functionsg andG in the form

Ḡ(l∗) = −i2πλP Nθ(kx)×

exp(−i
(kxλP N)3

3
− ikxxP N − εP NkxλP N),
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Ḡ′(l∗) = −ikxλP NḠ(l∗),

(37)

ḡ(l∗) = πk−1
x θ(kx)×

exp(− i

kxλT N

− ikxxT N − εT NkxλT N),

ḡ′(l∗) = ikxλT N ḡ(l∗).

To carry out a similar expansion of functions (33), we take advantage of the fact that their exponent

involves a large quasiclassical phase|Ψ(x)| À 1. When evaluating integrals of the form

B̄ =

∞∫

−∞
ϕ(x) exp(iΨ(x)− ikxx + i

π

4
)dx,

whereϕ(x) is the corresponding pre-exponent, this makes it possible to use the stationary-phase method.

Upon setting the first derivative of the exponent equal to zero, we obtain the equation that defines the

saddle-point̄x:

∂Ψ
∂x

∣∣∣∣
x=x̄

= kxN (x̄, ω) = kx. (38)

The second derivative of phase at the saddle-point has the form

∂2Ψ
∂x2

∣∣∣∣
x=x̄

=
kxN (x, ω)

∂x

∣∣∣∣
x=x̄

= − ω

2lN

1
vx

N(x̄, ω)
.

In this equality, we rely on the fact that the wave involved is localized in the interval∆xN ¿ lN . The

dependencekxN (x, ω) may be written in a general form as (see Paper 2)

kxN (x, ω) ≡ kxN (x− xP N(ω)).

From this it follows that

∂kxN

∂ω
= −∂xP N

∂ω

∂kxN

∂x
.

Because the wave is localized within a narrow interval of magnetic shells, we can use forxP N(ω) a linear

approximation

xP N(ω) ≈ x− 2
ω − ΩPN (x)

ω
lN ,

which does yield the result obtained. Using standard formulas from the stationary-phase methodBud-

den(1961) we get

B̄nN (l∗) = −2iπBAθ(kx)
kyλP N cos χ√
k2

xN + k2
y cos2 χ

×

exp(iΨ(x̄, ω)− ikxx̄− Γ(x̄, ω)),

(39)

B̄yN (l∗) = − kx

ky cos χ
B̄nN (l∗).
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In the case of an inverse Fourier-transform (2) on the terrestrial surface the functionsḠ and ḡ again

convolves toG andg (as also doḠ′ andḡ′ to G′ andg′); as a result, we have

when|x− xP N | ¿ ∆xN

B̃xN (0) = i
BA

kyλP NΣP
×

∞∫

0

[
σH(z)− i

ky

|ky|σP (z) sin χ

]
×

G′(ξ̃P N(xz, ω)) e−kyzdz,

(40)

B̃yN (0) = −BA

ΣP

∞∫

0

[
σH(z)− i

ky

|ky|σP (z) sin χ

]
×

G(ξ̃P N(xz, ω)) e−kyzdz,

and when|x− xT N | ¿ ∆xN

B̃xN (0) = 2
λP N

λT N

BA cosχ

ΣP
exp(iΨ̄N − Γ̄N )×

∞∫

0

σH(z) g′(ξ̃T N(xz, ω))dz,

(41)

B̃yN (0) = 2ikyλP N

BA cos χ

ΣP
exp(iΨ̄N − Γ̄N )×

∞∫

0

σH(z)g(ξ̃T N(xz, ω))dz.

Herexz = x + (z − zA) tan χ is the coordinatex projected along a field line from the heightz onto the

upper boundary of the ionosphere (see Fig. 2). The arguments of the functionsg(ξ) andG(ξ) have the form

ξ̃P N(xz, ω) =
xz − xP N

λP N

+ iεP N ,

ξ̃T N(xz, ω) =
xz − xT N

λT N

+ i

(
εT N +

z

λT N

)
.

When deriving the expressions (40), allowance was made for the fact that the main contribution to the

Fourier-integral of the functionsG andG′ is made by harmonics withkx ¿ ky , and in (31) we can put

kt ≈ ky. Similarly, when calculating (41), it was kept in mind that the main contribution to the Fourier-

integral of the functionsg andg′ is made by harmonics withkx À ky , and in (31) one may putkt ≈ kx.

