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THE FREQUENCY OF NONLINEAR PLASMA WAVES

G. N.Kichigin ∗ UDC 533.931

We study steady-state plane nonlinear plasma waves in a cold collisionless plasma in the absence
of a magnetic field. The main conclusion following from the performed analysis is that allowance
for the motion of the ion component of the plasma is of fundamental importance when studying
nonlinear plasma waves. It is shown that, in general, the frequency of waves is essentially
determined by the ion-component mass and depends equally on the velocity and amplitude of the
waves.

1. INTRODUCTION

The properties of plasma waves of an infinitesimally small amplitude, i.e., linear waves, are studied
fairly well [1, 2]. Recently, large-amplitude plasma waves have been studied rather extensively. Such waves
are formed in a dense plasma as a result of the action of ultrarelativistic particle beams or the high-power
laser radiation on the plasma, as well as during the transformation of intense electromagnetic waves incident
on an inhomogeneous plasma into the plasma wave.

For the first time, the fundamental results for nonlinear waves in plasmas were obtained in [3–5]
in which plane waves in an unbounded plasma were considered assuming that the plasma consists of cold
electrons and infinitely heavy, motionless ions. Later, similar results for Langmuir waves were obtained
independently in [6]. In [4–6], formulas for nonlinear Langmuir waves are obtained from which it follows
that the wave frequency is a function of the limiting electron velocity in the wave. In this case, this velocity
is an unknown constant. The dependence of the frequency of waves on their amplitude is not presented in
explicit form in [4–6]. In this paper, we solve the problem in the same formulation as in [4–6] and obtain an
exact and fairly simple formula for the frequency (see Eq. (13)), which rather clearly shows the dependence
of the frequency of nonlinear Langmuir waves on their amplitude and velocity.

Developing the theory of A. I.Akhiezer et al. [4, 5], we took into account the motion of ions in the
wave and obtained essentially new results which were given in [7, 8]. These results are of great importance
in connection with the fact that for rather large amplitudes of the electric field in relativistic waves, it is
necessary to allow for the motion of the ion component of the plasma, which has recently become clear.
Such a condition follows from the works devoted to relativistic waves in plasmas [7–12] and from studies
related to the interaction between the laser radiation and plasmas [13, 14].

In this paper, the dependence of the frequency of steady-state nonlinear Langmuir waves on the wave
and plasma parameters is studied in detail with allowance for the motion of both the electron and ion com-
ponents. As is noted in [3], development of the theory of nonlinear waves in plasmas meets with significant
mathematical difficulties. In this paper, overcoming these difficulties by using quite acceptable simplifying
assumptions, we were able to obtain analytical expressions for the frequency of nonlinear Langmuir waves.
The expressions are rather simple and describe the behavior of the wave frequency in the entire range of
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the problem parameters. These expressions are obtained for both a typical plasma in which the ion mass is
much greater than the electron mass (Eqs. (19), (21), and (22)) and an electron–positron plasma in which the
masses of negatively and positively charged particles are identical (Eqs. (26) and (27)). All these formulas
have been obtained for the first time.

The paper is organized as follows. In Sec. 2, we present the formulation of the problem and derive
the basic equations required for solving the formulated problem. In Sec. 3, formulas for the wave frequency
are obtained in various limiting cases. Section 4 presents the main conclusions.

2. FORMULATION OF THE PROBLEM AND BASIC EQUATIONS

Let us consider qualitatively the process of the formation of a nonlinear plasma wave, following the
reasoning of [1]. For simplicity, we consider a plasma with cold ions of one species and nonzero electron
temperature Te in the absence of an external magnetic field. Let a high-frequency plasma wave of an
infinitesimally small amplitude begin to propagate in such a plasma. As is known [1, 2], for each plasma-
wave harmonic with frequency ω and wave number k, the dispersion relation has the form

ω(k) = ωp0 (1 + 3k2d2
e)

1/2, (1)

where ωp0 = (4πe2n0/m)1/2 is the electron plasma frequency, de = [Te/(4πe2n0)]1/2 is the electron Debye
length, n0 is the unperturbed plasma density, and e and m are the elementary charge and the electron
mass, respectively. It is usually assumed that k2d2

e � 1, i.e., ω ≈ ωp0. In this case, the phase velocity
vph ≈ ωp0/k of the wave is much greater than the electron thermal velocity vT e = (Te/m)1/2. The fulfillment
of this condition is mandatory. Otherwise, the harmonic amplitude rapidly tends to zero due to collisionless
Landau damping [1, 2].

With increasing the wave amplitude, one should take into account that due to the nonlinearity, the
leading front of a traveling wave steepens, i.e., the higher harmonics appear. However, for plasma waves
described by dispersion relation (1), the dispersion can stop the nonlinear steepening of the front and
after some time, when the dispersion and nonlinear-steepening processes compensate for each other, the
large-amplitude wave in the plasma can transform into a steady-state nonlinear wave [1].

In this paper, we consider steady-state periodic waves which are characterized by the following pa-
rameters: wavelength λ = 2π/k, wave oscillation period T = 2π/ω, and wave phase velocity u = λ/T = ω/k,
where ω is the wave frequency. The problem consists in determining the dependence of the wave frequency ω
on the plasma and wave parameters. Note that all the above-mentioned characteristics of waves correspond
to the reference frame in which the unperturbed plasma rests. We call this frame the laboratory reference
frame (LRF). In what follows we will perform our consideration in the reference frame coupled to the wave
since the physical processes occurring in the steady-state wave are clearer in such a frame. In the wave
reference frame, the plasma has the density n = n0γ and moves as a whole with respect to the motionless
wave profile with velocity u. In this case, the spatial period of the wave is λw = γλ. Here, γ = (1−β2)−1/2,
β = u/c, and c is the speed of light in free space.

If the condition vph � vTe holds, then the plasma can be considered cold, which is assumed throughout
the paper. Considering the one-dimensional case, we assume that the wave propagates in the direction
opposite to the x-axis direction. In the wave reference frame in which the analyzed problem is stationary,
all the desired variables describing the wave profile in the considered case are functions only of coordinate x.
We will seek the solution in the form of a periodic alternating potential wave. In this case, the electric field
has extreme values at the points between the maximum and the minimum of the potential on the scale equal
to the wavelength λw. From the Maxwell equation

dE(x)
dx

= 4πe [Zni(x) − ne(x)] (2)

for the electric field E(x), it then follows that the right-hand side of Eq. (2) at these points is zero. Here,
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ni(x) and ne(x) are the ion and electron number densities, respectively, and Z is the charge number of ions.
Let the coordinate of one of the extreme points be x = 0 and let Zni(0) = ne(0) = n at this point. Let the
extreme value of the electric field be E(0) = E0. From Eq. (2), the relativistic equations of motion, and the
continuity equations for electrons and ions, we have the total-momentum conservation law [8]

E2(x)/(8π) − nu [pe(x) + pi(x)/Z] = E2
0/(8π) − nγ (AM/Z + m)u2. (3)

Here, M is the rest mass of a proton, A is the atomic number of an ion, pe(x) = mve(x)γe(x) and pi(x) =
AMvi(x)γi(x) are the momenta of electrons and ions, respectively, vi and ve are the velocities of ions and
electrons, respectively, γi = (1 − (vi/c)2)−1/2, γe = (1 − (ve/c)2)−1/2, and the constant is determined for
x = 0. Equation (3) was obtained under the condition that a perturbed magnetic field is absent [8]:
ni(x)vi(x) = ne(x)ve(x) = nu. Note that with the obtained parameter γ, the considered problem has the
physical meaning only for the velocity u not exceeding the speed of light in free space.

Using Eq. (3), we now obtain an expression for the frequency of oscillations in a wave. Denoting
the electron plasma frequency in the wave reference frame by ωpw = (4πe2n/m)1/2, we introduce the
dimensionless variables ξ = xωpw

√
β/c and ψ(ξ) = eϕ(x)/(mc2) for the coordinate and the potential,

respectively. Then Eq. (3) in dimensionless variables can be represented by the formula

V (ψ, γ, µ) = ε − (dψ(ξ)/dξ)2/2 = βµγ −
√

(µγ − ψ)2 − µ2 + βγ −
√

(γ + ψ)2 − 1. (4)

In what follows we will need another representation of the quantity V (ψ, γ, µ) in the form

V (ψ, γ, µ) = βµγ

(
1 −

√
1 − 2ψ

β2γµ
+

ψ2

β2γ2µ2

)
+ βγ

(
1 −

√
1 +

2ψ
β2γ

+
ψ2

β2γ2

)
. (5)

In Eqs. (4) and (5), the variable ψ is a function of ξ, i.e., ψ = ψ(ξ), whereas other quantities are dimensionless
and are as follows: β = u/c is the wave phase velocity normalized to the speed of light in free space,
γ = (1− β2)−1/2, µ = AM/(Zm), and ε = (dψ/dξ)20/2 = E2

0/(8πnmcu) is the dimensionless energy density
of the electric field at the point ξ = 0 at which ψ = 0 and the electric field is maximum. For convenience,
we here give formulas for other parameters used in what follows. As we will see below, the product γε is
characteristic of the considered problem. Therefore, the special notation ρ = γε is introduced for it. Another
parameter which will be used is δ = ε/εm = (E0/E0m)2, i.e., the ratio of the squared amplitude E2

0 of the
electric field to the squared limiting possible amplitude E2

0m in the wave (a discussion of E0m is presented
below).

We now discuss the values which can be taken by the parameter µ = (A/Z) (M/m). It is easily seen
that the parameter µ depends mainly on the species of ions of the plasma. In most typical cases, µ � 1.
For example, in an electron–proton plasma in which A/Z = 1, the parameter µ = M/m = 1838. For a
plasma consisting of ions that are heavier than protons, the ratio A/Z ≥ 2 and the value of µ is greater.
The exception is an electron–positron plasma in which µ = 1. Allowing for this, we will further assume
that µ � 1 and introduce a small quantity θ = 1/µ (θ � 1). The special case µ = 1 will be considered
separately.

To find the wave frequency in the LRF, we use the formula ω = 2πuγ/λw. Here, λw, the spatial
period of oscillations of the potential in the wave reference frame, is found from Eq. (4):

λw =
c

ωpw

√
2
β

ψ+∫
ψ−

dψ√
ε − V (ψ, γ, µ)

,

where ψ− and ψ+ are roots of the equation ε−V (ψ, γ, µ) = 0 and V (ψ, γ, µ) is determined by either Eq. (4)
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or Eq. (5). Hence, for the quantity ω we obtain the relation

ω = ω(ε, γ, µ) = ωp0π
√

2 (βγ)3/2/J(ε, γ, µ), (6)

where ωp0 = (4πe2n0/m)1/2, n0 is the plasma density in the LRF, and

J(ε, γ, µ) =

ψ+∫
ψ−

dψ√
ε − V (ψ, γ, µ)

. (7)

Equations (6) and (7) determine the desired frequency of oscillations of a longitudinal plasma wave
in the most general form. It is seen that, first, ω depends on the wave characteristics, namely, the phase
velocity u (parameter γ) and the electric-field amplitude E0 (parameter ε), and, second, on the plasma
characteristics, namely, the mass and charge of plasma particles (parameter µ) and the density n0. The
dependence of the frequency on the density is obvious. Therefore, we will not be interested in it and consider
the dependence ω = ω(ε, γ, µ) as shown in Eq. (6).