When carrying out an inverse Fourier-transform of functions (39) on the terrestrial surface, we again

make use of a large quasiclassical phase|Ψ(x̄(kx), ω)| À 1 involved in the exponent. To evaluate integrals

of the form

B̃ =

∞∫

0

ϕ̃(kx)×

exp(iΨ(x̄(kx))− ikx(xz − x̄(kx))− ktz)dkx
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we are using the stationary-phase method. Herekt = (k2
x + k2

y)1/2 , andx̄(kx) is defined by equation (38).

Upon setting the first derivative of the exponent to zero, we obtain the equation

xz − x̄(k̄x) + i
k̄x

k̄t
z = 0,

that defines the saddle-pointk̄x (according to (38),̄kx = kxN (x̄(k̄x, ω) ). This equation can be considered

to be an equation defininḡ̄x = x̄(k̄x) and can be rewritten as

xz − ¯̄x + i
kxN (¯̄x, ω)

k̄t
z = 0,

wherek̄t = (k2
xN (¯̄x, ω) + k2

y)1/2 . The second derivative of the exponent at the saddle-point is

2lN

ω
v̄x

N ≡ 2lN

ω
vx

N(¯̄x, ω) + i
k2

y

k̄3
t

z.

Using standard formulas from the stationary phase methodBudden(1961) on the terrestrial surface for

xz − xP N À λP N andxT N − xz À λT N we obtain:

B̃nN (0) = π
BA

ΣP

∞∫

0

[
σH(z)− i

ky

k̄t
σP (z) sin χ

]
×

(
vx

P N

|v̄x
N |

k̄2
xN cos2 χ

k̄2
xN + k2

y cos2 χ

)1/2

×

exp

(
iΨ(x̄)− Γ(x̄)− k2

yz

k̄t
+ i

(
π

4
− arg v̄x

N

2

))
dz,

(42)

B̃y(0) =
√

π
BA

ΣP

∞∫

0

[
σH(z)− i

ky

k̄t
σP (z) sin χ

]
×

(
vx

P N

|v̄x
N |

k̄2
y cos2 χ

k̄2
xN + k2

y cos2 χ

)1/2

×

exp

(
iΨ(x̄)− Γ(x̄)− k2

yz

k̄t
+ i

(
π

4
− arg v̄x

N

2

))
dz.

Formulas (40-42) do solve entirely the problem of the penetration of the field of monochromatic transversally-

small-scale Alfven oscillations of the magnetosphere on the terrestrial surface. These formulas can be writ-

ten in a most straightforward manner if the functionsσP,H(z) are localized (at heightH, say) on a scale

much smaller than a typical vertical scale of the wave in the ionosphere. Mathematically, the ionosphere

can then be thought of as being a thin layer, and all functions (exceptingσP,H(z)) at the pointz = H can

be factored outside the integral sign. As a result, we obtain

when|xH − xP N | ¿ ∆xN

B̃xN (0) = i
B̄

kyλP N

G′(ξ̃P N) exp(−kyH),

(43)

B̃yN (0) = −B̄ G(ξ̃P N) exp(−kyH),
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whenxH − xP N À λP N andxT N − xH À λT N

B̃xN (0) =
√

πB̄

(
vP N

|v̄x
N |

k̄2
xN cos2 χ

k̄2
xN + k2

y cos2 χ

)1/2

×

exp

(
iΨ(x̄)− Γ(x̄)− k2

yH

k̄t
+ i

(
π

4
− arg v̄x

N

2

))
,

(44)

B̃yN (0) =
ky

k̄xN
B̃xN (0),

and when|xH − xT N | ¿ ∆xN

B̃xN (0) = 2
λP N

λT N

B̄ g′(ξ̃T N) exp(iΨ̄N − Γ̄N ),

(45)

B̃yN (0) = 2ikyλP N cos χB̄ g(ξ̃T N) exp(iΨ̄N − Γ̄N ).

Here

B̄ =
BA

ΣP

(
ΣH − i

ky

|ky|ΣP sin χ

)
,

xH = x + (H − zA) tan χ, ¯̄x = xH + i
k̄xnH

k̄t
,

ξ̃P N =
¯̄x− xP N

λP N

+ iεP N ,

ξ̃T N =
¯̄x− xT N

λT N

+ i

(
εT N +

H

λT N

)
,

v̄x
N = vx

N(¯̄x, ω) + i
ωk2

yH

2k̄3
t lN

.