First of all, we should introduce the nomenclature which will be used in the paper and is related to
the parameters β and γ. By the nonrelativistic approximation, we mean the case where β = 0 and γ = 1.
If the wave velocity is such that β � 1 and γ < 2, then we speak of the weakly relativistic case. The case
where β ≈ 1 and γ � 1 is called relativistic.

To find ω, one should evaluate integral (7). To do this, in turn, we should determine the integration
limits ψ− and ψ+ and know in much detail the properties of the integrand determined mainly by the function
V (ψ, γ, µ). By examining the properties of the function V (ψ, γ, µ), it can be shown [8] that the parameter
ε has the limiting value

εm = E2
0m/(8πnmcu) = βγ + µβγ −

√
µ2β2γ2 + (γ − 1) (2µγ + γ − 1)

above which nonlinear waves cannot exist for given values of n0, γ, and µ. For µ � 1, we then obtain

εm ≈
(

1 +
1

2µ (γ + 1)

)
βγ

γ + 1
.

It is seen from the formulas obtained for εm that the limiting amplitude of waves is mainly determined by the
parameter γ, whereas one can neglect the dependence of εm on the parameter µ in the first approximation
and put

εm ≈ βγ/(γ + 1) = (γ − 1)/βγ = [(γ − 1)/(γ + 1)]1/2. (8)

It follows from Eq. (8) that for weakly relativistic waves (β � 1), the parameter εm ≈ β/2 and, hence, E2
0m =

4πnmu2. For relativistic waves (γ � 1), we have εm ≈ 1 and E2
0m ≈ 8πnmcu ≈ 8πnmc2 = 8πγn0mc2. The

existence of the limiting amplitude of nonlinear Langmuir waves seems to be related to the fact that for
waves whose amplitude exceeds the limiting amplitude, the dispersion cannot stop the nonlinear steepening
and the wave tilts.

For given parameters µ, γ, and ε, the variation range of oscillations of the potential is obtained from
the equation

βµγ −
√

(µγ − ψ)2 − µ2 + βγ −
√

(γ + ψ)2 − 1 = ε,

whence one can find the desired quantities in general form, although the expressions for them turn out to
be very cumbersome. Putting µ � 1 and neglecting small terms, we obtain the approximate formulas

ψ− ≈ −βµγ2ε/(µ + 2βγε)
(√

1 + 2β2 [1/(βγε) + 2/µ] − 1
)

,
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ψ+ ≈ βµγ2ε/(µ + 2βγε)
(√

1 + 2β2 [1/(βγε) + 2/µ] + 1
)

for the “negative” and “positive” boundaries of the variation range of the potential in the wave. Allowing
for Eq. (8), the product βγε of parameters, which enters the formulas for ψ− and ψ+, can be represented
as βγε ≈ δ (γ − 1). Since β ≤ 1 and ε ≤ 1, the product βγε = βρ can be much greater than unity only
for γ � 1. In particular, the inequality βρ � µ is possible only for γ � µ. For weakly relativistic waves
(β � 1), the condition βρ ≈ δ (γ − 1) � 1 always holds.

Let us determine the amplitudes ψ− and ψ+ for various relations between the parameters µ, ε, and
γ. We start from the special case.

1. Let ρ ≈ β. For weakly relativistic waves (β � 1), the parameter ε ≈ β � 1. Hence, ρ � 1 and
the amplitudes of the potential are written as

ψ+ ≈ (β2/2) (2
√

δ + δ), ψ− ≈ −(β2/2) (2
√

δ − δ). (9)

For relativistic waves (γ � 1 and β ≈ 1) in the considered case, we have ρ ≈ 1. Hence, we obtain

ψ+ ∼ −ψ− ≈ γ (10)

for any value of γ.
2. Let βρ � µ (ρ � µ). Under this condition, we obtain ψ− ≈ −γ and ψ+ ≈ µγ. As expected, ψ−

and ψ+ in this approximation are close to the limiting values ψ∗
− = −(γ−1) and ψ∗

+ = µ (γ−1), respectively
[8]. It is easily seen that for βρ ≈ µ � 1, the orders of the amplitudes ψ− and ψ+ are also comparable with
ψ∗
− and ψ∗

+, respectively.
3. Let βρ � µ. Here, two cases are possible.
(a) ρ � 1. This means that γ � 1 (β ≈ 1). In this case, the amplitudes are written as

ψ+ ≈ 2βγρ + βγ ≈ 2γρ + γ, ψ− ≈ −βγ ≈ −γ.

(b) ρ � β ≤ 1. In this case, we consider two possibilities.
I. γ � 1 and β ≈ 1. In this case, ε � 1/γ � 1, so

ψ+ ≈ γ
√

2ρ + γρ ≈ γ
√

2ρ, ψ− ≈ −γ
√

2ρ + γρ ≈ −γ
√

2ρ. (11)

II. γ ≈ 1 and β � 1. In this case, ε ≤ εm ≈ β/2 � 1. This is the weakly relativistic case in which
the formulas of Eq. (9) are valid. We emphasize that the parameter ε � 1 for any γ in the case ρ � 1.

3. DETERMINATION OF THE DEPENDENCE ω = ω(ε, γ, µ)

We now proceed to finding analytical expressions for the wave frequency in various limiting cases. As
was noted, in contrast to [3–6] in which ions were assumed motionless, we take into account the dynamics
of ions in the wave. According to Eqs. (6) and (7), the fact that we allow for the motion of ions in the wave
is seen in the dependence of the wave frequency on the parameter µ. It is this dependence that will be of
primary importance for us. At first, we consider the limiting case µ → ∞. Then we consider waves in the
plasma in which the parameter µ is finite, but large, i.e., µ � 1. This is the most typical case if we bear in
mind the space plasma or the plasma created under laboratory conditions. Finally, we separately consider
electron–positron plasmas in which µ = 1.

3.1. Approximation of motionless ions (θ = 1/µ = 0)

In this approximation, from Eq. (5) at the limit µ → ∞ we obtain

V∞(ψ, γ) = βγ −
√

(γ + ψ)2 − 1 + ψ/β, (12)
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where V∞(ψ, γ) ≡ V (ψ, γ, µ = ∞). By using the Euler substitution
√

(γ + ψ)2 − 1 = x2 − (γ + ψ), integral
(7) comprising the function V∞(ψ, γ) takes the form

J∞ =

ψ+∫
ψ−

dψ√
ε − V∞(ψ, γ)

=

√
2β

1 − β

a∫
b

(x2 − x−2) dx√
(a2 − x2) (x2 − b2)

,

where a2 = γ (1 + β) (1 + βρ +
√

β2ρ2 + 2βρ) and b2 = γ (1 + β) (1 + βρ−
√

β2ρ2 + 2βρ). The quantity J∞
is expressed in terms of a complete elliptic integral of the second kind E(k):

J∞ = (2βγ)3/2
√

γ(1 − β) aE(k),

where k = [1 − (1 + βρ −
√

β2ρ2 + 2βρ)2]1/2. Thus, the frequency in the approximation of motionless ions
is represented by the formula

ω(ε, γ) =
π

2
ωp0

(
1 + βρ −

√
β2ρ2 + 2βρ

)1/2

E(k)
, (13)

where the product βρ takes the values from 0 to ∞.

We now proceed to analysis of Eq. (13) in detail. At first sight, the structure of Eq. (13) is complicated
by the presence of the elliptic integral E(k). However, a closer examination shows that its influence is not
significant. Indeed, if the quantity βρ varies from 0 to ∞, i.e., the modulus k varies from 0 to 1, then
the value of the elliptic integral E(k) is between π/2 and 1, so that we may put E(k) ∼ 1 in the first
approximation and write Eq. (13) in the form

ω(ε, γ) ≈ π

2
ωp0

(
1 + βρ −

√
β2ρ2 + 2βρ

)1/2
. (14)

In the worst case, the frequency calculated from rather simple formula (14) differs from exact value (13) by
the coefficient π/2 ≈ 1.6 (i.e., by approximately 60%).

It follows from Eqs. (13) and (14) that the frequency decreases with increasing velocity and amplitude
of waves. For waves propagating with the velocities β � 1, the quantity βρ � 1. Putting γ ≈ 1, from
Eq. (13) we obtain

ω(ε, β) ≈ ωp0

(
1 − 3

8
βε

)
≈ ωp0

(
1 − 3

16
β2δ

)
. (15)

It is seen that in this case, the frequency differs only slightly from ωp0. With increasing the quantity βρ
from 0 to 1, i.e., for βρ ≤ 1, the frequency ω remains close to ωp0 (e.g., for βρ = 1, the wave frequency
ω ≈ 0.7ωp0). Since βρ ≈ δ (γ − 1), the condition βρ ≤ 1 can be written as γ − 1 ≤ 1/δ. It follows from
the latter relation that for waves with the limiting possible amplitude, i.e., for δ = 1, the parameter γ ≤ 2.
But if δ � 1, then the case where γ � 1 is possible. Hence, we arrive at an interesting conclusion, namely,
the frequency of plasma waves is close to the frequency ωp0 of linear oscillations in the plasma not only for
waves having a small velocity (β � 1), but also for waves traveling with subluminal velocities and having
a small amplitude of the electric field compared with the limiting amplitude. Actually, this conclusion is a
consequence of the fact that, according to Eq. (13), the frequency depends on βρ ≈ δ (γ − 1), i.e., on the
product of the parameter proportional to the wave amplitude and the parameter dependent on the wave
velocity.

With the further increase in the parameter βρ, when it becomes greater than unity, the elliptic integral
E(k) differs from unity by a value smaller than 10% (e.g., for βρ = 1, the quantity E(k) ≈ 1.08). Therefore,
the wave frequency for βρ > 1 can be calculated with good accuracy from Eq. (14). For relativistic waves
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(γ � 1) when βρ ≈ γε � 1, the frequency is determined by the expression

ω(ε, γ) ≈ ωp0π/(2
√

2γε). (16)

In this case, if the amplitude of waves is nonzero and their velocity approaches the speed of light in free
space (β → 1 and γ → ∞), the frequency of waves tends to zero.

To conclude this section, we note that, as expected, Eq. (13) yields the results obtained for the first
time by A. I.Akhiezer et al. in the approximation of infinitely heavy ions for two limiting cases, namely, (i)
the nonrelativistic approximation within the framework of which ω = ωp0 [3] and (ii) the case of relativistic
waves (γ � 1) with the limiting amplitudes (ε ≈ 1), for which the frequency ω(γ) ≈ ωp0π/(2

√
2γ) [4, 5]. It

is seen that in the first case, the frequency does not depend on both the velocity and the wave amplitude
and is determined by the frequency of linear oscillations in the plasma. In the second case, the frequency
monotonically decreases with increasing wave velocity.

3.2. The most widespread case µ � 1

Our main purpose in this section is to reveal the dependence of the frequency on the parameter µ,
assuming that µ is large, but finite, i.e., µ � 1. The fact that µ is large is exactly the reason from which
it is intuitively clear that the above-considered approximation not allowing for the dynamics of ions should
be applicable for certain values of ε and γ in this case. Indeed, it is easy to show that this approximation
is suitable for studying waves propagating with such velocities for which the condition γ � µ or even the
less stringent condition γ < µ holds for any ε. Indeed, if these inequalities hold, then the integration
limits in Eq. (7) as functions of γ are determined by Eqs. (9)–(11). In this case, for the function V (ψ, γ, µ)
determined by Eq. (5), the terms entering the radicand and comprising the parameter µ are much less than
unity. Representing the square root as a series and neglecting small terms comprising the second and higher
powers of ψ, we obtain that V (ψ, γ, µ) ≈ V∞(ψ, γ), where V∞(ψ, γ) is determined by Eq. (12), i.e., for the
frequency we arrive at Eq. (13) which is valid in the approximation of infinitely heavy ions.