Qualitatively, the scheme for the penetration of the electromagnetic field of Alfven oscillations is pre-

sented in Fig. 2. In the upper ionosphere, the Alfven wave propagates along field lines to the lower

ionosphere where currents generating a magnetosonic waves are induced under the action of its variable

electromagnetic field. These currents in magnitude turn out to be much larger than external currents which

have generated the Alfven wave (amplitude ”accumulation” effect). The field of these oscillations (largely

magnetosonic) is permitted into the atmosphere and reaches the terrestrial surface.

7 Discussion of the results

Let us consider some results that follow from general formulas (40-43). By comparing them with formulas

(32-34) governing the Alfven wave field on the upper boundary of the ionosphere, we see that in the case of
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the penetration to the ground the relationship between the components of the electromagnetic field changes.

This is reflected in hodographs of the oscillations constructed at different points inside the transparency

region (see Fig. 2). In the magnetosphere, near the poloidal resonance surface (where the Alfven wave is

generated) the amplitude of theBnN -component is much larger than the amplitude ofByN . In this case,

as follows from (31), the hodograph in the plane(Bn, By) rotates clockwise. Near the toroidal resonance

surface (where the Alfven oscillations are totally absorbed), on the contrary, the amplitude ofByN is much

larger than that ofBnN , and the hodograph rotates anticlockwise. On the terrestrial surface, the situation

is the opposite. Near a point related along a field line toxP N (the poloidal resonance surface) the amplitude

of ByN is much larger than that ofBxN . Near a point related to the toroidal resonance surface,xT N , the

amplitude ofBxN is much larger than the amplitude ofByN . The fact, well known from theory, is thereby

confirmed that the polarization ellipse of the electromagnetic field of the Alfven wave rotates throughπ/2

as it penetrates to the groundHughes(1974),Hughes and Southwood(1976a). Note that this occurs for the

model of a horizontally homogeneous ionosphere only. For a horizontally inhomogeneous ionosphere, the

rotation of the polarization ellipse can differ greatly fromπ/2 Glassmeier(1983),Glassmeier(1984).

Nevertheless, the results obtained in this study can also be applied, with some constraints, for the horizon-

tally- inhomogeneous ionosphere. These constraints are associated with the the characteristic horizontal

scale of a standing Alfven wave in the ionosphere. If this scale is much smaller than the typical horizontal

scale of ionospheric inhomogeneity, then the horizontal structure can be expanded, with a certain accuracy,

into a Fourier integral in terms of harmonics with a definitekt. All the subsequent mathematics is similar

to that presented in this paper. The largest horizontal scale of the waves under consideration is represented

by the wavelength near the poloidal resonance surface (see Paper 2)λPN ∼ lN N1/3/m2/3, wherelN is a

typical horizontal scale of magnetospheric plasma inhomogeneity on the upper boundary of the ionosphere.

Also, N ∼ 1 andm À 1 according to the condition of the problem formulated. If it is assumed, for

estimating purposes, thatlN = 104 km, N = 1, andm = 125, thenλPN ∼ 40 km. Thus, if the horizontal

scale of ionospheric plasma inhomogeneity becomes larger than this scale, then the results reported in this

paper will be applicable for the waves considered. An additional indication of the validity of the theory

presented here should be considered to be the presence of a rotation of the plane of polarization of the

oscillations as they penetrate from the ionosphere to the ground byπ/2. In this paper we examine the main

modes of standing Alfven waves (N ∼ 1) because, as follows from findings reported in Paper 2, it is for

them that the process of excitation by external currents in the ionosphere is most effective. Besides, for

these waves in Paper 2 a sufficiently rigorous theory was constructed to describe their total spatial structure

in the magnetosphere.