Taking into account these considerations, we first analyze the behavior of waves traveling with small
velocities. Then we consider the properties of waves propagating with relativistic velocities. In this case,
we reveal what contribution to the wave frequency is given by allowance for finite values of µ.

3.2.1. Weakly relativistic waves (β � 1)

In a rough approximation, the results of Sec. 3.1. can certainly be applied for waves with small velocities,
i.e., if γ ≈ 1 � µ. However, we make an attempt to reveal the frequency variation if the finite value of
µ is allowed for, as well as the trend of this variation. Taking into account that in this case, the limits of
integration in Eq. (7) are determined by the formulas in Eq. (9) and, hence, the values of the variable ψ in
the integrand of Eq. (7) are much less than unity, the function V (ψ, γ, µ) is represented as

V (ψ, γ, θ) = βγ −
√

(γ + ψ)2 − 1 + ψ/β + θψ2/(2β3γ3), (17)

where θ = 1/µ � 1. Then, considering the term with the parameter θ in Eq. (17) a small addition, we take
a Taylor series expansion of integral (7) comprising function (17) and denoted by J(ε, γ, θ) in the vicinity
of the point θ = 0 and limit the series sum to the term proportional to θ:

J(ε, γ, θ) = J(ε, γ, 0) + θ

[
∂J(ε, γ, θ)

∂θ

]
θ=0

. (18)
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The first term J(ε, γ, 0) = J∞ of series (18) was found in Sec. 3.1. The derivative

∂J(ε, γ, θ)
∂θ

=
∂

∂θ

ψ+∫
ψ−

dψ√
ε − V (ψ, γ, θ)

is represented as


 ∂

∂θ

ψ+∫
ψ−

dψ√
ε − V (ψ, γ, θ)




θ=0

=


2

∂

∂θ

∂

∂ε

ψ+∫
ψ−

√
ε − V (ψ, γ, θ) dψ




θ=0

= − ∂

∂ε




ψ+∫
ψ−

[∂V (ψ, γ, θ)/∂θ] dψ√
ε − V (ψ, γ, θ)




θ=0

= − 1
2β3γ3

∂I

∂ε
,

where

I =

ψ+∫
ψ−

ψ2 dψ√
ε − V∞(ψ, γ)

.

Such a representation is possible due to the following circumstances. First, the variables θ and ε are
independent. Second, differentiating the integral

ψ+∫
ψ−

√
ε − V (ψ, γ, θ) dψ

with respect to the variables θ and ε is reduced to differentiating the integrand since this function is zero at
the integration limits.

The integral I in which the function V∞(ψ, γ) is determined by Eq. (12) can be evaluated similarly
to J∞. As a result, we obtain

I =
√

2β (1 + β)[(Y3 − Y−3)/4 − γ (Y2 − Y−2) + (γ2 + 1/4) (Y1 − Y−1)],

where

Yn =

a∫
b

x2n dx√
(a2 − x2) (x2 − b2)

.

Here, the quantities a and b defined in Sec. 3.1 are used. The integrals Yn are expressed in terms of complete
elliptic integrals of the first and second kinds K(k) and E(k), respectively, where the parameter k is the
same as in Sec. 3.1. Rejecting small terms comprising the parameters β and ε to powers higher than three
and one, respectively, we obtain the derivative[

∂J(ε, γ, θ)
∂θ

]
θ=0

≈ γ3/2
√

2β[E − K + E
√

2βε + (9E − K)βε + 2 (4E − K)β2/3 + 8β2
√

2βε E/3]

2β (1 + βε/2)
√

1 + βε +
√

2βε
.

Here, we omitted the argument k of the elliptic integrals K(k) and E(k). Then, taking into account that
for β � 1, the relation ε = βδ/2 holds and the modulus k � 1, we use the asymptotic expansion of the
elliptic integrals entering the expression for the derivative for small k. Then, substituting the derivative into
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Eq. (18) and allowing for Eq. (15), for the frequency we finally obtain

ω(β, δ, θ) ≈ ωp

(
1 − 3

16
β2δ +

15
16

θδ

)
, (19)

where ωp = ωp0 (1 + θ)1/2 is the frequency of linear oscillations of the plasma with allowance for the ion
mass [2].

Thus, allowance for the motion of ions gives an increase in the frequency due to the positive small ad-
dition (the third term in the parentheses of Eq. (19)) which is proportional to the wave amplitude. Although
the frequency of weakly relativistic waves almost does not differ from ωp0, dependence (19) is interesting in
the sense that it allows one to understand the influence of the nonlinearity and the dynamics of ions on the
wave frequency. Indeed, it is seen that allowance for the nonlinearity (the second term in the parentheses of
Eq. (19)) leads to a decrease in the frequency, whereas allowance for the dynamics of ions (the third term),
on the contrary, leads to an increase in the frequency of weakly relativistic waves. It is interesting to note
that for the wave velocity β =

√
5θ, the influence of the nonlinearity on the frequency is compensated by

the influence of the dynamics of ions, and the frequency of nonlinear waves is equal to the frequency ωp of
linear oscillations of the plasma.