Yet another consequence of the general formulas is that not only the field of currents associated with Hall

conductivity but also the field caused by Pedersen conductivity of the ionosphere penetrate to the terrestrial

surface. This phenomenon occurs only for the case of an inclined geomagnetic field when the horizontal

wave vector lies outside the magnetic meridional plane(ky 6= 0). All preceding work (except Paper 1)

addressed situations that did not permit this phenomenon to be uncovered. Those publications considered
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the case of either a vertical geomagnetic field(χ = 0) or (with an inclined geomagnetic field) a meridional

distribution of waves(ky = 0), with the result that only oscillations associated with Hall currents in the

ionosphere penetrate to the terrestrial surface. It follows from formulas (40-45) that Pedersen conductivity is

particularly important in the neighborhood of the poloidal resonance shell (whereky À kxN ) and becomes

unimportant near the toroidal shell. Thus, Pedersen conductivity is vital to the penetration to the ground of

the poloidal part of the Alfven oscillations of the ionosphere. Let us consider the way in which the structure

of the electromagnetic oscillation field changes in coordinatex as the oscillations penetrate to the ground.

We confine ourselves to the case when the scale of localization of the Alfven wave in coordinatex is much

larger than the atmospheric thickness

∆xN À H. (46)

As follows from the expressions (43-45), only in this case will the oscillation amplitude on the ground be

comparable with that in the ionosphere. By making recourse, forkxN (x, ω), to the model (36) for̄̄x in the

limit of (46), we find

¯̄x ≈ xz + iz

√
xz − xP N

∆xN

.

In this case

k̄xN ≡ kxN (¯̄x, ω) ≈ kxN (xz, ω) + i
kyz

√
∆xN

(xT N − xz)3/2
.

It follows from the expressions (43) that near the poloidal resonance surface¯̄x ≈ xz, and hence the structure

of the electromagnetic oscillation field on the ground is the same as in the magnetosphere (except the

rotation of the polarization ellipse throughπ/2). The oscillation amplitude on the ground then varies by a

factor of(|B|/Ba) exp(−kyH).

In the same limit of (46), the functionsΨ(¯̄x, ω),Γ(¯̄x, ω) andkt(¯̄x, ω) in formulas (44) have the form

Ψ(¯̄x, ω) ≈ Ψ(xz, ω) + i
z

(∆xN)3/2

xz − xP N

(xT N − xz)1/2
,

Γ(¯̄x, ω) ≈ Γ(xz, ω)

(
1 + i

ky

kxN (x̄z, ω)

√
∆xN

xT N − xz

)
,

k̄t(¯̄x, ω) ≈
(

k2
t + ik2

y

z
√

∆xN(xz − xP N)
(xT N − xz)2

)1/2

, (47)

where

Ψ(xz, ω) = ky∆xN ×[
π

2
−

√
(xz − xP N)(xT N − xz)

∆xN

− arcsin
√

xT N − xz

∆xN

]

Γ(xz, ω) = 2
γN

ω
kxN (xz, ω)lN ,

kt = (k2
xN (xz, ω) + k2

y)1/2.



Annales Geophysicae, V. 14, No 5, p. 545-556, 1996 22

Hence it is evident that in the region between the resonance surfaces with the constraint (46) the oscillations

receive only a small addition to the phase. A change in their amplitude in this case is determined by the

combined contribution of the imaginary part of the phaseΨ(x, ω) and the real parts of the decrement

Γ(x, ω) andk2
yH/kt.

Strong distortion of the spatial structure occurs only as one approaches the toroidal resonance surface

(xz → xT N). Note that the expansions (47)become inapplicable. The field structure near the toroidal

resonance surface depends considerably from the value ofH/λT N . If H ¿ λT N , then (whenεT N ¿ 1

as is assumed here) the field structure is virtually the same as in the magnetosphere (as is viasualized in

Fig.3a). In the inverse limit (H À λT N ), we can use for the functiong(ξ) its asymptotic representation

with larger arguments (|ξ| À 1):

g(ξ̃T N) ≈
√

π

2|ξT N |1/4
×

exp

(
−2i

√
ξT N − i

(
π

4
− 3 arg ξ

−3/2
T N

2

))

≈
√

π

2

(
λT N

H

)1/4

×

exp
(

xT N − xz√
λT NH

e−iπ/4−
√

λT N

H

(
εT N +

H

λT N

)
eiπ/4 − i

π

8

)
.

Hence it is evident that the wavelength in coordinatex increases fromλT N in the magnetosphere to
√

λT NH on the ground (see Fig. 3b). The oscillation amplitude in this case decreases by a factor of

exp(−
√

H/2λT N) ¿ 1.

8 Conclusions

The main results of this study may be summarized as follows.

1. We have obtained boundary conditions on the ionosphere for standing Alfven waves in the ionosphere,

the sources for which are provided by external currents in the ionospheric E-layer (formulas (27-28)).

2. We have obtained analytic expressions to describe the field of electromagnetic oscillations induced

on the terrestrial surface by standing Alfven waves in the magnetosphere. Waves with large wave numbers

(m À 1) have been considered.

3. It has been shown that a substantial role in the process of penetration to the ground of the poloidal

part of the electromagnetic field of magnetospheric Alfven oscillations is played by Pedersen conductivity

of the ionosphere.

4. Near the toroidal resonance surface, the oscillations can undergo ”blurring” in coordinatex if the

wavelength in this coordinateλT N in the magnetosphere is less than the atmospheric thicknessH.
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Figure Captions

Fig. 1. (a) - The mutual position of the three coordinate systems used in this paper: (x, y, z), (t, b, z), (n, y, l). (b) -

Typical height profiles of the components of the conductivity tensorσ̂ and Alfven velocityA. Roman numerals refer

to the following layers: I - Earth with isotropic conductivityσg , II - atmosphere with conductivityσa , III - lower

ionosphere with transverse PedersenσP and HallσH conductivities, and field-aligned conductivityσ‖ (the dash-dotted

line slows the model value ofσ‖ = ∞ as used in this paper), IV - upper ionosphere whereσP , σH → 0 , and V-

magnetosphere.

Fig. 2. Scheme for propagation from the magnetosphere to the ground of the field of a standing Alfven wave excited

by external currents in the ionosphere. The penetration of the wave’s field from the magnetosphere to the boundary

with the atmosphere(z = H) proceeds along geomagnetic field lines. Both in the magnetosphere and on the ground,

the wave is a running wave across magnetic shells from the poloidal resonance surface (where it is generated) to the

toroidal resonance surface (where it is totally absorbed). The propagation from the magnetosphere to the ground is

accompanied by the rotation of the polarization ellipse of the oscillations throughπ/2 and by the rotation reversal of

their hodograph.

Fig. 3. Scheme for penetration of the Alfven oscillation field from the magnetosphere to the ground in two limiting

cases. Case(a) corresponds to the conditionλT N À H. Here the spatial structure of the oscillation field on the ground

is similar to the transverse structure of the Alfven wave’s field on the upper boundary of the ionosphere (but for the

rotation of the polarization ellipse throughπ/2). Case(b) corresponds toλT N ¿ H. Here the wavelength near the

toroidal resonance surface increases fromλT N in the magnetosphere and to
√

λT NH on the terrestrial surface.
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Figures

a

b

Fig. 1. (a) - The mutual position of the three coordinate systems used in this paper: (x, y, z), (t, b, z), (n, y, l). (b) -

Typical height profiles of the components of the conductivity tensorσ̂ and Alfven velocityA. Roman numerals refer

to the following layers: I - Earth with isotropic conductivityσg , II - atmosphere with conductivityσa , III - lower

ionosphere with transverse PedersenσP and HallσH conductivities, and field-aligned conductivityσ‖ (the dash-dotted

line slows the model value ofσ‖ = ∞ as used in this paper), IV - upper ionosphere whereσP , σH → 0 , and V-

magnetosphere.
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Fig. 2. Scheme for propagation from the magnetosphere to the ground of the field of a standing Alfven wave excited

by external currents in the ionosphere. The penetration of the wave’s field from the magnetosphere to the boundary

with the atmosphere(z = H) proceeds along geomagnetic field lines. Both in the magnetosphere and on the ground,

the wave is a running wave across magnetic shells from the poloidal resonance surface (where it is generated) to the

toroidal resonance surface (where it is totally absorbed). The propagation from the magnetosphere to the ground is

accompanied by the rotation of the polarization ellipse of the oscillations throughπ/2 and by the rotation reversal of

their hodograph.
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Fig. 3. Scheme for penetration of the Alfven oscillation field from the magnetosphere to the ground in two limiting

cases. Case(a) corresponds to the conditionλT N À H. Here the spatial structure of the oscillation field on the ground

is similar to the transverse structure of the Alfven wave’s field on the upper boundary of the ionosphere (but for the

rotation of the polarization ellipse throughπ/2). Case(b) corresponds toλT N ¿ H. Here the wavelength near the

toroidal resonance surface increases fromλT N in the magnetosphere and to
√

λT NH on the terrestrial surface.