If we put β = const, then it follows from Eq. (19) that for the velocities β <
√

5θ, the frequency is
higher than ωp and increases with increasing wave amplitude, whereas for β >

√
5θ, the frequency is lower

than ωp and decreases with increasing amplitude δ. For a fixed wave amplitude (δ = const), we now consider
the most interesting case (from our viewpoint) where the wave amplitude is equal to the limiting possible
amplitude, i.e., δ = 1. In this case, from Eq. (19) we obtain that for β = 0, the frequency is higher than ωp

and is equal to its maximum value ω ≈ ωp (1 + θ) = ωp0 (1 + θ)3/2. Then, with increasing velocity, the wave
frequency decreases. For the velocity β =

√
5θ, it becomes equal to ωp = ωp0 (1 + θ)1/2 and then decreases.

In conclusion, we note that for β = 0, the result presented in [15] follows from Eq. (19).

3.2.2. Relativistic waves for ρ � 1

Before proceeding to the relativistic case, we verify that the waves for which the condition βρ ≤ 1 holds have
frequencies close to ωp0, which takes place in the approximation of infinitely heavy ions (Sec. 3.1). Indeed,
in this case, the integration limits in integral (7) are determined by Eq. (10). It is easily seen that the terms
entering the radicand of Eq. (5) and comprising the parameter µ are much less than unity on the integration
interval. Therefore, the function V (ψ, γ, µ) can be replaced by V∞(ψ, γ). Thus, the approximation of
motionless ions is applicable here and all the conclusions presented in Sec. 3.1 for the case βρ ≤ 1 remain
valid.

For relativistic waves, we will thus assume that βρ = βγε � 1, which is equivalent to the inequalities
ρ � 1 and γ � 1 since β ≈ 1 and ε ≤ 1. In this case, putting

√
(γ + ψ)2 − 1 ≈ γ + ψ, the function

V (ψ, γ, µ) in integral (7) is represented on the integration interval 0 ≤ ψ ≤ ψ+ as

V (ψ, γ, µ) ≈ βµγ − γ (1 − β) − ψ −
√

(µγ − ψ)2 − µ2 . (20)

On the interval 0 ≥ ψ ≥ ψ−, allowing for the fact that |ψ−| ≤ γ − 1, the function V (ψ, γ, µ) in all cases can
be replaced with sufficient accuracy by the function V∞(ψ, γ) determined by Eq. (12). Thus, integral (7) in
this case can be represented as the sum J(ε, γ, µ) = J1 + J2 of two integrals, where

J1 =

0∫
ψ−

dψ√
ε − V∞(ψ, γ)

, J2 =

ψ+∫
0

dψ√
ε − V (ψ, γ, µ)

.

The function V (ψ, γ, µ) in the integral J2 is determined by Eq. (20).
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Evaluation of the integral J1 is similar to that of J∞. As a result, J1 is expressed in terms of elliptic
integrals of the second kind as follows:

J1 =

√
2β

1 − β

{
a [E(k) − E(q, k)] − E(p, k)/(ab2)

}
.

Here,

q = arcsin

√
a2 − s2

a2 − b2
, p = arcsin

(
a

s

√
s2 − b2

a2 − b2

)
, s2 = γ (1 + β),

and the parameters a, b, and k are defined in Sec. 3.1. The final evaluation of the integral J1 yields J1 ≈ γ/
√

ε
(recall that in the considered case γ � 1, we have ρ = γε � 1, i.e., ε cannot take a zero value: ε � 1/γ).

We now evaluate the integral J2. The function V (ψ, γ, µ) determined by Eq. (20) is represented as
follows:

V (ψ, γ, µ) ≈ µ [βγ − ψ/µ −
√

(γ − ψ/µ)2 − 1].

Introduce the notation y = ψ/µ. Using the change of variables

γ − t = y +
√

(γ − y)2 − 1,

the integral J2 is expressed in terms of the table integrals as

J2 =
√

µ

2


 h∫

g

t−2 dt√
h − t

−
h∫

g

dt√
h − t


 =

√
µ

2

(√
h − g

(gh)
− 2

√
h − g − 1

2h3/2
ln

√
h −

√
h − g√

h +
√

h − g

)
,

where
g = γ (1 − β) =

1
γ (1 + β)

≈ 1
2γ

, h = g + ε/µ.

Thus, evaluation of the integral J yields

J(ε, γ, µ) =
2µγ3/2√ρ

µ + 2ρ

(
1 +

µ + 2ρ
2µρ

− µ + 2ρ
2µγ2

+
µ

2
√

2ρ (µ + 2ρ)
ln

√
1 + µ/(2ρ) + 1√
1 + µ/(2ρ) − 1

)
.

It is easily seen that in the considered approximation (ρ � 1 and µ � 1), the second and third terms in
the parentheses on the right-hand side of the obtained expression are much less than unity. Omitting these
terms and substituting the obtained value of the integral J(ε, γ, µ) into Eq. (6), we arrive at the formula

ω(ε, γ, µ) ≈ ωp0π (µ + 2ρ)

/[
µ
√

2ρ

(
1 +

µ

2
√

2ρ (µ + 2ρ)
ln

√
1 + µ/(2ρ) + 1√
1 + µ/(2ρ) − 1

)]
(21)

for the frequency.

Let us consider the dependence of the frequency on the relation between the parameters ρ and µ.
For 1 � ρ � µ, the second term in the parentheses in the denominator of Eq. (21) is equal to unity and
Eq. (21) is transformed into Eq. (16), as expected. In the case ρ ≥ µ � 1, the second term can be omitted
since it is small in comparison with unity, and we obtain the formula

ω(ε, γ, µ) ≈ ωp0π
µ + 2ρ
µ
√

2ρ
= ωp0π

µ + 2γε

µ
√

2γε
(22)

for the frequency. From Eq. (22), we have an important result consisting in that in this case, the frequency
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depends on all three parameters of the problem, i.e., ε, γ, and µ, and the dependence on all the parameters,
including µ, is essential. Thus, we obtain that for 1 � ρ � µ, the wave frequency is expressed by Eq. (16),
i.e.,

ω(ε, γ) ≈ ωp0π/(2
√

2ρ) = ωp0π/(2
√

2γε),

which is obtained in the approximation of infinitely heavy ions. In this case, the wave frequency is lower
than ωp0, does not depend on µ, and decreases with increasing ρ. For ρ � µ, from Eq. (22) we obtain

ω(ε, γ) ≈ ωp0π
√

2ρ/µ = ωp0π
√

2γε/µ,

i.e., the frequency essentially depends on µ and, on the contrary, increases with increasing ρ. If the velocity
of finite-amplitude waves tends to the speed of light in free space, which is equivalent to the limit ρ → ∞,
then the frequency tends to infinity, which is fully opposite to the frequency behavior obtained in the
approximation of motionless ions, within the framework of which the frequency decreases to zero for β → 1.

As a result, we obtain that for weakly relativistic and relativistic waves in the case ρ = γε ≤ β ≤ 1,
the wave frequency is close to ωp0. For ρ � 1 and any relation between µ and ρ, very simple formula (22) can
be used for the wave frequency with accuracy up to 50%. This formula correctly represents the functional
dependence of the frequency on the parameters ε, γ, and µ, i.e., gives a decrease in the frequency with
increasing ρ for ρ � µ and describes an increase in the frequency with increasing ρ for ρ � µ.

For a fixed value of µ, the dependence of ω on the parameter ρ, expressed by Eq. (22), means that the
frequency has the minimum value ωmin at a certain value of ρ. Under the condition ∂ω/∂ρ = 0, it follows
from Eq. (22) that ωmin ≈ 2πωp0/

√
µ for ρmin ≈ µ/2. We emphasize that the ratio ωmin/ωp0 depends only

on µ. It is evident that at certain ρ = ρ0 � µ, the frequency ω is again equal to the plasma frequency ωp,
as for linear waves. The value of ρ0 for which ω = ωp is found by using Eq. (22): ρ0 ≈ µ2/(2π2). Thus,
for a fixed amplitude of the electric field of the wave and a variation in the wave velocity from zero to the
speed of light, the frequency initially decreases to a certain minimum value and then monotonically and
indefinitely increases. In this case, the frequency twice takes the value ω = ωp on the interval 0 ≤ u ≤ c.
At first, this occurs at the drop phase and then, during an increase from the minimum value to infinity. At
the drop phase, for ρ < ρmin ≈ µ/2, one can use the formulas for the frequency which were obtained in the
case of infinitely heavy, motionless ions (Eqs. (13)–(16)). If ρ > ρmin ≈ µ/2, then the frequency should be
found from the relations obtained with allowance for the motion of ions (Eqs. (21) and (22)).

Let us estimate the amplitude of the electric field of a nonlinear wave, under which the wave begins
to “respond” to the dynamics of ions. We take ρ = ρmin ≈ µ/2 and assume that the wave propagates in
an electron–proton plasma and its amplitude is close to the limiting amplitude (ε ≈ εm). Then, taking
into account that ρmin � 1, from Eq. (8) we have εm ≈ 1, whence the estimate E0m ≈

√
4πn0Mc2 for the

electric-field amplitude follows. From this formula, we obtain E0m ≈ 1012 V/m for a plasma with the density
n0 ∼ 1018 cm−3. Such an amplitude of the electric field corresponds to the value observed in the laser beam
with a wavelength of 1 µm and an intensity of 1018 W/cm2.

3.3. Electron–positron plasma (µ = 1)

In this case, formula (6) for the frequency is represented as

ω = ω(ε, γ) =
π

2
ωpe (βγ)3/2/J(ε, γ), (23)

where ωpe = (8πe2n0/m)1/2 is the frequency of linear oscillations of the plasma and

J(ε, γ) =

ψ+∫
0

dψ√
ε − V (ψ, γ)

. (24)
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The upper limit in the integral J(ε, γ) is given by the formula

ψ+ = (βγ − ε/2)
{
ε(βγ − ε/4)/[1 + ε (βγ − ε/4)]

}1/2
,

whereas the function V (ψ, γ) is given by the expression

V (ψ, γ) = 2βγ −
√

(γ − ψ)2 − 1 −
√

(γ + ψ)2 − 1 .

The effective potential well described by the function V (ψ, γ) has a shape symmetric with respect to the
point ψ = 0. The limiting depth of the well is εm = 2βγ (1 −

√
γ/(γ + 1)) and the limiting amplitudes of

the potential are ψ∗
− = −(γ − 1) and ψ∗

+ = γ − 1 [7].

3.3.1. Weakly relativistic waves (β � 1)

For weakly relativistic waves, the depth of the potential well is εm ≈ β (2 −
√

2) � 1, i.e., ε ≤ εm � 1. To
find an expression for the frequency of waves in the case β � 1, we make the change of variables

t =
[√

(γ − ψ)2 − 1 +
√

(γ + ψ)2 − 1
]
/2

in integral (24). Then integral (24) takes the form

J(ε, γ) =
1√
2


β2γ

βγ∫
b

(1 − t2/γ2)−1/2 dt√
(β2γ2 − t2) (b − t)

− γ

βγ∫
b

(1 − t2/γ2)−3/2
√

β2γ2 − t2 dt√
b − t


 ,

where b = βγ−ε/2. We represent the expressions (1−t2/γ2)−1/2 and (1−t2/γ2)−3/2 entering the integrands
by power series. Since t2/γ2 � 1 on the integration interval, we can limit ourselves to the finite number of
terms in the obtained series. As a result, we have

J(ε, γ) =
1√
2


 βγ∫

b

β2γ2 dt√
(β2γ2 − t2) (b − t)

−
∑
n

an(ε, γ)

βγ∫
b

(β2γ2 − t2)n+1/2 dt√
b − t


 , (25)

where n = 0, 1, 2, . . . and an(ε, γ) are the series coefficients dependent on ε and γ. We limit ourselves to
the approximation within the framework of which we omit the terms entering the expression for the integral
J(ε, γ) and comprising the small parameter β to the power higher than four. An examination shows that
in this approximation, it is sufficient to retain the first term of the sum in Eq. (25). In this approximation,
we obtain

J(ε, γ) ≈ (βγ)3/2

{
K(k) −

(
1 +

3
4
β2

)
8
3

[(
1 − ν

4

)
K(k) −

(
1 − ν

2

)
E(k)

]}
,

where K(k) and E(k) are complete elliptic integrals of the first and second kinds, respectively, k =
√

ν/2,
and ν = ε/β = δ (2−

√
2) ≈ 3δ/5. Using the asymptotic expansions of the integrals K(k) and E(k) for small

k, we finally obtain

J(ε, γ) ≈ π

2
(βγ)3/2

(
1 − 15

16
ν − 3

4
β2ν

)
.

Substitution of the relation obtained for J(ε, γ) into Eq. (23) yields

ω(δ) ≈ ωpe

(
1 + ν +

3
4
β2ν

)
≈ ωpe

(
1 +

3
5
δ +

1
2
δβ2

)
. (26)
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It is seen that Eq. (26) for the frequency is similar in form to Eq. (19) obtained for weakly relativistic waves
in a plasma containing heavy ions, but has two important differences. The first difference is that the term
comprising the parameter β, which appears in formula (26) for the frequency due to allowance for the
nonlinearity, is positive. The second difference is that the addition to the frequency, which is related only to
the wave amplitude (the second term in the parentheses of Eq. (26)), is important for waves whose amplitude
is close to the limiting amplitude. Due to this fact, for, e.g., δ = 1, the frequency exceeds ωpe by a factor
greater than 1.5. The main conclusion following from Eq. (26) is that the frequency of weakly relativistic
waves in electron–positron plasmas is higher than the frequency ωpe of linear oscillations.

3.3.2. Relativistic waves (γ � 1)

It is easily seen that, as in the above-discussed case of waves in a plasma with heavy ions, for relativistic waves
in an electron–positron plasma with amplitude much smaller than the limiting amplitude (more exactly, for
βρ ≤ 1), the frequency differs slightly from the frequency of weakly relativistic waves. To find the wave
frequency for ρ � 1, i.e., for γ � 1, we approximately represent the function V (ψ, γ) in integral (24) as

V (ψ, γ) ≈ 2βγ −
√

(γ − ψ)2 − 1 − (γ + ψ).

We also introduce a new variable t = (γ − ψ) −
√

(γ − ψ)2 − 1. Then integral (24) takes the form

J(ε, γ) =

p∫
q

(1/t2 − 1) dt

2
√

p − t
,

where q = γ (1 − β) and p = ε + 2q. This integral is evaluated along the same lines as J2 (see Sec. 3.2.2).
Assuming that ρ � 1, for the frequency we obtain

ω(ε, γ) ≈ ωpeπ
√

γε/2. (27)

The dependence of the frequency of nonlinear Langmuir waves on the parameters ε and γ in an electron–
positron plasma turns out to be the same as for ultrarelativistic waves (ρ � µ) in a plasma with heavy
ions.

Generalizing the results obtained for weakly relativistic and relativistic waves, we arrive at the con-
clusion that in electron–positron plasmas, the frequency of nonlinear Langmuir waves is always higher than
the frequency of linear oscillations.

4. BASIC CONCLUSIONS

In this paper, we obtained analytical expressions for the frequency of nonlinear Langmuir waves in
the entire variation range of the parameters µ, γ, and ε. The main conclusion which follows from the
obtained formulas and which should be emphasized first of all is that allowance for the motion of ions
is of fundamental importance when studying nonlinear Langmuir waves. It is seen that the dependences
of the frequency on the amplitude (ε) and the phase velocity (γ) of waves, as well as on the parameter
µ characterizing the ion component of the plasma, are essentially different in the following two limiting
cases: (i) for a plasma with infinitely heavy, motionless ions (µ → ∞), the frequency is always lower than
the frequency ωp0 of linear waves and monotonically decreases with increasing parameter ρ = γε; (ii) for
an electron–positron plasma in which the ions and electron masses are identical (µ = 1) and, hence, the
motion of ions (in this case, positrons) proceeds in the same manner as that of electrons, the frequency is
always higher than the frequency of linear oscillations and monotonically increases with increasing ρ. For
the intermediate case where the plasma parameters are such that µ � 1, the dependence of the frequency
on the wave characteristics is fairly complicated and is given by Eqs. (19), (21), and (22).
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Another very important conclusion is that, in general, the frequency depends on all three parameters
of the problem, i.e., γ, ε, and µ. For fixed µ, the frequency is determined by the product ρ = γε, i.e.,
depends equally on both the velocity and amplitude of waves.

We also note some interesting facts. First, weakly relativistic nonlinear plasma waves (β � 1) and
small-amplitude relativistic waves for which the condition ρ = γε ≤ β ≤ 1 holds have an oscillation frequency
close to that of linear oscillations in the plasma. Second, for an electron–proton plasma, which is the most
widespread in nature, the frequency ω of nonlinear waves (as follows from Eqs. (21) and (22)) differs from
the electron plasma frequency ωp0 by a factor smaller than an order of magnitude (by a maximum of 7
times) if the parameter ρ varies in a rather wide range 0 ≤ ρ ≤ 105. Only outside this interval, for ρ > 105,
the wave frequency becomes higher than ωp0 and monotonically increases as ρ1/2 with increasing ρ.
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